Proofs for Real Analysis final

March 6, 2019

Contents

1 At least one proof by induction 1
2 At least one proof that some set is countable 1
3 At least one proof that a particular sequence converges to a particular limit (the proof should use the definition of convergence directly) 1

4 At least one proof that a particular sequence does not converge to some particular	
number.	2

5 The proof that an open ball is open. 2
6 The proof that limits (of sequences or of functions) are unique. 2
7 At least one proof that a particular function is continuous. 2
8 Extreme Value Theorem 3
9 The Intermediate Value Theorem 3
10 Differentiable implies continuous 3
11 Derivative of $x \mapsto x^{n}$ at a is $n a^{n-1} \quad 4$

12 At least one proof that a particular function is integrable, using the definition and/or
Proposition 7.1.6.

1 At least one proof by induction

Suppose that $P(n)$ is a predicate that becomes a statement for all $n \in \mathbb{N}$. If

- $\mathrm{P}(1)$ and
- $\forall k \in \mathbb{N}, P(k) \Longrightarrow P(k+1)$
both hold, then $P(n)$ is true for every positive integer n.

2 At least one proof that some set is countable

\mathbb{Z} is countable.

PROOF. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}\frac{x}{2} & x \text { is even } \\ \frac{-(x+1)}{2} & x \text { is odd }\end{cases}
$$

Clearly, for any $z \in \mathbb{Z}$ there is some $n \in N$ such that $f(n)=z$, so f is a surjection from \mathbb{N} onto \mathbb{Z}, which menas that \mathbb{Z} is countable.

3 At least one proof that a particular sequence converges to a particular limit (the proof should use the definition of convergence directly)

Define $a_{n}=\frac{5 n^{2}+2 n}{n^{2}+1}$. Then $\left(a_{n}\right) \rightarrow 5$.

PROOF. Let $\epsilon>0$ be given. Choose $N>3 / \epsilon$, so for all $n \geq N$,

$$
\begin{aligned}
\left|\frac{5 n^{2}+2 n}{n^{2}+1}-5\right| & =\left|\frac{5 n^{2}+2 n-5 n^{2}-5}{n^{2}+1}\right| \\
& =\left|\frac{2 n-5}{n^{2}+1}\right| \\
& =\left|\frac{2-5 / n}{n+1 / n}\right| \\
& <\left|\frac{2-5 / n}{n}\right| \\
& \leq \frac{3}{n}(\text { since }|2-5 / n| \leq 3) \\
& <\epsilon .
\end{aligned}
$$

4 At least one proof that a particular sequence does not converge to some particular number.

The simple harmonic sequence does not converge to 3 .

PROOF. Choose $\epsilon=1$. For all $N \in \mathbb{N}$, choose $n=N$. Then,

$$
\left|\frac{1}{n}-3\right| \geq 2>1=\epsilon
$$

5 The proof that an open ball is open.

Open balls are open-that is, any open ball in X is an open set in X.

PROOF. Let (X, d) be a metric space. Choose any point $p \in X$ and any $r>0$, and consider the open ball $B_{r}(p)$. Let $x \in B_{r}(p)$ be given. Then $d(x, p)<r$ by the definition of $B_{r}(p)$; choose $\epsilon<r-d(x, p)$.

We claim that $B_{\epsilon}(x) \subseteq B_{r}(p)$: for choose any $y \in B_{\epsilon}(x)$; then, by the triangle inequality,

$$
d(y, p) \leq d(y, x)+d(x, p)<\epsilon+d(x, p)<r-d(x, p)+d(x, p)=r
$$

and so $y \in B_{r}(p)$.

6 The proof that limits (of sequences or of functions) are unique.

Suppose that $\left(b_{n}\right)$ is a sequence in the metric space (X, d) and that $\lim b=p$ and $\lim b=q$. Then $p=q$.

PROOF. Imagine not, and write $\epsilon=d(p, q) / 2>0$. Then there is some N_{1} such that $n \geq N 1$ implies that $d\left(b_{n}, p\right)<\epsilon$ and some N_{2} such that $n \geq N_{2}$ implies that $d\left(b_{n}, q\right)<\epsilon$. Set $N=\max \left(N_{1}, N_{2}\right)$. Then $n \geq N$ implies that $d\left(b_{n}, p\right)<\epsilon$ and that $d\left(b_{n}, q\right)<\epsilon$; for any such n, the triangle inequality now yields

$$
d(p, q) \leq d\left(p, b_{n}\right)+d\left(b_{n}, q\right)<\epsilon+\epsilon=d(p, q),
$$

a contradiction.

7 At least one proof that a particular function is continuous.

The function $f:[a, b] \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is continuous.

PROOF. Choose $p \in[a, b]$ and let $\epsilon>0$ be given. Then,

$$
|f(x)-f(p)|=\left|x^{2}-p^{2}\right|=|x-p \| x+p| \leq|b-a||x-p|,
$$

so f is lipschitz with lipschitz constant $|b-a|$, so is continuous.

8 Extreme Value Theorem

Suppose that X is a metric space, that $f: X \rightarrow R$ is a continuous function, and that $K \subseteq X$ is compact. Then $f(K)$ has a maximum and a minimum value: that is, there is some $p \in K$ such that $f(p)=\max f(K)$, and some $q \in K$ such that $f(q)=\min f(K)$.

