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1 Introduction

We made a focus stacking camera using a Raspberry Pi 3.0 to take the

pictures to set the focus. We also wrote code to stitch the images together

and investigated using the Raspberry Pi GPU to to speed up the focusing

stacking process.

2 Background

2.1 Focus Stacking

Focus stacking is a method used to increase the depth of field of an image

by combining several images[1] with different focal points into a new image.

Usually the camera is fixed on a tripod[2] and the focus is changed or it’s

attached to a macro rail which moves the camera towards the subject[3].
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Figure 1: An example of a focus stacked image [1]

2.2 The Raspberry Pi Computer

The Raspberry Pi is a credit card sized computer which retails for ∼$35.

The latest version (3.0) has following key specs[4] :

• A 1.2GHz 64-bit quad-core ARMv8 CPU

• 802.11n Wireless LAN

• 1GB RAM
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• 40 GPIO pins

• Camera interface (CSI)

• VideoCore IV 3D graphics core capable of 24 GFLOPS[5]1

Figure 2: Raspberry Pi 3.0 [4]

1More details on the GPU can be found in Appendix A.
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2.3 The Raspberry Pi Camera Module

An 8-megapixel camera module with adjustable focus is available which con-

nects to the Pi via the CSI. Alternatively a 5-megapixel camera module is

available from Waveshare Electronics which connects using the interface.

(a) Rasberry Pi camera module[6] (b) Wave Share camera module[7]

Figure 3: Raspberry Pi camera modules
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3 Previous Work

In 2013 David Hunt made a macro rail using a Raspberry Pi to control the

stepper motor of a flatbed scanner and to trigger the shutter on a DSLR

camera mounted on the scanner rail [3][8]. He then used CombineZM to

stitch the images together.

Figure 4: Examples from David’s work[3]
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Figure 5: David’s macro rail[3]
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4 Current Work

4.1 Remote Access and Control of the Pi

We wanted to be able to remotely access the Pi so it wasn’t always teth-

ered to a monitor, keyboard, and mouse. We also we wanted to make the

final prototype portable and controllable via a web interface. We started by

configuring the Pi to auto connect to the local wifi on startup.

4.1.1 Particle IO

“Particle is a scalable, reliable and secure Internet of Things device platform...”[9].

Specifically it’s a cloud based platform for remotely programming and con-

trolling microcontrollers and devices like the Raspberry Pi. It’s currently

free for up to 25 devices, 5 team members and 250K events/month[10].

We signed up for access to the Raspberry Pi Beta and followed the in-

structions to download and install the Particle daemon. We tested the Hello

World example and decided that it wasn’t practicle for controlling things like

the motor remotely since the function responsible for web requests takes a

string as the parameter which then has to be parsed.
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4.1.2 Dataplicity

Dataplicity is a web service that lets you access your Pi from any web browser.

It gives you a web based terminal2 and allows you to redirect web traffic to

the Pi securely. It’s currently free for your first device and has no restrictions

on the number of connections.

After signing up and installing the client we were able to get their sample

code for live streaming the camera to a webpage working in a few hours[11]3.

The only downside is that the client currently only supports forwarding port

80. All other ports are blocked so if you want to run two web things on

different ports it won’t work4.

4.1.3 Flask

We wanted a web interface for the camera and decided to use Flask which

”“... is a microframework for Python based on Werkzeug, Jinja 2 and good

intentions”[12] . After getting the Hello World example to work we modified

it to drive the motor n steps forward with a x ms pause in between each step.

2With non-root user access by default.
3Most of that time was used compliling a few libraries.
4It might be possible to set Apache to handle different pages with different programs,

but I haven’t tried this yet.
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In the end we ran out of time and did not get a full web interface for the

camera working.

4.2 Hardware

4.2.1 Camera Housing

The housing for the Rapsberry Pi was designed in OpenScad and printed on

the Physics department 3D printer5. Holes were left in the sides for access to

the micro SD card and the various ports. The lid was printed seperately with

holes for the camera lens, the motor, and the homing sensor, and standoffs

for the camera module.

