
ModSim Project 1

October 4, 2019

Modeling Flight Delays
The Question
What is the best way to increase the number of flights without delays? We will model airplane

traffic between several airports and test two different modeling strategies to avoid flight delays
and maintain flight turnaround efficiency.

In [1]: # Con�gure Jupyter so �gures appear in the notebook
%matplotlib inline

Con�gure Jupyter to display the assigned value after an assignment
%con�g InteractiveShell.ast_node_interactivity='last_expr_or_assign'

import functions from the modsim library
from modsim import *

set the random number generator
np.random.seed(7)
import random

import pandas as pd
import datetime
from dateutil.parser import parse
import math
import numpy as np

Below is data collected in 2008 which details flights and delays. This data was narrowed to
include only Delta (DL) and United (UA) flights between airports LAX, JFK, ATL, IAD, SEA. By
using only flights between specific airports, we reduce the likelihood that the data is influenced
primarily by the airport or the airline.

In [2]: trips = pd.read_csv('2008.csv')

Out[2]: Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier \
0 2008 1 1 2 613.0 1407.0 UA
1 2008 1 2 3 615.0 1435.0 UA
2 2008 1 3 4 607.0 1454.0 UA
3 2008 1 4 5 618.0 1523.0 UA
4 2008 1 5 6 615.0 1416.0 UA

1

. .
10152 2008 2 29 5 2128.0 2311.0 DL
10153 2008 2 29 5 1858.0 2041.0 DL
10154 2008 2 29 5 1455.0 1646.0 DL
10155 2008 2 29 5 824.0 1002.0 DL
10156 2008 2 29 5 957.0 1147.0 DL

ActualElapsedTime AirTime ArrDelay . . . Origin Dest Distance \
0 294.0 278.0 -24.0 . . . LAX JFK 2475
1 320.0 298.0 4.0 . . . LAX JFK 2475
2 347.0 299.0 23.0 . . . LAX JFK 2475
3 365.0 284.0 52.0 . . . LAX JFK 2475
4 301.0 282.0 -15.0 . . . LAX JFK 2475
. .
10152 103.0 77.0 -2.0 . . . ATL IAD 533
10153 103.0 79.0 0.0 . . . ATL IAD 533
10154 111.0 78.0 5.0 . . . ATL IAD 533
10155 98.0 78.0 -5.0 . . . ATL IAD 533
10156 110.0 82.0 -2.0 . . . ATL IAD 533

TaxiIn TaxiOut CarrierDelay WeatherDelay NASDelay SecurityDelay \
0 3.0 13.0 NaN NaN NaN NaN
1 3.0 19.0 NaN NaN NaN NaN
2 8.0 40.0 0.0 0.0 23.0 0.0
3 3.0 78.0 0.0 0.0 52.0 0.0
4 4.0 15.0 NaN NaN NaN NaN
. .
10152 8.0 18.0 NaN NaN NaN NaN
10153 7.0 17.0 NaN NaN NaN NaN
10154 5.0 28.0 NaN NaN NaN NaN
10155 4.0 16.0 NaN NaN NaN NaN
10156 7.0 21.0 NaN NaN NaN NaN

LateAircraftDelay
0 NaN
1 NaN
2 0.0
3 0.0
4 NaN
.
10152 NaN
10153 NaN
10154 NaN
10155 NaN
10156 NaN

[10157 rows x 21 columns]

2

The Model
To model flights and delays, we will use a state object which keeps a list of planes and also

keeps track of ticks with the time variable. These variables are global but change throughout, so
putting them in the state object makes sense. To simulate the planes themselves, a Plane class is
created, which contains any variables for the planes and several functions to update them.

Our model, obviously, is more simple than a real-life airport system. We have limited our
traffic to only a few airports, and a small number of planes. We have also decided to focus on air-
port delays–effectively ignoring in-flight delays due to weather, diversions, or other spontaneous
circumstances.

