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1 At least one proof by induction

Suppose that P (n) is a predicate that becomes a statement for all n ∈ N. If

• P(1) and

• ∀k ∈ N, P (k) Ô⇒ P (k + 1)

both hold, then P (n) is true for every positive integer n.

2 At least one proof that some set is countable

Z is countable.

PROOF. Let f ∶ N→ Z be defined by

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x
2 x is even;
−(x+1)

2 x is odd.

Clearly, for any z ∈ Z there is some n ∈ N such that f(n) = z, so f is a surjection from N onto Z, which
menas that Z is countable. ◻

3 At least one proof that a particular sequence converges to a par-
ticular limit (the proof should use the definition of convergence
directly)

Define an = 5n2
+2n

n2+1 . Then (an)→ 5.

PROOF. Let ε > 0 be given. Choose N > 3/ε, so for all n ≥ N ,

∣5n
2 + 2n
n2 + 1

− 5∣ = ∣5n
2 + 2n − 5n2 − 5

n2 + 1
∣

= ∣2n − 5
n2 + 1

∣

= ∣ 2 − 5/n
n + 1/n ∣

< ∣2 − 5/n
n

∣

≤ 3
n

(since ∣2 − 5/n∣ ≤ 3)

< ε.

◻
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4 At least one proof that a particular sequence does not converge
to some particular number.

The simple harmonic sequence does not converge to 3.

PROOF. Choose ε = 1. For all N ∈ N, choose n = N . Then,

∣ 1
n
− 3∣ ≥ 2 > 1 = ε.

◻

5 The proof that an open ball is open.

Open balls are open–that is, any open ball in X is an open set in X.

PROOF. Let (X,d) be a metric space. Choose any point p ∈X and any r > 0, and consider the open ball
Br(p). Let x ∈ Br(p) be given. Then d(x, p) < r by the definition of Br(p); choose ε < r − d(x, p).

We claim that Bε(x) ⊆ Br(p): for choose any y ∈ Bε(x); then, by the triangle inequality,

d(y, p) ≤ d(y, x) + d(x, p) < ε + d(x, p) < r − d(x, p) + d(x, p) = r,

and so y ∈ Br(p). ◻

6 The proof that limits (of sequences or of functions) are unique.

Suppose that (bn) is a sequence in the metric space (X,d) and that lim b = p and lim b = q. Then p = q.

PROOF. Imagine not, and write ε = d(p, q)/2 > 0. Then there is some N1 such that n ≥ N1 implies that
d(bn, p) < ε and some N2 such that n ≥ N2 implies that d(bn, q) < ε. Set N = max(N1,N2). Then n ≥ N
implies that d(bn, p) < ε and that d(bn, q) < ε; for any such n, the triangle inequality now yields

d(p, q) ≤ d(p, bn) + d(bn, q) < ε + ε = d(p, q),

a contradiction. ◻

7 At least one proof that a particular function is continuous.

The function f ∶ [a, b]→ R defined by f(x) = x2 is continuous.

PROOF. Choose p ∈ [a, b] and let ε > 0 be given. Then,

∣f(x) − f(p)∣ = ∣x2 − p2∣ = ∣x − p∣∣x + p∣ ≤ ∣b − a∣∣x − p∣,

so f is lipschitz with lipschitz constant ∣b − a∣, so is continuous. ◻
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8 Extreme Value Theorem

Suppose that X is a metric space, that f ∶ X → R is a continuous function, and that K ⊆ X is compact.
Then f(K) has a maximum and a minimum value: that is, there is some p ∈K such that f(p) = max f(K),
and some q ∈K such that f(q) = min f(K).

PROOF. It is enough to prove that f(K) has a maximum and a minimum: if µ = max f(K), and
ν = min f(K) for example, then of course (by the definition of f(K)) µ = f(p) for some p ∈K and nu = f(q)
for some q ∈K.

Since K ⊂X is (nonempty and) compact and f ∶X → R is continuous, f(K) ⊂ R is compact by Theorem
4.3.1. Thus, in particular, f(K) is closed and bounded. Since f(K) is bounded, it has a supremum and and
infimum.

