
Examples of embedding Sage in LATEX with

SageTEX

Drake and others

March 9, 2019

1 Inline SageMath, code blocks

This is an example 2 + 2 = 4. If you raise the current year mod 100 (which
equals 18) to the power of the current day (9), you get 324. Also, 2019 modulo
42 is 2.

Code block, which uses a variable s to store the solutions:

1+1

var(’a,b,c,d’)

eqn = [a+b*c==1, b-a*c==0, a+b==5]

s = solve(eqn, a,b,c)

Solutions of eqn = [bc + a = 1,−ac + b = 0, a + b = 5] :[
a = −1

4
i
√

79 +
11

4
, b =

1

4
i
√

79 +
9

4
, c =

1

10
i
√

79 +
1

10

]
[
a =

1

4
i
√

79 +
11

4
, b = −1

4
i
√

79 +
9

4
, c = − 1

10
i
√

79 +
1

10

]
Now we evaluate the following block:

E = EllipticCurve("37a")

You can’t do assignment inside \sage macros, since Sage doesn’t know how
to typeset the output of such a thing. So you have to use a code block. The
elliptic curve E given by y2 + y = x3 − x has discriminant 37.

You can do anything in a code block that you can do in Sage and/or Python.
Here we save an elliptic curve into a file.

try:

E = load(’E2’)

except IOError:

E = EllipticCurve([1,2,7,4,5])

E.anlist(100000)

E.save(’E2’)

1

The 9999th Fourier coefficient of y2 + xy + 3y = x3 + 2x2 + 4x + 5 is −27.
The following code block doesn’t appear in the typeset file. . . but we can

refer to whatever we did in that code block: e = 7.

var(’x’)

f(x) = log(sin(x)/x)

The Taylor Series of f begins: x 7→ − 1
467775 x

10− 1
37800 x

8− 1
2835 x

6− 1
180 x

4− 1
6 x

2.

2 Plotting

Here’s a plot of the elliptic curve E.

-1 1 2 3

-10

-8

-6

-4

-2

2

4

You can use variables to hold plot objects and do stuff with them.

p = plot(f, x, -5, 8)

Here’s a small plot of f from −5 to 5, which I’ve centered:

-4 -2 2 4 6 8

-200

-150

-100

-50

50

100

150

On second thought, use the default size of 3/4 the \textwidth and don’t
use axes:

2

Remember, you’re using Sage, and can therefore call upon any of the software
packages Sage is built out of.

f = maxima(’sin(.4 * x)^3*cos(x)’)

g = f.integrate(’x’)

Plot g(x), but don’t typeset it.
You can specify a file format and options for includegraphics. The default

is for EPS and PDF files, which are the best choice in almost all situations.
(Although see the section on 3D plotting.)

If you use regular latex to make a DVI file, you’ll see a box, because DVI
files can’t include PNG files. If you use pdflatex that will work. See the
documentation for details.

When using \sageplot, you can pass in just about anything that Sage can
call .save() on to produce a graphics file:

3

-1123456
-0.5

0.5

1

4

0
1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17 18

19

G4 = DiGraph({1:[2,2,3,5], 2:[3,4], 3:[4], 4:[5,7], 5:[6]},\

multiedges=True)

G4plot = G4.plot(layout=’circular’)

5

1

2

3

4 5

6

7

Indentation and so on works fine.

s = 7

s2 = 2^s

P.<x> = GF(2)[]

M = matrix(parent(x),s2)

for i in range(s2):

6

p = (1+x)^i

pc = p.coeffs()

a = pc.count(1)

for j in range(a):

idx = pc.index(1)

M[i,idx+j] = pc.pop(idx)

matrixprogram = matrix_plot(M,cmap=’Greys’)

And here’s the picture:

??

Reset x in Sage so that it’s not a generator for the polynomial ring: x

2.1 3D plotting

3D plotting right now is problematic because there’s no convenient way to pro-
duce vector graphics. We can make PNGs, though, and since the sageplot

command defaults to EPS and PDF, you must specify a valid format for 3D
plotting. Sage right now (version 3.4.2) can’t produce EPS or PDF files from
plot3d objects, so if you don’t specify a valid format, things will go badly. You
can specify the “imagemagick” option, which will use the Imagemagick convert

utility to make EPS files. See the documentation for details.
Here’s the famous Sage cube graph:

G = graphs.CubeGraph(5)

??

3 Pausing SageTEX

Sometimes you want to “pause” for a bit while writing your document if you
have embedded a long calculation or just want to concentrate on the LATEX and
ignore any Sage stuff. You can use the \sagetexpause and \sagetexunpause

macros to do that.
A calculation: (SageTEX is paused) and a code environment that simulates

a time-consuming calculation. While paused, this will get skipped over.

import time

time.sleep(15)

7

Graphics are also skipped: SageTEX is paused; no graphic

4 Make Sage write your LATEX for you

With SageTEX, you can not only have Sage do your math for you, it can write
parts of your LATEX document for you! For example, I hate writing tabular envi-
ronments; there’s too many fiddly little bits of punctuation and whatnot. . . and
what if you want to add a column? It’s a pain—or rather, it was a pain. Here’s
how to make Pascal’s triangle. It requires the amsmath package because of what
Sage does when producing a LATEX representation of a string. (It puts it inside
a \text macro.)

Okay, now here’s the table. To change the size, edit n above. If you have
several tables, you can use this to get them all the same size, while changing
only one thing.

SageMath version 8.4, Release Date: 2018-10-17

8