In [3]: planes = []
time = 0
state = State(planes = planes,time = time)

Out[3]: planes []
time 0
dtype: object

In [4]: class Plane:

def __init__(self, airline, inFlight, distance, target): ## Initializes an instance of the Plane class
self.airline = airline
self.inFlight = inFlight
self.distance = distance
self.target = target
self.wait = 0
self.data = []

def move(self): ##the plane's movement tracker, which moves the plane towards its target by one unit every tick
if self.distance > 0:

self.data.append(str(self.distance))
self.distance -= 1
return True

else:
return False

def delay(self): ##the plane's delay timer at airports, which counts down tick by one second if it is at an airport
if self.wait > 0:

self.data.append(0)
self.wait -= 1
return True

else:
return False

def go_to(self, target): ##sets a new target airport for the plane, while also calculating the distance from its current location to the target
temp = self.target
self.target = target
self.distance = �ight_time(temp,target)

3

##--------Getters---------##
def getAirline(self):

return self.airline
def getInFlight(self):

return self.inFlight
def getDistance(self):

return self.distance
def getTarget(self):

return self.target
def getData(self):

return self.data
def getWait(self):

return self.wait

##--------Setters---------##
def setAirline(self,airline):

self.airline = airline
def setInFlight(self,inFlight):

self.inFlight = inFlight
def setDistance(self,distance):

self.distance = distance
def setTarget(self,target):

self.target = target
def setWait(self, wait):

self.wait = wait

def �ight_time(x, y): #Outside the plane class, �ight time calculates the time/distance in ticks between any of the 5 airports in the simulation
if (x == "ATL" and y == "LAX") or (y == "ATL" and x == "LAX"):

return 51
elif (x == "ATL" and y == "IAD") or (y == "ATL" and x == "IAD"):

return 21
elif (x == "ATL" and y == "JFK") or (y == "ATL" and x == "JFK"):

return 28
elif (x == "ATL" and y == "SEA") or (y == "ATL" and x == "SEA"):

return 57
elif (x == "LAX" and y == "IAD") or (y == "LAX" and x == "IAD"):

return 59
elif (x == "LAX" and y == "SEA") or (y == "LAX" and x == "SEA"):

return 35
elif (x == "LAX" and y == "JFK") or (y == "LAX" and x == "JFK"):

return 66
elif (x == "IAD" and y == "JFK") or (y == "IAD" and x == "JFK"):

return 17
elif (x == "IAD" and y == "SEA") or (y == "IAD" and x == "SEA"):

return 70
elif (x == "JFK" and y == "SEA") or (y == "JFK" and x == "SEA"):

return 76

4

else:
return False

def delay_factor(baseNum, margin): ##Adds an element of randomness to the delay, which can be adjusted with the base number and the amout it can deviate
rnd = random.randint(1,margin*2)
return int((baseNum - (margin)) + rnd)

In [5]: plane1 = Plane("UA",False,0,"LAX")
plane2 = Plane("DL",False,0,"ATL")
plane3 = Plane("UA",False,0,"LAX")
plane4 = Plane("DL",False,0,"ATL")
plane5 = Plane("UA",False,0,"LAX")
plane6 = Plane("DL",False,0,"ATL")
plane7 = Plane("UA",False,0,"LAX")
plane8 = Plane("DL",False,0,"LAX")
plane9 = Plane("UA",False,0,"ATL")
plane10 = Plane("DL",False,0,"LAX")
plane11 = Plane("UA",False,0,"ATL")
state.planes.append(plane1)
state.planes.append(plane2)
state.planes.append(plane3)
state.planes.append(plane4)
state.planes.append(plane5)
state.planes.append(plane6)
state.planes.append(plane7)
state.planes.append(plane8)
state.planes.append(plane9)
state.planes.append(plane10)
state.planes.append(plane11)

For comparison we are using two different models for airlines, assuming each has only 2
planes, going between 2 airports.

Delta Airlines (DL) will be using a model where 1 plane is kept in reserve. Any time delta
experiences a significant delay (variable maxDelay), the reserve plane will be called in to replace
the original, instantly resetting the delay to 0.

