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A note to the reader: all graphs here are simple, connected, and of
order at least three.

Some True Conjectures

Observation 1. If G is a complete graph, then G is Hamiltonian.

Lemma 1. If G is a bipartite k-regular graph, with k > 0 and bipartition (X,Y ),
then |X| = |Y |.

This is immediate by double counting; k|X| =
∑

x∈X d(x) = e(G) =
∑

y∈Y d(y) =
k|Y |.

Lemma 2. If there is a graph which is (n, k, λ, µ)-strongly-regular, then (n − k −
1)µ = k(k − λ− 1).

Proof. We partition the graph into three sets. Let x be an arbitrary vertex; we think
of this as the root of our partition; say P0 = {x}. Since G is k-regular, we think of
its k neighbors as being in the second set; formally, take P1 = {y : y ∈ N(x)}. All
other nodes form the third set; take P2 = {y : y 6∈ N(x) ∧ y 6= x}.

Since the vertices of P1 are adjacent to x, they have λ neighbors in common with
the x; these vertices must also lie in P1. Since our graph is k=regular, there are
(k − λ− 1) edges remaining from each P1 vertex to P2. Thus we have e(P1, P2) =
k(k − λ− 1).

Since the vertices in P2 are not adjacent to x, they must have µ common neigh-
bors with x; these vertices are in P1. Since |P2| = (n − k − 1), and each vertex of
P2 is connected to µ nodes of P1, we have e(P1, P2) = (n − k − 1)µ. Comparing
with our earlier count of e(P1, P2), we see that (n− k − 1)µ = k(k − λ− 1). �

Theorem 3. If G is a bipartite, connected, (n, k, λ, µ)-strongly-regular graph, then
G is a complete balanced bipartite graph.

Proof. Assume that G is as stated, with bipartition (X,Y ).

First, notice that if λ > 0, then G contains a triangle; this is impossible, if G is
bipartite, and so we may assume that λ = 0.

Now, assume that µ = 1; this implies that G is a Moore graphs with girth five;
this is impossible as G is purported to be bipartite.

Next, suppose that µ = 0. A quick counting argument shows that always
(n − k − 1)µ = k(k − λ − 1). Simplifying in the case that µ = 0 and ν = 0,
we see that k − 1 = 0, and so k = 2. Thus G is an even cycle, which is never
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strongly regular with the given parameters.

Finally, suppose that µ ≥ 2, and consider x ∈ X and y ∈ Y such that xy 6∈ E(G).
Then by definition these vertices have µ ≥ 2 neighbors in common; this is impossible
as G is bipartite and x, y lie in different parts. G can have no such non-edge, and
so it is complete. By our lemma, it is also balanced since it is regular. �

Observation 2. If G is a line graph whose complement is chordal and which has
radius equal to diameter, then G is Hamiltonian.

“is-line-graph implies claw-free; is-complement-of-chordal implies P6-free; has-
radius-equal-diameter implies 2-connected; And every 2-connected (P6 ,claw )-free
graph is hamiltonian”

Observation 3. If G is a two connected outerplanar graph, then it is Hamiltonian.

This is trivial; the boundary of the infinite face must thus be a cycle, and as
every vertex is on this face it forms a spanning cycle.

Observation 4. If G is a Gallai tree and is two connected, then G is Hamiltonian.

Again, this is immediate – any two bricks in a Gallai tree are separated by a cut
vertex, so a two connected Gallai tree must be just a single brick. This is either an
odd cycle or a complete graph, so it is Hamiltonian.

Lemma 4. If G is a nontrivial cartesian product and outerplanar, then it is Hamil-
tonian.

This relies on the fact that a graph is outerplanar if and only if it contains no
{K2,3,K4}-minor.

Observation 5. If G is a graph with its diameter equal to its radius, and G is
circular planar, then it is Hamiltonian.

This is again trivial; if G contains a cut vertex or cut edge, and is outerplanar,
then it has its diameter larger than its radius.

Observation 6. If G is a bipartite line graph, and it has diameter equal to radius,
then it is Hamiltonian.

Recall that a graph is a line graph if and only if it can be partitioned into
edge disjoint cliques such that every vertex lies in exactly two cliques. Since G is
bipartite, it is triangle free, so such cliques are singletons or edges. Every vertex is
in exactly two such cliques, and so every vertex has degree at most two. Since G is
connected, our graph is either a path or a cycle. Paths consisting of more than a
single edge do not have radius equal to diameter, so our graph is a spanning cycle.

Lemma 5. A graph is outerplanar if and only if it is K2,3-minor free and K4-
minor-free.

Lemma 6. P2�Pk is Hamiltonian for k ≥ 2.

Lemma 7. Suppose a graph H is connected, outerplanar, and Hamiltonian. Fur-
ther suppose H = H1�H2 where H1 and H2 are graphs on at least two vertices.

Proof. Since H is connected, so are H1 and H2.

Claim 1. H is P2�Pm
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Suppose that H1 has a cycle. Since H2 has an edge, H contains K3�P2 as a
minor and thus it contains K2,3 as a minor (take the open neighborhood of any
vertex to be the class of size 3), a contradiction.

Thus, H1 and H2 are trees. If H1 has a vertex of degree 3 or more, then H
contains K1,3�P2 as a minor. Taking the neighborhood of one of the vertices of
degree 3 in K1,3 and the other copy of K1,3 as the class of size 2, we see that H
has K2,3 as a minor, a contradiction.

Thus, H1 and H2 are paths. Suppose that both have three or more vertices.
Thus H contains H1�H2 as a minor. Taking the neighbors of a vertex of degree 3
as the class of size 3 shows that H contains a K2,3-minor, a contradiction.

Thus at least one ofH1 andH2 has exactly two vertices and the proof is complete.
�

Planar Transitive Graphs are Hamiltonian

Definition 8. A graph automorphism is an isomorphism between the graph and
itself. That is, it is a map φ : V (G) → V (G) such that xy ∈ E(G) iff φ(x)φ(y) ∈
E(G). A graph G is vertex transitive if for every pair of vertices u, v ∈ V (G), there
is a graph automorphism φ with φ(u) = φ(v).

Observation 7. Every vertex transitive graph is d-regular for some k ∈ N.

Theorem 9. [Mad70] If G is a d-regular vertex transitive graph with connectivity
k, then 2(d+1)

3 ≤ k.

Theorem 10. [Tut56] Every 4-connected planar graph is Hamiltonian.

Theorem 11. [Zel77] The only 3-regular vertex transitive simple planar graphs
are the tetrahedron, the dodecahedron, the n-sided prisms (for n ≥ 3), the tricone
graph, the truncated cube, truncated octahedron, trunctated dodecahedron, truncated
icosahedron (bucky ball), and the Great Rhombicosidodecahedral Graph.

We prove the following theorem.

Theorem 12. Every vertex transitive planar graph is Hamiltonian.

By Theorem 10, it is enough for us to consider graphs with connectivity at most
three. By Theorem 9, such graphs are regular of degree at most 7/2; that is,
they either have all vertices of degree two or of degree three. Since a two-regular
connected graph is a cycle (and thus Hamiltonian), we focus only on the three
regular case. But, these graphs are characterized by Theorem 11. The only infinite
family of graphs here are the prisms (which are trivially Hamiltonian – just walk
around all but a single edge on one of the end polygons, across the adjacent face,
around the opposing end, and back along the same face). The other graphs are
easily tested to be Hamiltonian in Sage.
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