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[35] A version of the Riemann von Mangoldt explicit formula gives some the-
oretical affirmation of the phenomena we are seeing here. We thank Andrew
Granville for a discussion about this. Even though the present endnote is not
the place to give anything like a full account, we can’t resist setting down a few
of Granville’s comments that might be helpful to people who wish to go further.
(This discussion can be modified to analyze what happens unconditionally, but
we will be assuming the Riemann Hypothesis below.) The function Φ̂≤C(θ) that
we are graphing in this chapter can be written as:

Φ̂≤C(θ) =
∑
n≤C

Λ(n)n−w

where w = 1
2 + iθ. This function, in turn, may be written (by Perron’s formula)

as
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Here, we assume that σo is sufficiently large and C is not a prime power.

One proceeds, as is standard in the derivation of Explicit Formulae, by moving
the line of integration to the left, picking up residues along the way. Fix the
value of w = 1

2 + iθ and consider − 1
2πi times the integrand,
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which has poles at
s = 0, 1− w, and ρ− w,

for ρ a zero of ζ(s). We distinguish four cases, giving descriptive names to each:

• Singular pole: s = 1− w.

• Trivial poles: s = ρ− w with ρ a trivial zero of ζ(s).

• Oscillatory poles: s = ρ− w = i(γ − θ) 6= 0 with ρ( 6= w) a nontrivial zero
of ζ(s). (Recall that we are assuming the Riemann Hypothesis, and our
variable w = 1

2 + iθ runs through complex numbers of real part equal to
1
2 . So, in this case, s is purely imaginary.)

• Elementary pole: s = 0 when w is not a nontrivial zero of ζ(s)—i.e., when
0 = s 6= ρ− w for any nontrivial zero ρ.



2

• Double pole: s = 0 when w is a nontrivial zero of ζ(s)—i.e., when 0 = s =
ρ−w for some nontrivial zero ρ. This, when it occurs, is indeed a double
pole, and the residue is given by m · logC + ε. Here m is the multiplicity
of the zero ρ (which we expect always—or at least usually—to be equal
to 1) and ε is a constant (depending on ρ, but not on C).

The standard technique for the “Explicit formula” will provide us with a formula
for our function of interest Φ̂≤C(θ). The formula has terms resulting from the
residues of each of the first three types of poles, and of the Elementary or the
Double pole—whichever exists. Here is the shape of the formula, given with
terminology that is meant to be evocative:

(1) Φ̂≤C(θ) = Sing≤C(θ) + Triv≤C(θ) + Osc≤C(θ) + Elem≤C(θ)

Or:

(2) Φ̂≤C(θ) = Sing≤C(θ) + Triv≤C(θ) + Osc≤C(θ) + Double≤C(θ),

the first if w is not a nontrivial zero and the second if it is.

The good news is that the functions Sing≤C(θ),Triv≤C(θ) (and also Elem≤C(θ)
when it exists) are smooth (easily describable) functions of the two variables C
and θ; for us, this means so they are not that related to the essential information-
laden discontinuous structure of Φ̂≤C(θ). Let us bunch these three contributions
together and call the sum Smooth(C, θ), and rewrite the above two formulae as:

(1) Φ̂≤C(θ) = Smooth(C, θ) + Osc≤C(θ)

Or:

(2) Φ̂≤C(θ) = Smooth(C, θ) + Osc≤C(θ) +m · logC + ε,

depending upon whether or not w is a nontrivial zero of ζ(s).

We now focus our attention on the Oscillatory term, Osc≤C(θ), approximating
it by a truncation:

Oscw(C,X) := 2
∑
|γ|<X

ei logC·(γ−θ)

i(γ − θ)
.

In this formula we have relegated the “θ” to the status of a subscript (i.e.,
w = 1

2 + iθ) since we are keeping it constant, and we view the two variables
X and C as linked in that we want the cutoff “X” to be sufficiently large, say
X � C2, so that the error term can be controlled.

At this point, recall from our discussion in this chapter that we are also per-
forming a Césaro summation —i.e., applying the operator F (c) 7→ (CésF )(C) :=
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∫ C
1
F (c)dc/c. This has the effect of forcing the oscillatory term to be bounded

as C tends to infinity.

This implies that for any fixed θ,

• Φ̂≤C(θ) is bounded independent of C if θ is not the imaginary part of a
nontrivial zero of ζ(s) and

• Φ̂≤C(θ) grows as m · logC+O(1) if θ is the imaginary part of a nontrivial
zero of ζ(s) of multiplicity m,

giving a theoretical confirmation of the striking feature of the graphs of our
Chapter ??.


