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[Building π(X) knowing the spectrum]How to build π(X) knowing the spec-
trum (Riemann’s way)

We have been dealing in Part ?? of our book with Φ(t) a distribution that—
we said—contains all the essential information about the placement of primes
among numbers. We have given a clean restatement of Riemann’s hypothesis,
the third restatement so far, in term of this Φ(t). But Φ(t) was the effect of a
series of recalibrations and reconfigurings of the original untampered-with stair-
case of primes. A test of whether we have strayed from our original problem—to
understand this staircase—would be whether we can return to the original stair-
case, and “reconstruct it” so to speak, solely from the information of Φ(t)—or
equivalently, assuming the as formulated in Chapter ??—can we construct the
staircase of primes π(X) solely from knowledge of the sequence of real numbers
θ1, θ2, θ3, . . .?

The answer to this is yes (given the ), and is discussed very beautifully by
Bernhard Riemann himself in his famous 1859 article.

Bernhard Riemann used the spectrum of the prime numbers to provide an
exact analytic formula that analyzes and/or synthesizes the staircase of primes.
This formula is motivated by Fourier’s analysis of functions as constituted out
of cosines. Riemann started with a specific smooth function, which we will refer
to as R(X), a function that Riemann offered, just as Gauss offered his (X),
as a candidate smooth function approximating the staircase of primes. Recall

from Chapter ?? that Gauss’s guess is (X) =
∫X
2
dt/log(t). Riemann’s guess for

a better approximation to π(X) is obtained from Gauss’s, using the Moebius
function µ(n), which is defined by

µ(n) = { 1
if n is a square-free positive integer with an even
number of distinct prime factors,

−1
if n is a square-free positive integer with an odd
number of distinct prime factors,

0if n is not square-free.

See Figure for a plot of the Moebius function.
moebius1The blue dots plot the values of the Moebius function µ(n), which

is only defined at integers.
Riemann’s guess is

R(X) =
∞∑
n=1

µ(n)

n
(X

1
n ),
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where µ(n) is the Moebius function introduced above.
riemannRX0.8RiemanndefiningR(X)inhismanuscript
In Chapter ?? we encountered the Prime Number Theorem, which asserts

that X/ log(X) and (X) are both approximations for π(X), in the sense that
both go to infinity at the same rate. That is, the ratio of any two of these
three functions tends to 1 as X goes to ∞. Our first formulation of the (see
page ??) was that (X) is an essentially square root accurate approximation of
π(X). Figures – illustrate that Riemann’s function R(X) appears to be an even
better approximation to π(X) than anything we have seen before.

piriemanngauss100piriemanngauss10000.47Comparisonsof(X)(top),π(X) (mid-
dle), and R(X) (bottom, computed using 100 terms)

piriemanngauss10000−110000.5Closeupcomparisonof(X)(top),π(X) (mid-
dle), and R(X) (bottom, computed using 100 terms)

Think of Riemann’s smooth curve R(X) as the fundamental approximation
to π(X). Riemann offered much more than just a (conjecturally) better approx-
imation to π(X) in his wonderful 1859 article. He found a way to construct what
looks like a Fourier series, but with sin(X) replaced by R(X) and spectrum the
θi, which conjecturally exactly equals π(X). He gave an infinite sequence of
improved guesses,

R(X) = R0(X), R1(X), R2(X), R3(X), . . .

and he hypothesized that one and all of them were all essentially square root
approximations to π(X), and that the sequence of these better and better ap-
proximations converge to give an exact formula for π(X).

Thus not only did Riemann provide a “fundamental” (that is, a smooth curve
that is astoundingly close to π(X)) but he viewed this as just a starting point,
for he gave the recipe for providing an infinite sequence of corrective terms—
call them Riemann’s harmonics; we will denote the first of these “harmonics”
C1(X), the second C2(X), etc. Riemann gets his first corrected curve, R1(X),
from R(X) by adding this first harmonic to the fundamental,

R1(X) = R(X) + C1(X),

he gets the second by correcting R1(X) by adding the second harmonic

R2(X) = R1(X) + C2(X),

and so on
R3(X) = R2(X) + C3(X),

and in the limit provides us with an exact fit.
riemannRk0.8Riemannanalyticformulaforπ(X).
The , if true, would tell us that these correction terms C1(X), C2(X), C3(X), . . .

are all square-root small, and all the successively corrected smooth curves

R(X), R1(X), R2(X), R3(X), . . .
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are good approximations to π(X). Moreover,

π(X) = R(X) +

∞∑
k=1

Ck(X).

The elegance of Riemann’s treatment of this problem is that the corrective
terms Ck(X) are all modeled on the fundamental R(X) and are completely
described if you know the sequence of real numbers θ1, θ2, θ3, . . . of the last
section.

To continue this discussion, we do need some familiarity with complex num-
bers, for the definition of Riemann’s Ck(X) requires extending the definition
of the function (X) to make sense when given complex numbers X = a + bi.
Assuming the , the Riemann correction terms Ck(X) are then

Ck(X) = −R(X
1
2+iθk),

where θ1 = 14.134725 . . . , θ2 = 21.022039 . . ., etc., is the spectrum of the prime
numbers You may well ask how we propose to order these correction terms if
RH is false. Order them in terms of (the absolute value of) their imaginary part,
and in the unlikely situation that there is more than one zero with the same
imaginary part, order zeroes of the same imaginary part by their real parts,
going from right to left..

Riemann provided an extraordinary recipe that allows us to work out the
harmonics,

C1(X), C2(X), C3(X), . . .

without our having to consult, or compute with, the actual staircase of primes.
As with Fourier’s modus operandi where both fundamental and all harmonics
are modeled on the sine wave, but appropriately calibrated, Riemann fashioned
his higher harmonics, modeling them all on a single function, namely his initial
guess R(X).

The convergence of Rk(X) to π(X) is strikingly illustrated in the plots in
Figures – of Rk for various values of k.

Rk12100.9ThefunctionR1 approximating the staircase of primes up to 100
Rk102100.9ThefunctionR10 approximating the staircase of primes up to 100
Rk252100.9ThefunctionR25 approximating the staircase of primes up to 100
Rk502100.9ThefunctionR50 approximating the staircase of primes up to 100
Rk502500.9ThefunctionR50 approximating the staircase of primes up to 500
Rk50350400.9Thefunction(X)(top, green), thefunctionR50(X) (in blue), and

the staircase of primes on the interval from 350 to 400.
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