5A few early prototypes were designed in Solid works and printed on the Science Maker

Space 3D printer
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Figure 6: Early Camera Box Prototype

4.2.2 Camera Focus Mechanism & Camera Module Choice

In order to set the camera focus we need a way to rotate the lens meaning

we need to connect something to the lens and we need a homing mechanism

so the camera knows when its at one of the focal extremes and doesn’t fall

out of its socket.

We started with the Raspberry Pi camera module and were going to use
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pulleys to drive the lens from the motor. The idea was to make a 1:3 ratio

from the motor to the lens so when the motor did one full revolution the lens

did three. By putting a notch in the motor pulley we could sense when it

was at its home position.

Figure 7: Test Pulley

This didn’t work very well since the Pi camera module has a very small

lens (see Figure 13a) and was very hard to attach anything to. We went

through many prototypes (see Appendix D ) before giving up and switching

to the Waveshare camera module.
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The Waveshare camera module has a different lens with a bigger surface

area, a much bigger travel distance, and replacement lens available on Ama-

zon6. In the end we used gears with a 3:1 (motor turns three times for every

one turn of the lens gear) to connect the lens to the stepper motor. We made

sure the lens gear big enough to make sure the homing mechanism would

work.

6We asked Robot Shop and the Raspberry Pi Foundation but neither sold replacement

lens for the Raspberry Pi camera module.
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Figure 8: Test Gear

4.2.3 Gear Design

Dr. Rainer Hessmer has a web page which use OpenJsCad to generate mesh-

ing involute spur gears[13]. The key parameters which can be set are the
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number of teeth (N) and the circular pitch (CP). Ultimately we want gears

which mesh correctly and are a specific distance from center to center. Using

some formulas[14] we get OD = N+2
DP

(OD = outer diameter, DP = diametric

pitch). If x is the distance from center to center then

x =
OD1

2
+
OD2

2
(1)

2x = OD1 +OD2 =
N1 + 2

DP
+
N2 + 2

DP

2DPx = N1 +N2 + 4

Since DP = π
CP

we get

2πx

CP
= N1 +N2 + 4

and

CP =
2πx

N1 +N2 + 4
(2)

So for a given x, N1, and N2 we can calculate CP and use those values on

the web page to generate two meshing gears which can then be downloaded,

imported into OpenScad, modified as needed, and 3D printed. A key thing

to remember is that equation 2 uses the outer diameter of the gears so if

x is precisely the center to center the gears won’t actually mesh but will

just touch. To compensate make x a little bigger then the center to center

distance and use some trial and error to find the best fit.
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4.2.4 Homing mechanism

To sense when a gear or pulley was in a specific location we used an optical

interrupt sensor. Initially we used one out of an old scanner7 but replaced

it with a board from Wavewshave when we changed camera modules. The

Waveshare board comes with appropriate resistors already attached making

it easier to use. We also put a ridge on the bottom of the lens gear so it

would trigger the sensor when it was closest to the lid since it turned more

then one revolution between focal extremes.

4.2.5 Stepper Motor

We used a 5V stepper motor from Robot Shop8 which has 513 steps per

revolution. We tried driving it using the sample code on the Adafruit website

using a L293D driver chip and with a driver board which came with some

motors from Hong Kong but the results were inconsistent. Sometimes it

would turn normally and sometimes it would just stutter. In the end we

were unable to get it to work consistently and just manually set the focus for

testing.

7And promptly destroyed it by connecting it without resistors.
8Resold from Adafruit.
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4.3 Focus Stacking Software

The core of the focusing stacking code is the OpenCV image processing

library which is “an open source computer vision and machine learning soft-

ware library”[15] with “C++, C, Python, Java and MATLAB interfaces”[15].

We followed Adrian Rosebrock’s tutorial (How to install OpenCV 3 on Rasp-

bian Jessie) and installed OpenCV and all its dependencies on the Pi making

sure to make backup images of the SD card as we went.

We then tested a few algorithms for finding the focused portion of an

image and decided to use the fixed window max variance of the Laplacian.