PROOF. It is enough to prove that $\mathrm{f}(\mathrm{K})$ has a maximum and a minimum: if $\mu=\max f(K)$, and $\nu=\min f(K)$ for example, then of course (by the definition of $f(K)) \mu=f(p)$ for some $p \in K$ and $n u=f(q)$ for some $q \in K$.

Since $K \subset X$ is (nonempty and) compact and $f: X \rightarrow R$ is continuous, $f(K) \subset R$ is compact by Theorem 4.3.1. Thus, in particular, $f(K)$ is closed and bounded. Since $f(K)$ is bounded, it has a supremum and and infimum.

Write $s=\sup f(K)$. By the no-gap lemma, $(s-\epsilon, s]$ contains an element of $f(K)$ for any $\epsilon>0$; this s is in the closure of $f(K)$. Since $f(K)$ is closed, s must belong to $f(K)$ and is therefore the maximum of $f(K)$. The proof that $f(K)$ has a minimum is similar.

9 The Intermediate Value Theorem

Suppose that X is a metric space, that $A \subseteq X$ is connected, and that $f: A \rightarrow \mathbb{R}$ is continuous. Suppose that $a<b$ with $a \in f(A)$ and $b \in f(A)$. Then, given any $c \in(a, b), c \in f(A)$ also. Otherwise put, $[a, b] \subseteq f(A)$.

PROOF. By Theorem 4.5.7, $f(A)$ is connected. The result now follows immediately from Proposition 4.5.3.

Proposition 4.5.3. Intermediate value property of \mathbb{R}. Suppose that $A \subseteq \mathbb{R}$ is connected, and that $a, b \in A$ with a $<\mathrm{b}$. Then if $c \in(a, b), c \in A$ too - that is, $[a, b] \subseteq A$.

10 Differentiable implies continuous

Suppose that $U \subseteq \mathbb{R}$ is open, that $f: U \rightarrow \mathbb{R}$, that $a \in U$, and that $f^{\prime}(a)$ exists. Then f is continuous at a.

PROOF. Write

$$
F(x)=\frac{f(x)-f(a)}{x-a} \text { and } G(x)=x-a .
$$

(F is defined on $U \backslash a$; a is thus a limit point of the domain of F.) We have

$$
\lim _{x \rightarrow a} F(x)=f^{\prime}(a)
$$

(by assumption) and

$$
\lim _{x \rightarrow a} G(x)=0
$$

(clearly) and so by Theorem 3.4.3 we have

$$
\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a} F(x) G(x)=0 \cdot f^{\prime}(a)=0 .
$$

11 Derivative of $x \mapsto x^{n}$ at a is $n a^{n-1}$

Let $n \in N$. Then the derivative of the function $x \rightarrow x^{n}$ at a is $n a^{n-1}$.

PROOF. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{n}$. Then,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a} .
$$

Using Lemma 4.2 from Math 215,

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)}{x-a} \\
& =\lim _{x \rightarrow a} x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}
\end{aligned}
$$

Observe that there are n terms summed in the previous limit. Since the argument of the limit is a polynomial, we know that it is continuous, so the limit exists and is equal to the argument evaluated at a. Finally, we have that $f^{\prime}(a)=n a^{n-1}$.

12 At least one proof that a particular function is integrable, using the definition and/or Proposition 7.1.6.

$f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=x$ is integrable over $[a, b]$ and $\int_{0}^{1} f=\frac{1}{2}$.
PROOF. Let $\epsilon>0$ be given, choose $n \in \mathbb{N}$ so that $\frac{1}{n}<\epsilon$, and define the partition $P=\left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n-1}{n}, 1\right\}$. We can see that for all $k \in\{1, \ldots, n\}$,

$$
m_{k}=\frac{k-1}{n} \text { and } M_{k}=\frac{k}{n} .
$$

Thus,

$$
U(f, P)-L(f, P)=\sum_{k=1}^{n} \frac{k}{n}\left(\frac{1}{n}\right)-\sum_{k=1}^{n} \frac{k-1}{n}\left(\frac{1}{n}\right)=\sum_{k=1}^{n} \frac{1}{n^{2}}=\frac{1}{n}<\epsilon
$$

so f is integrable over $[a, b]$. Now we have that for any $n \in \mathbb{N}$,

$$
U(f, P)=\sum_{k=1}^{n} \frac{k}{n}\left(\frac{1}{n}\right)=\frac{1}{n^{2}} \frac{(n+1)(n)}{2}=\frac{1}{2}\left(1+\frac{1}{n}\right)
$$

and so

$$
L(f, P)=U(f, P)-\frac{1}{n}=\frac{1}{2}\left(1-\frac{1}{n}\right)
$$

This means that since $L(f, P) \leq \int_{a}^{b} f \leq U(f, P)$, for any $n \in \mathbb{N}, \int_{a}^{b} f \in\left[\frac{1}{2}\left(1-\frac{1}{n}\right), \frac{1}{2}\left(1+\frac{1}{n}\right)\right]$.
This implies that $\int_{a}^{b} f=\frac{1}{2}$.

