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0.1 Back Ground Information

0.1.1 Signal Processing

To even begin how to model a signal at a given point of space and time, we have to start with the

model of the signal itself. All signals can be modelled as the sum of a series of cosines and sines.

In the simplest case:

For a continuous variable E(t), we can model field strength as

$ E(t) = ∑ _{i = 1}N|a_i| cos(2pi f _ct + φ)$

Where ATx is the amplitude at the transmitter, fc is the center frequency and φ is a phase shift.

As we can see from the above equation, that only three parameters are within our control: am-

plitude, frequency, and phase. With these three parameters, there are many modulation schemes.

The simplest case is show below in Figure 1.

Figure 1. - Different Modulation Techniques.

ATx cos(2 ∗ π ∗ fct + φ)

where ai is the average amplitude of the signal strength at the receiver, given by the root-mean

square estimation.

Modern wi-fi systems (since 802.11n) have deployed MIMO antenna arrays that allow for

a particular type of modulation that exploits the phase and amplitude characteristics of signal,

called Quadrature Amplitude Modulation (QAM). This is where we must recall Euler’s Identity

ei∗π + 1 = 0

If we decompose this according to a basic trigonometric identity and let x = 2 ∗π ∗ fct + φ, we

see that
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ei∗π = −(sin2(ω) + cos2(x))

Without loss of generality, the above identity holds true for any scaling factor E. If we rewrite

this in terms of phase and quadratur components we find that

E(t) = I(t) ∗ cos(2 ∗ pi ∗ fct + φ) + Q(t)− sin(2 ∗ pi ∗ fct + φ)

where Q is the phase of the signal and I is its amplitude.

Figure 2. - Phase-Amplitude Model.

Furthermore, since phase is a continuous variable, our sample space (as a function of θ can

become arbitrarily small. However, there is a trade-off here. As we decrease our θ sampling

window, we increase our effective noise floor, as each pizza-shaped slice of our measurement

window contains the same information in less geometric space. The effect of this is to transmit for

bits per symbol. Note this only applies to receiving systems with a single antenna.

Modulation Bits per Symbol Symbol Rate Minimum SNR

BPSK 2 1/2 bit rate 3.5dB

QPSK 3 1/3 bit rate 22.45

8PSK 4 1/3 bit rate 26.96

16QAM4 5 1/4 bit rate 30.67

32QAM 5 1/5 bit rate 32.49

64QAM 6 1/6 bit rate 35.02

http://www.ni.com/tutorial/4805/en/ http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-

23532011000100012
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0.1.2 Design Constraints

I want to be able to build this path loss model using a large set of numerical data. In order to do

that, we must limit ourselves to measuring things that are available on common radio circuits. For

model-building purposes, I set up tcpdump, iw, iperf, and ping to gather network state data from

the transmitter and receiver ends. I have developed an android application using the Automate

tool that gathers sensor data from all three on-board radios (bluetooth, wifi, and cdma) as well as

the the 9 degree of freedom orientation chip that quantifies location (in 3 dimensions), orientation

(along each of 3 axes), and magnetic field (in each of 3 orthogonal directions). In addition to

that, we get other common wifi packet data. In addition, the wi-fi packet frames provide more

information: * a frame control segment that indicates whether the frame is a control, management,

or data type * address segments that include the MAC addresses of transmitter, receiver, and the

final destination at either end * sequence control data that helps to reorder frames that arrive

at phase-delayed times * the actual body of the frame (data) * a frame sequence check (a 32 bit

checksum for error correction)

https://witestlab.poly.edu/blog/802-11-wireless-lan-2/

At the receiver end, I can verify the state of this data relative to the transmit data, verify timing

assumptions (to an imprecise degree), gather RSSI levels and the bit error rate for a given modu-

lation. At the receiver end, I log the data continuosly for the sensor data. Every time the Android

OS has the ability (due to processor congestion and timing), it measures the raw voltage levels on

the 9-DoF chip. The network state data, because it is user-space software, takes time to make its

measurements. Since this problem is outside of the scope of this project, training data will only be

taken from timestamped data that has no missing features. It is possible that a time-series aver-
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age of the sensor data can replace the instantaneous measurement in the model. However, more

investigation is needed.

In addition to wifi data, I can collect the same information from a bluetooth radio. However,

instead of operating in the 2.4 or 5 Ghz ranges familiar to wifi, it operates in the sub Ghz range

around 900Mhz. Because of the difference in these wavelenghts, the two fields operate somewhat

differently at a human scale. Bluetooth is much less sensitive to fading and other non-line of sight

measurements. The difference in estimated fading margins between wifi and bluetooth can be

used to get a characteristic of the environment.