This is a scaled down version of Adrian’s code to see if an entire image was

blurry[16]. Instead we applied his algorithm to fixed regions of the image and

then save the region from the image with the highest focus. The code can be

found at https://bitbucket.org/harohodg/focus-stacking-software. We tested

our algorithms on the following image.
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Figure 9: Test Image[17]

4.3.1 General Algorithm

1. Load all images

2. Align images9

3. Convolve a 3x3 Laplacian kernel with a grayscale copy of each image

4. Compare the variance of fixed windows across each image. Copy the

original color data from the image with the highest variance in each

9Didn’t implement due to time constraints.

20



region to the final image

5. Save final image to disk

4.3.2 GPU Algorithms

The QPUlib library creates a C++ interface for the Raspberry Pi GPU. More

details on the library can be found in Appendix A. In general we create shared

memory arrays of 32 bit floats or ints which are multiples of 16 elements long.

We translated the key steps to work on the GPU. For the conversion

to gray scale we passed in four vectors; Red, Green, Blue, and Gray and

computed

Gray = 0.299Red+ 0.587Blue+ 0.114Green

The key thing to remember is that OpenCV stores images as BGR in

memory and to pack the Red, Green, Blue vectors accordingly.

To convolve a Laplacian Kernel with the the grayscale image we searched

through the OpenCV source code and deterimined that the they are using

K =


2 0 2

0 −8 0

2 0 2
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when a 3x3 kernel is requested.

We pack the grayscale data into 5 vectors. TopLeft, TopRight, Centre,

BottomLeft, BottomRight corresponding to the pixels used in the calculation.

Then on the GPU side

result = 2∗(TopLeft+TopRight+BottomLeft+BottomRight)−8∗centre

One problem we encountered is when we tried to export the laplacian to

look at it.

Figure 10: Proper Laplacian
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Figure 11: Improper Laplacian

The problem seems to lie in a difference between the Python and C++

calls to the same function. The Python code returns negative values which

are converted to values between 0 and 255 when saving the image to disk.

The C++ code returns only positive values between 0 and 255 even though

it’s working at a 16 bit data size.

Our code returns negavive values similar to the Python code so since we

only use the laplacian in an intermediate step we can ignore this for now.

The variance is a little more complicated since we need the mean of each
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window and we ideally want to compute it all at once without use a loop to

setup and send the data over. So we pack each window sequentially in the

input vector padding with zeros to make sure they are all the same multiple

of 16 wide. Then we sum each chunk together into the same chunk of the

output vector. After we return we add up the 16values in the vector and

divide by n.

To then compute the variance we send the GPU X and m where m is the

mean of each chunk aligned with the relavent x value. We then compute

temp = x−m;x = x ∗ −1wherex < 0; result = result+ temp ∗ temp

A key constraint of the Raspberry Pi GPU is the amount of available

memory since the GPU and the CPU share the main memory. For our tests

we set a 50/50 split giving each 512MB.

Initially we tried to pack multiple images into each vector.

The test image takes up ∼10MB per vector (with naive packing) so with

5 images the grayscale conversion to took ∼200MB. The size vectors for the

laplacian take up another ∼300MB. This led to the program rapidly running

out of memory. The solution is to pack the vectors better and/or process each

image separately and deallocate the memory once it’s not needed. Packing

the vectors requires unpacking on GPU side. For example if we pack the
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grayscale vectors as [RED/GREEN/BLUE/GRAY] then

gray = 0.299(input >> 24) + 0.587(input >> 16) + 0.114(input >> 8)

The library supports this but we were unable to get it to work. In the

end we processed each image separately using a function which takes image

and returns the values of the variance of each window. We also deallocate

the memory for each vector as soon as it isn’t needed.

The tradeoff is that every time the function is called space is allocated

on the stack. The stack on the Raspbian defaults to 8MB which isn’t near

enough. To change that we need to run “ulimit -s unlimited” before we run

our code.