Write s = sup f(K). By the no-gap lemma, (s − ε, s] contains an element of f(K) for any ε > 0; this s
is in the closure of f(K). Since f(K) is closed, s must belong to f(K) and is therefore the maximum of
f(K). The proof that f(K) has a minimum is similar. ◻

9 The Intermediate Value Theorem

Suppose that X is a metric space, that A ⊆ X is connected, and that f ∶ A→ R is continuous. Suppose that
a < b with a ∈ f(A) and b ∈ f(A). Then, given any c ∈ (a, b), c ∈ f(A) also. Otherwise put, [a, b] ⊆ f(A).

PROOF. By Theorem 4.5.7, f(A) is connected. The result now follows immediately from Proposition
4.5.3. ◻

Proposition 4.5.3. Intermediate value property of R. Suppose that A ⊆ R is connected, and
that a, b ∈ A with a < b. Then if c ∈ (a, b), c ∈ A too — that is, [a, b] ⊆ A.

10 Differentiable implies continuous

Suppose that U ⊆ R is open, that f ∶ U → R, that a ∈ U , and that f ′(a) exists. Then f is continuous at a.

PROOF. Write
F (x) = f(x) − f(a)

x − a and G(x) = x − a.

(F is defined on U ∖ a; a is thus a limit point of the domain of F .) We have

lim
x→a

F (x) = f ′(a)

(by assumption) and
lim
x→a

G(x) = 0

(clearly) and so by Theorem 3.4.3 we have

lim
x→a

f(x) − f(a) = lim
x→a

F (x)G(x) = 0 ⋅ f ′(a) = 0.
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◻

11 Derivative of x↦ xn at a is nan−1

Let n ∈ N . Then the derivative of the function x→ xn at a is nan−1.

PROOF. Define f ∶ R→ R by f(x) = xn. Then,

f ′(a) = lim
x→a

f(x) − f(a)
x − a = lim

x→a

xn − an
x − a .

Using Lemma 4.2 from Math 215,

f ′(a) = lim
x→a

(x − a)(xn−1 + xn−2a + xn−3a2 + ⋅ ⋅ ⋅ + xan−2 + an−1)
x − a

= lim
x→a

xn−1 + xn−2a + xn−3a2 + ⋅ ⋅ ⋅ + xan−2 + an−1.

Observe that there are n terms summed in the previous limit. Since the argument of the limit is a polynomial,
we know that it is continuous, so the limit exists and is equal to the argument evaluated at a. Finally, we
have that f ′(a) = nan−1.

◻

12 At least one proof that a particular function is integrable, using
the definition and/or Proposition 7.1.6.

f ∶ [0,1]→ R defined by f(x) = x is integrable over [a, b] and ∫
1

0 f = 1
2 .

PROOF. Let ε > 0 be given, choose n ∈ N so that 1
n
< ε, and define the partition P = {0, 1

n
, 2
n
, 3
n
, . . . , n−1

n
,1}.

We can see that for all k ∈ {1, . . . , n},

mk =
k − 1
n

and Mk =
k

n
.

Thus,

U(f,P ) −L(f,P ) =
n

∑
k=1

k

n
( 1
n
) −

n

∑
k=1

k − 1
n

( 1
n
) =

n

∑
k=1

1
n2 = 1

n
< ε,

so f is integrable over [a, b]. Now we have that for any n ∈ N,

U(f,P ) =
n

∑
k=1

k

n
( 1
n
) = 1

n2
(n + 1)(n)

2
= 1

2
(1 + 1

n
) ,

and so
L(f,P ) = U(f,P ) − 1

n
= 1

2
(1 − 1

n
) .

This means that since L(f,P ) ≤ ∫
b
a f ≤ U(f,P ), for any n ∈ N, ∫

b
a f ∈ [ 1

2 (1 − 1
n
) , 1

2 (1 + 1
n
)].

This implies that ∫
b
a f = 1

2 . ◻
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