0.2 Previous Models

0.2.1 Friis Equation

In the simplest scenario, we can model the free space path loss. This function of received power

in terms of distance is known as Friis’ Law:

PRx(d) = PTxGTxGRx(
λ

4∗π∗d )
2ARx

Where P is the power, G is the gain, and A is the area of the receiving antenna, d is distance

between the transmitters and λ is the frequency. This equation only applies for systems that are

separated by at least one Rayleigh distance defined by

dR = 2La
2

λ

This is known as the far field. When dealing with link budgets, it is best to use a logarithmic

scale because signal levels will vary across many orders of magnitude.

PRx(d) = PTxGTxGRx20 log( λ
4∗π∗d )

2ARx

if and only if the powers and gains are consistently in dB or dBm.

4



0.2.2 Kirchoff Theory

In the same way that Rayleigh distance defines the breaking point of Friis system, Rayleigh rough-

ness can be thought of as the

Perturbation Theory

0.2.3 Log-Distance Path Loss Model

The next model, log-normal shadowing can be thought of as an extension of the Friis model with

the added inclusion of a random variable. If the receiver is in the far field of the receiver (where

d > dR), PL(d0) is the path loss measured at a distance d0 from teh transmitter, then the path loss

when moving from distance d0 to d is given by the equation

PLd0 → d(dB)PL(d0) + 10n log10
d
d0
+ χ1

c where n is the path loss exponent, given by the table below and χ is a zero mean random

normal distribution.

https://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-

shadowing-model/

Environment Path Loss Exponent min Path Loss Exponent Max

Free Space 2 2

Urban area cellular radio 2.7 3.5

Shadowed urban cellular radio 3 5

Inside-LoS 1.6 1.8

Obstructed in building 4 6
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Environment Path Loss Exponent min Path Loss Exponent Max

Obstructed in Factory 2 3

Figure 1: Empirical Log-distance coefficients

0.2.4 Noise

In most circumstances it is too cumbersome to describe all the sources of noise. If it wasn’t, then

we’d solve Maxwell’s Equations within the system and be done with it. However there are many

sources of interference. Multipath propagation is a big limitation to predicting the shape of a

wireless network in an urban space as different rays from the transmitter bounce around the room

and reach the receiver at different times. Because receivers cannot distinguish the ’true’ signal

from the multi-path signal, the receiver just adds the components of those multipaths up, creating

interference. This interference can be constructive or destructive. Small-scale fading occurs when

a user is moving--when the user moves further away, they increase the phase and possibly the

measured voltage level. Additionally, the transmitter and receiver each produce noise. The total

power due to noise can be described as

P = (∑n
k=0(xI + xQ))

2

Where xI and xQ are linearly independent vectors of amplitude, I, and phase, Q. The signal to

noise ratio can be expressed as

SNR =
Psignal
Pnoise

where P is the average power measured at the equivalent points in a system and within the

same system bandwidth. If we include interference, the SNR becomes SINR or the signal to inter-
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ference and noise ratio.

SINR =
Psignal

Pnoise+Pinter f erence

Interference can also be created by objects in the environment. Buildings and other obstacles

to propagation can block regular transmission, causing any signal to make it behind the building

to be greatly attenuated. This is called shadowing. Note that this not only happens to the line-of-

sight components of the wave front, but any multi path ray! For this reason, buildings and other

obstacles give rise to large-scale fading by creating a diffraction pattern of the signal wave in the

shadow of the building.

These components can undergo many types of transformations. Reflection is when a field

reaches an object with very large dimensions compared to the wavelength of the field. A wi-fi

signal is reflected off of buildings and the ground, creating patterns of de/coherence. Diffraction

occurs when a transmitter and receiver are obstructed by a surface, ’bending’ the wave around

the obstacle. When a field travels across a surface with dimensions that are small compared to

its wavelenght and where the number of obstacles per volume is high. Refraction is a result of

the field traversing multiple mediums, much like how a pencil appears to ’bend’ when placed in

a glass of water. For much higher frequencies (starting at 15Ghz), atmospheric absorption is a

problem, but for indoor distances and low frequencies, the effects are negligible. [Source Tum]

0.2.5 Log-Normal Shadowing Propagation Loss Model

The next model builds on the Log-Normal shadowing model by including a random variable, chi.