4.3.3 Camera Software

Taking the actually pictures can either be done using the raspistill terminal

command,the PiCamera library, or the OpenCV library. We went with using

the PiCamera and gpiozero libraries to live preview the image on a monitor

and to take a picture when we pressed a button after manully adjusting the

focus.
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5 Results

5.1 Hardware

Figure 12: Final Prototype
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5.2 Software stitching

(a) Sample stack image (b) Final Python merged image

Figure 13: Focus Stacking result

See Appendix C for all images in the stack and resulting images by program

(Python, C++, GPU).
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5.3 Software Benchmarks

Figure 14: Python Timings

As expected the load and conversion times are pretty consistent across all

window sizes. The timing improves the most for the variance computation

since a larger window means a fewer number of windows in total.
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Figure 15: C++ Timings

We see similar results for the C++ code. I’m not sure why the load time

goes up. I predict it’s a fluke. The spread in timing between the laplacian

and gray scale calculations is interesting. Especially since for Python they

were similar.
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Figure 16: GPU image load time

Load time is consistent across number of GPU and window size. The one

peak is almost certainly an outlier.
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Figure 17: GPU Gray Scale memory load time

Memory load time for converting an image to Gray Scale is consistent

across number of GPU and window size. The few peaks are almost certainly

outliers.
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Figure 18: GPU Gray Scale compute time

We do see a slight improvement in gray scale computation time as we

add more QPUs. Changing the window size doesn’t make as much of a dif-

ference. Computing the grayscale is slightly faster then loading the memory

in preparation.
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Figure 19: GPU Laplacian memory load time

We see a similar patten with loading the laplacian memory as we do when

loading the gray scale memory.

Again we see an improvement when we add more QPUs. We also see a

much better ratio for computation to memory load time then we do for the

gray scale calculation.

Interestingly the variance memory load time is not flat like the others. I

suspect it has to do with different array sizes do to different window sizes

and needing to make each region a multiple of 16 elements in size.
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Figure 20: GPU Laplacian compute time

Figure 22: GPU Variance compute time
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Figure 21: GPU Variance memory load time

The computation time for the variance also improves with more QPU but

oddly also with a smaller window size.
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Figure 23: GPU merge time

We see a similar pattern for merge time as we did with the Python and

C++ code. Specifically a larger window is good. In this case more QPUs

didn’t make a difference as expected since they weren’t part of the merging

process.
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6 Future Work

6.1 Memory Packing

Packing the data in memory would make the program much more memory

efficient and should also speed up memory access overall since fewer fetches

would need to be done.

6.2 Loop Unrolling

In the variance code there is a loop on the GPU side to process each window.

With some preprocessing that could be eliminated by replacing it with the

equivelent number of QPU instructions.

6.3 Prefetching Data

Prefetching the data would help speed up the QPU computations since it

would be fetching and exectuting at the same time. This is something that

QPU supports.
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6.4 Alternative Algorithms

A potentially simpler algorithm would be to average the pixels (with or with-

out alignment) since regions of higher focus should somehow contribute more

to the final image.

6.5 Image Alignment

Aligning the images before applying the laplacian and the variance would

help ensure that regions wouldn’t overlap in the final image.

6.6 Motor Control

It would be nice to get the motor working consistently. It would make getting

consistent images with different focuses a lot easier.

6.7 GPU Compute Cluster

A few years ago built a Raspberry Pi 2.0 compute cluster. It would interesting

to see if there are any problems that would benefit from a Pi GPU cluster.

Especially if the code was designed to use the CPU at the same time.
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7 Conclusion

We successfully made a focus stacking Pi camera and were able to write code

for the GPU. Overall we learned that :

• The current QPU code we’ve written for focus stacking is slower then

the CPU code but it shows promise. With further optimizations I think

we could domuch better.

• For the variance and laplacian more QPU cores made a bigger differ-

ence then for the grayscale conversion. Probably because the ratio of

computation to memory access was better.

• Memory access is the bottleneck overall. Better data packing and fetch-

ing while computing can make difference.
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Appendix A : Raspbery Pi GPUb

The core of the Pi GPU is 12 special purpose floating-point shader processors[25],

called Quad Processors (QPUs). Each QPU is a 4-way SIMD (single instruc-

tion, multiple data) processor multiplexed 4× over four cycles[20]. Ie a QPU

instruction takes four system clock cycles to process one 16-element result

vector.

The QPUs are organized in groups called slices which share resources

including an instruction cache, special function units (for calculating less

frequent things like recipricals, sqrt, log, exp), and Texture and Memory

lookup Units (TMU)[20].

