Proofs for Real Analysis final

March 6, 2019

Contents

1	At least one proof by induction	1
2	At least one proof that some set is countable	1
3	At least one proof that a particular sequence converges to a particular limit (the proof should use the definition of convergence directly)	1
4	At least one proof that a particular sequence does not converge to some particular number.	2
5	The proof that an open ball is open.	2
6	The proof that limits (of sequences or of functions) are unique.	2
7	At least one proof that a particular function is continuous.	2
8	Extreme Value Theorem	3
9	The Intermediate Value Theorem	3
10	Differentiable implies continuous	3
11	Derivative of $x \mapsto x^n$ at a is na^{n-1}	4
12	At least one proof that a particular function is integrable, using the definition and/or Proposition 7.1.6.	4

1 At least one proof by induction

Suppose that P(n) is a predicate that becomes a statement for all $n \in \mathbb{N}$. If

- P(1) and
- $\forall k \in \mathbb{N}, P(k) \implies P(k+1)$

both hold, then P(n) is true for every positive integer n.

2 At least one proof that some set is countable

 \mathbbm{Z} is countable.

PROOF. Let $f : \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(x) = \begin{cases} \frac{x}{2} & x \text{ is even;} \\ \frac{-(x+1)}{2} & x \text{ is odd.} \end{cases}$$

Clearly, for any $z \in \mathbb{Z}$ there is some $n \in N$ such that f(n) = z, so f is a surjection from \mathbb{N} onto \mathbb{Z} , which menas that \mathbb{Z} is countable. \Box

3 At least one proof that a particular sequence converges to a particular limit (the proof should use the definition of convergence directly)

Define $a_n = \frac{5n^2 + 2n}{n^2 + 1}$. Then $(a_n) \to 5$.

PROOF. Let $\epsilon > 0$ be given. Choose $N > 3/\epsilon$, so for all $n \ge N$,

$$\begin{aligned} \left| \frac{5n^2 + 2n}{n^2 + 1} - 5 \right| &= \left| \frac{5n^2 + 2n - 5n^2 - 5}{n^2 + 1} \right| \\ &= \left| \frac{2n - 5}{n^2 + 1} \right| \\ &= \left| \frac{2 - 5/n}{n + 1/n} \right| \\ &< \left| \frac{2 - 5/n}{n} \right| \\ &\leq \frac{3}{n} \text{ (since } |2 - 5/n| \leq 3) \\ &< \epsilon. \end{aligned}$$

4 At least one proof that a particular sequence does not converge to some particular number.

The simple harmonic sequence does not converge to 3.

PROOF. Choose $\epsilon = 1$. For all $N \in \mathbb{N}$, choose n = N. Then,

$$\left|\frac{1}{n} - 3\right| \ge 2 > 1 = \epsilon.$$

5 The proof that an open ball is open.

Open balls are open-that is, any open ball in X is an open set in X.

PROOF. Let (X, d) be a metric space. Choose any point $p \in X$ and any r > 0, and consider the open ball $B_r(p)$. Let $x \in B_r(p)$ be given. Then d(x,p) < r by the definition of $B_r(p)$; choose $\epsilon < r - d(x,p)$.

We claim that $B_{\epsilon}(x) \subseteq B_r(p)$: for choose any $y \in B_{\epsilon}(x)$; then, by the triangle inequality,

$$d(y,p) \le d(y,x) + d(x,p) < \epsilon + d(x,p) < r - d(x,p) + d(x,p) = r$$

and so $y \in B_r(p)$. \square

6 The proof that limits (of sequences or of functions) are unique.

Suppose that (b_n) is a sequence in the metric space (X, d) and that $\lim b = p$ and $\lim b = q$. Then p = q.

PROOF. Imagine not, and write $\epsilon = d(p,q)/2 > 0$. Then there is some N_1 such that $n \ge N_1$ implies that $d(b_n,p) < \epsilon$ and some N_2 such that $n \ge N_2$ implies that $d(b_n,q) < \epsilon$. Set $N = \max(N_1,N_2)$. Then $n \ge N$ implies that $d(b_n,p) < \epsilon$ and that $d(b_n,q) < \epsilon$; for any such n, the triangle inequality now yields

$$d(p,q) \le d(p,b_n) + d(b_n,q) < \epsilon + \epsilon = d(p,q),$$

a contradiction. \square

7 At least one proof that a particular function is continuous.

The function $f:[a,b] \to \mathbb{R}$ defined by $f(x) = x^2$ is continuous.

PROOF. Choose $p \in [a, b]$ and let $\epsilon > 0$ be given. Then,

$$|f(x) - f(p)| = |x^{2} - p^{2}| = |x - p||x + p| \le |b - a||x - p|,$$

so f is lipschitz with lipschitz constant |b-a|, so is continuous. \Box

8 Extreme Value Theorem

Suppose that X is a metric space, that $f: X \to R$ is a continuous function, and that $K \subseteq X$ is compact. Then f(K) has a maximum and a minimum value: that is, there is some $p \in K$ such that $f(p) = \max f(K)$, and some $q \in K$ such that $f(q) = \min f(K)$.

