Section 0.5-1.1

E.A. Smith
Catawba Valley Community College

Summer 2018

Section 0.5: Logic - Quantifiers

Definition (The "For All" and "There Exists" Quantifiers)

Let P be some property that depends on a value of x.
(a) For all x, property P means that property P is true for all possible values of x.
The symbol \forall is used to mean "for all".
(b) There exists x such that property P means that there is at least one value of x that makes property P true. The symbol \exists is used to mean "there exists".

Example

1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $y=x^{2}$.
2. $\forall x \in \mathbb{R}, x^{2} \geq 0$ or $|x| \geq 0$

Section 0.5: Logic - Examples

Determine if the following are true or false. Justify your answer with reasoning, examples, or counterexamples, as appropriate.

1. $\exists x \in \mathbb{R}$ such that $2<x<3$.
2. $\exists x \in \mathbb{R}$ such that x is both rational and irrational.
3. If x is an even number, then x can be written as $x=2 n+1$, where n is an integer.
4. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}$, if $x<y$, then $2 x-1<2 y-1$.
5. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}$, if $x<y$, then $-x<-y$.

Section 0.5: Logic - Implication

Definition (Implication)

A statement of the form if A, then B, which we denote

$$
A \Rightarrow B
$$

Example

1. If $x<0$, then $|x|=-x$.

Also written as $x<0 \Rightarrow|x|=-x$.
2. If it is raining, then there are clouds.

Also written as rain \Rightarrow clouds.

Section 0.5: Logic - Converse

Definition (Converse)

The converse of a implication - if A, then B - is if B, then A, which is denoted

$$
B \Rightarrow A .
$$

Example

1. The converse of the statement "If x is odd, then x is not even", would be "If x is not even, then x is odd".
2. If $x \geq 2$, then $x \geq 3$. The converse of this statement would be If $x \geq 3$, then $x \geq 2$.

Section 0.5: Logic - Biconditional Statements

Definition

A biconditional statement is a statement of the form A if and only if B, which is denoted

$$
A \Leftrightarrow B .
$$

Examples

1. A x is odd if and only x is not divisible by 2 .
2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}(x y=0 \Longleftrightarrow x=0$ or $y=0)$.

Section 0.5: Logic - Mathematical Proofs

Prove that the distance between two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Definition (Sequence)

A sequence is a list of real values that follow a specified pattern.
Consider the following sequence:

$$
\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}\right\}
$$

We can view a picture of this sequence.