Each QPU contains four general-purpose accumulators as well as two

large register-file memories[25] and two independent ALU units. One for

adding and one for multiplying[20]. There is also support for unpacking

32-bit fields and for repacking results.

QPU scheduling is done automatically in hardware by the QPU scheduler

(QPS). As data is available for processing the next available QPU is scheduled

to process it.
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Figure 24: Instruction and Register Pipeline[23]
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Figure 25: System Block Diagram for VideoCore IV 3D[20]
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Figure 26: QPU Core Pipeline[20]

Talking to the QPUs

In order to talk to the QPUs we needs a few functions defined in mailbox.h/c

written by Broadcom.

For example

struct memory_map {

unsigned int code[MAX_CODE_SIZE];

unsigned int uniforms[NUM_QPUS][2];
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unsigned int msg[NUM_QPUS][2];

unsigned int results[NUM_QPUS][16];

};

defines the memory layout to share memory between the host and GPU[24].

To initialize the mailbox interface, send a message to enable the QPU

and make the address space visible to the host use

int mb = mbox_open();

if (qpu_enable(mb, 1)) {

fprintf(stderr, "QPU enable failed.\n");

return -1;

}

To allocate and map some GPU memory

unsigned handle = mem_alloc(mb, size, 4096, GPU_MEM_FLG);

unsigned ptr = mem_lock(mb, handle);

void *arm_ptr = mapmem(ptr + GPU_MEM_MAP, size);

“ Now we have two addresses to refer to the memory. ‘ptr’ is the GPU

(VC) address that the GPU understands. When passing pointers (such as

the return address for the buffer to write the results into or the address of
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the code and uniforms for the QPU), we need to use VC addresses. When

accessing the memory from the host (for initializing the values in the first

place and reading the result buffer), we have to use the mapped address

which is a valid host address.

Next we do some pointer arithmetic to set the structure fields to point to

the proper VC addresses. To execute a QPU program through the mailbox

interface, we pass an array of message structures that contain a pointer to

the uniforms to bind to the QPU program and then a pointer to the address

of the QPU code to execute:

”[24]

Finally to execute the code

unsigned ret = execute_qpu(mb, NUM_QPUS, vc_msg, 1, 10000);

There a three primary ways to transfering data to the QPUs.

1. Uniforms are 32-bit values stored in memory which arrive via a queue

sequentially[24]. They can be thought of as function call arguments or

constants[24].

2. Textures are similar to Uniforms but don’t they have a limit on how

many or what order[24].
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3. VPM is a 4KB memory buffer shared between all the QPUs[25][24].
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Appendix B : QPUlib

The QPUlib documentation[5] states that “ QPULib is a programming lan-

guage and compiler for the Raspberry Pi’s Quad Processing Units (QPUs).

It is implemented as a C++ library that runs on the Pi’s ARM CPU, gener-

ating and offloading programs to the QPUs at runtime. ” It also says that

“ It’s worth reiterating that QPULib is just standard C++ code: there are

no pre-processors being used other than the standard C pre-processor. All

the QPULib language constructs are simply classes, functions, and macros

exported by QPULib. ”

This makes it very nice library to use. It has several well documented

examples which can be found at https://github.com/mn416/QPULib

In general to use the library the program will have the following features

:

• #include <QPULib.h>

• QPU kernel function definition

• QPU kernel compilation

• Allocating shared memory
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• Loading memory with data

• QPU kernel execution

• Processing returned results

When compiling use make QPU=1 to compile the program to run on

baremetal and use make ... to compile it in emulation mode.
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Appendix C : Sample stack input output

Figure 27: Test Image 1
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Figure 28: Test Image 2

Figure 29: Test Image 3
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Figure 30: Test Image 4

Figure 31: Test Image 5
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Figure 32: Test Image 6

(a) window size 32 (b) window size 1024

Figure 33: Python focus stacked images
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(a) window size 32 (b) window size 1024

Figure 34: C + + focus stacked images

(a) window size 32, 12 QPU (b) window size 1024, 12 QPU

Figure 35: GPU focus stacked images
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Appendix D : Images of Prototypes

Figure 36: Camera box lids
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Figure 37: Camera box base
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Figure 38: Gears
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Figure 39: Pulleys and attachement methods
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