PROOF. It is enough to prove that f(K) has a maximum and a minimum: if $\mu = \max f(K)$, and $\nu = \min f(K)$ for example, then of course (by the definition of f(K)) $\mu = f(p)$ for some $p \in K$ and nu = f(q) for some $q \in K$.

Since $K \subset X$ is (nonempty and) compact and $f: X \to R$ is continuous, $f(K) \subset R$ is compact by Theorem 4.3.1. Thus, in particular, f(K) is closed and bounded. Since f(K) is bounded, it has a supremum and and infimum.

Write $s = \sup f(K)$. By the no-gap lemma, $(s - \epsilon, s]$ contains an element of f(K) for any $\epsilon > 0$; this s is in the closure of f(K). Since f(K) is closed, s must belong to f(K) and is therefore the maximum of f(K). The proof that f(K) has a minimum is similar. \Box

9 The Intermediate Value Theorem

Suppose that X is a metric space, that $A \subseteq X$ is connected, and that $f : A \to \mathbb{R}$ is continuous. Suppose that a < b with $a \in f(A)$ and $b \in f(A)$. Then, given any $c \in (a, b)$, $c \in f(A)$ also. Otherwise put, $[a, b] \subseteq f(A)$.

PROOF. By Theorem 4.5.7, f(A) is connected. The result now follows immediately from Proposition 4.5.3. \Box

Proposition 4.5.3. Intermediate value property of \mathbb{R} . Suppose that $A \subseteq \mathbb{R}$ is connected, and that $a, b \in A$ with a < b. Then if $c \in (a, b)$, $c \in A$ too — that is, $[a, b] \subseteq A$.

10 Differentiable implies continuous

Suppose that $U \subseteq \mathbb{R}$ is open, that $f: U \to \mathbb{R}$, that $a \in U$, and that f'(a) exists. Then f is continuous at a.

PROOF. Write

$$F(x) = \frac{f(x) - f(a)}{x - a}$$
 and $G(x) = x - a$.

(F is defined on $U \setminus a$; a is thus a limit point of the domain of F.) We have

$$\lim_{x \to a} F(x) = f'(a)$$

(by assumption) and

$$\lim_{x \to a} G(x) = 0$$

(clearly) and so by Theorem 3.4.3 we have

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} F(x)G(x) = 0 \cdot f'(a) = 0.$$

11 Derivative of $x \mapsto x^n$ at a is na^{n-1}

Let $n \in N$. Then the derivative of the function $x \to x^n$ at a is na^{n-1} .

PROOF. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^n$. Then,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^n - a^n}{x - a}$$

Using Lemma 4.2 from Math 215,

$$f'(a) = \lim_{x \to a} \frac{(x-a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1})}{x-a}$$
$$= \lim_{x \to a} x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1}.$$

Observe that there are *n* terms summed in the previous limit. Since the argument of the limit is a polynomial, we know that it is continuous, so the limit exists and is equal to the argument evaluated at *a*. Finally, we have that $f'(a) = na^{n-1}$.

12 At least one proof that a particular function is integrable, using the definition and/or Proposition 7.1.6.

 $f:[0,1] \to \mathbb{R}$ defined by f(x) = x is integrable over [a,b] and $\int_0^1 f = \frac{1}{2}$.

PROOF. Let $\epsilon > 0$ be given, choose $n \in \mathbb{N}$ so that $\frac{1}{n} < \epsilon$, and define the partition $P = \{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n}, 1\}$. We can see that for all $k \in \{1, \dots, n\}$,

$$m_k = \frac{k-1}{n}$$
 and $M_k = \frac{k}{n}$.

Thus,

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} \frac{k}{n} \left(\frac{1}{n}\right) - \sum_{k=1}^{n} \frac{k-1}{n} \left(\frac{1}{n}\right) = \sum_{k=1}^{n} \frac{1}{n^2} = \frac{1}{n} < \epsilon,$$

so f is integrable over [a, b]. Now we have that for any $n \in \mathbb{N}$,

$$U(f,P) = \sum_{k=1}^{n} \frac{k}{n} \left(\frac{1}{n}\right) = \frac{1}{n^2} \frac{(n+1)(n)}{2} = \frac{1}{2} \left(1 + \frac{1}{n}\right),$$

and so

$$L(f, P) = U(f, P) - \frac{1}{n} = \frac{1}{2} \left(1 - \frac{1}{n} \right)$$

This means that since $L(f, P) \leq \int_a^b f \leq U(f, P)$, for any $n \in \mathbb{N}$, $\int_a^b f \in \left[\frac{1}{2}\left(1 - \frac{1}{n}\right), \frac{1}{2}\left(1 + \frac{1}{n}\right)\right]$. This implies that $\int_a^b f = \frac{1}{2}$. \Box