United Airlines (UA) will be using a model where all planes are always in service, flying oppo-
site directions between the 2 airports. Since there is no reserve plane, United makes turnarounds
longer to maintain planes and reduce the impact of delays. However, if one of their planes exceeds
a significant delay (variable maxDelay), the flight is cancelled, and the plane must wait until the
next scheduled flight. Since the planes fly between two airports, this means two previously sched-
uled flights are cancelled.

The data will be obtained in the form of a ratio, comparing the number of successful flights for
each airline. The variables for maximum delays and turnarounds are designed to be as close to
real life as possile based on research. Running the simulation usually takes upwards of 2 minutes
because of the vast quantity of data being processed. We experimented with smaller time scales
and numbers but this resulted in very varied outputs.

In [6]: def run_simulation(numPlanes, air1,
air2): # The run_simulation function runs the simulation

5

state.time = 0
DL = 0
UA = 0
planes = state.planes[0:((numPlanes * 2) - 1)]
for x in range(100000):

state.time += 1
DL += sim1(planes, air1, air2, 22)
UA += sim2(planes, air1, air2, 22, 5)

return [DL, UA, DL / UA]

def sim1(planes, air1, air2,
maxDelay): # Sim1 implements Delta's reserve plane model

success = 0
for plane in planes:

if plane.getAirline() == "DL":
if not (plane.delay()):

if plane.getWait() > maxDelay:
plane.setWait(0)

if not (plane.move()):
success += 1
if (plane.getTarget() == air1):

plane.go_to(air2)
else:

plane.go_to(air1)
plane.setWait(delay_factor(15, 9))

return success

def sim2(planes, air1, air2, maxDelay,
addTurn): # Sim2 implements United's model

success = 0 # that operates without reserve planes
for plane in planes:

if plane.getAirline() == "UA":
if not (plane.delay()):

if not (plane.move()):
success += 1
if (plane.getTarget() == air1):

plane.go_to(air2)
else:

plane.go_to(air1)
delay = delay_factor(15, 9)
plane.setWait(delay + addTurn)
if delay > maxDelay:

success -= 2
return success

6

test1 = run_simulation(2, "IAD",
"JFK") # This section collects data from run_simulation

test2 = run_simulation(
2, "ATL", "LAX") # and creates lists to store all the di�erent datasets

test3 = run_simulation(2, "JFK", "SEA")
test4 = run_simulation(3, "IAD", "JFK")
test5 = run_simulation(3, "ATL", "LAX")
test6 = run_simulation(3, "JFK", "SEA")
test7 = run_simulation(4, "IAD", "JFK")
test8 = run_simulation(4, "ATL", "LAX")
test9 = run_simulation(4, "JFK", "SEA")
test10 = run_simulation(5, "IAD", "JFK")
test11 = run_simulation(5, "ATL", "LAX")
test12 = run_simulation(5, "JFK", "SEA")
test13 = run_simulation(6, "IAD", "JFK")
test14 = run_simulation(6, "ATL", "LAX")
test15 = run_simulation(6, "JFK", "SEA")

tests = [
test1, test2, test3, test4, test5, test6, test7, test8, test9, test10,
test11, test12, test13, test14, test15

]

DL_Flights = []
for test in tests:

DL_Flights.append(test[0])

UA_Flights = []
for test in tests:

UA_Flights.append(test[1])

ratio = []
for test in tests:

ratio.append(test[2])

num_planes = [2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]
�ight_length = [1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5]

Out[6]: [1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5]

The Results
The ratios of Delta’s successful flights versus United’s succesful flights are shown below. For

each flight path, there are four ratios–each representing a test with a different number of planes.
For reference, the flight paths are in order of shortest time to longest.

In [7]: print(ratio)

[0.749, 0.6914498141263941, 0.6605504587155964, 0.986452998513134, 0.9151234567901234, 0.8929752066115703, 1.1055034550839091, 1.0265650265650266, 1.0106051154086089, 1.1862637908756586, 1.0993880956795847, 1.1006625891946993, 1.2303370786516854, 1.1479473276529821, 1.1163366336633664]

7