This law can be expressed as:

PLd0→d(dB) = PL(d0) + 10n log10
d
d0
+ χ2
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Where χ2 is a zero-mean Gaussian distributed random variable. This variable is only used

when there is a shadowing effect. Equivalently, χ2 = 0 when no shadowing effect is present.

0.2.6 Two Ray Ground Propagation Loss Model

Thus far, we have not needed to think of our signal and other multipath components as being com-

plex vectors. When we start trying to predict the way these multiple paths interact analytically,

phase shifting due to refraction, fading, and other multipath effects can be modelled by using a

two path tracing technique. The figure below illustrates this model.

Figure 1. - Two Ray Path Loss Model.

0.2.7 ITU Propagation Loss Model

The next model is a semi-empirical model, based on the same Friis equatoin, with added parame-

ters for noise due to fading between floors in a building.

PLd0→d(dB) = PL(d0) + 20n log f +N(log10(d) + Pf (n)− 28

Where Pf (n) is a power loss function due to the number of floors through which the field

propagates. In addition, the χ value of previous models has been set to -28 in the ITU model,

taken from standardized urban measurements. Source: ITU.pdf

0.2.8 Motley-Keenan Model

The Motley-Keenan Model follows the same logic.

PLd0→d(dB) = PL(d0) + 20 log10
d
d0
+ ∑ aK

PLLoS(d)[dB] = 20log10
(4πd0)

λ + 10nLoS log10(d) + χσ
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PLNLoS(d)[dB] = 20log10
(4πd0)

λ + 10nNLoS log10(d) + χσ PLLoS(d)[dB] = PLoS ∗ PLLoS(d)[dB] + (1−

PLoS) ∗ PLNLoS(d)[dB]

Source: m-k 3

0.2.9 Tata Modified ITU Model

PLT−IPLM(dB) = 20× log10( f ) + NT × log10(d) + 10 + ∑w=k
w=0 +FAF− 20

NT for different number of obstacles

Channel 1 Channel 7 Channel 11

No. Obstacles NT No. Obstacles NT No. Obstacles NT

1 31.1 1 32.9 1 29.3

2 30.1 2 28.5 2 28.4

3 31.8 3 26.7 3 27

4 31.2 4 29.1 4 28

5 31.3 5 27.4 5 28.4

Floor Wise Attenuation Factor (FAF)

Scenario FAF (dB)

-2 floors 36

-1 floors 21

0 floors 0

+1 floors 21
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Scenario FAF (dB)

+2 floors 33

+3 floors 40

Longley-Rice Model:

Frequency

Distance

Antenna Heights

Polarization

Terrain irregularity (∆h)

Electrical Ground constants

Refractivity

Climate

Siting

Reliability and confidence level

w’ (t,`,s) = W0 + yS(s) + δL(s) yL(`) + δT(s) yT(t),

https://www.ntia.doc.gov/files/ntia/publications/ntia_82-100_20121129145031_555510.pdf

In [5]: ## Purely Statistical Models

0.2.10 Rayleigh Fading

x = cd f (rmin) ≈
r2

min
2σ2
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0.2.11 Rician Fading

0.2.12 Doppler Adjustments

$BER_{Doppler} = 1
2π2(v_{max}T_B)2$

BER = K( Sτ
TB
)2

0.2.13 Machine Learning

0.3 Problem

Standard wireless models are great at modelling unbostructed line-of-sight connections. However,

they fail to accurately model the network states at peak noise, in complicated urban environments

both indoors and outdoors. In addition, these models live entirely in the proprietary world of the

IEEE website. Implementing these models in Python would go a long way to modelling the bigger

problem. This is the first step. Since some quantities required for these models are unknown, a

gridsearch algorithm will be used to optimize these algorithms.

Since these models require different sets of parameters, what features our dataset needs is an

open question. The first method will be using a k-random-forest algorithm to see what features

are relevant to the signal strength between two nodes.

The next method will take the most useful features and use them to build a linear (or maybe

quadratic) regressor that predicts signal to noise ratio between two nodes.

Then, each of these models (the set of 802.11 standard models and my from-scratch regressor)

will be compared using a Xi-Square test. Differences between my ’simplified’ model and the more

complex 802.11 models will be compared and analyzed with respect to the cost of finding the
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additional features.

Model Required

Features

Friis Receive Power Transmit

Power

Transmitter

Gain

Receiver

Gain

distance frequency

0.4 Hypothesis

Machine Learning Tools can signinficantly reduce the cost of measurement.
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