{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"import csv"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
],
"source": [
"f = open(\"slr_sla_gbl_free_txj1j2_90.csv\")\n",
"csv_f = csv.reader(f)\n",
"#for row in csv_f:\n",
" # print (row)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"https://newcircle.com/s/post/1572/python_for_beginners_reading_and_manipulating_csv_files#opening-a-csv-file"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"#data = [[row[0], eval(row[12]), eval(row[26])] for row in csv_f]\n",
"#print (data)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
],
"source": [
"#df = pd.read_csv(\"slr_sla_gbl_free_txj1j2_90.csv\", error_bad_lines=False)\n",
"#df"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"data = pd.read_csv('slr_sla_gbl_free_txj1j2_90.csv', skiprows=5, index_col = 0)\n",
"#data"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"http://stackoverflow.com/questions/18039057/python-pandas-error-tokenizing-data\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"http://chrisalbon.com/python/pandas_dataframe_importing_csv.html"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" TOPEX/Poseidon | \n",
"
\n",
" \n",
" year | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1993.0123 | \n",
" -14.42 | \n",
"
\n",
" \n",
" 1993.0407 | \n",
" -19.08 | \n",
"
\n",
" \n",
" 1993.0660 | \n",
" -23.42 | \n",
"
\n",
" \n",
" 1993.0974 | \n",
" -26.77 | \n",
"
\n",
" \n",
" 1993.1206 | \n",
" -23.45 | \n",
"
\n",
" \n",
" 1993.1493 | \n",
" -17.81 | \n",
"
\n",
" \n",
" 1993.1765 | \n",
" -16.06 | \n",
"
\n",
" \n",
" 1993.2037 | \n",
" -15.23 | \n",
"
\n",
" \n",
" 1993.2307 | \n",
" -19.07 | \n",
"
\n",
" \n",
" 1993.2851 | \n",
" -20.94 | \n",
"
\n",
" \n",
" 1993.3123 | \n",
" -13.81 | \n",
"
\n",
" \n",
" 1993.3394 | \n",
" -14.42 | \n",
"
\n",
" \n",
" 1993.3665 | \n",
" -12.39 | \n",
"
\n",
" \n",
" 1993.3937 | \n",
" -18.45 | \n",
"
\n",
" \n",
" 1993.4208 | \n",
" -20.75 | \n",
"
\n",
" \n",
" 1993.4480 | \n",
" -18.25 | \n",
"
\n",
" \n",
" 1993.4751 | \n",
" -15.30 | \n",
"
\n",
" \n",
" 1993.5021 | \n",
" -10.97 | \n",
"
\n",
" \n",
" 1993.5294 | \n",
" -11.99 | \n",
"
\n",
" \n",
" 1993.5837 | \n",
" -21.31 | \n",
"
\n",
" \n",
" 1993.6117 | \n",
" -18.61 | \n",
"
\n",
" \n",
" 1993.6381 | \n",
" -14.99 | \n",
"
\n",
" \n",
" 1993.6652 | \n",
" -11.88 | \n",
"
\n",
" \n",
" 1993.6923 | \n",
" -14.95 | \n",
"
\n",
" \n",
" 1993.7189 | \n",
" -20.99 | \n",
"
\n",
" \n",
" 1993.7466 | \n",
" -21.57 | \n",
"
\n",
" \n",
" 1993.7738 | \n",
" -17.33 | \n",
"
\n",
" \n",
" 1993.8009 | \n",
" -15.34 | \n",
"
\n",
" \n",
" 1993.8553 | \n",
" -15.71 | \n",
"
\n",
" \n",
" 1993.8824 | \n",
" -20.20 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2015.0308 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.0579 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.0850 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.1122 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.1394 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.1664 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.1936 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.2207 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.2479 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.2750 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.3023 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.3293 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.3565 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.3837 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.4108 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.4380 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.4650 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.4923 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.5194 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.5465 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.5736 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.6009 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.6280 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.6551 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.6823 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.7094 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.7366 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.7637 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.8723 | \n",
" NaN | \n",
"
\n",
" \n",
" 2015.8995 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
1060 rows × 1 columns
\n",
"
"
],
"text/plain": [
" TOPEX/Poseidon\n",
"year \n",
"1993.0123 -14.42\n",
"1993.0407 -19.08\n",
"1993.0660 -23.42\n",
"1993.0974 -26.77\n",
"1993.1206 -23.45\n",
"1993.1493 -17.81\n",
"1993.1765 -16.06\n",
"1993.2037 -15.23\n",
"1993.2307 -19.07\n",
"1993.2851 -20.94\n",
"1993.3123 -13.81\n",
"1993.3394 -14.42\n",
"1993.3665 -12.39\n",
"1993.3937 -18.45\n",
"1993.4208 -20.75\n",
"1993.4480 -18.25\n",
"1993.4751 -15.30\n",
"1993.5021 -10.97\n",
"1993.5294 -11.99\n",
"1993.5837 -21.31\n",
"1993.6117 -18.61\n",
"1993.6381 -14.99\n",
"1993.6652 -11.88\n",
"1993.6923 -14.95\n",
"1993.7189 -20.99\n",
"1993.7466 -21.57\n",
"1993.7738 -17.33\n",
"1993.8009 -15.34\n",
"1993.8553 -15.71\n",
"1993.8824 -20.20\n",
"... ...\n",
"2015.0308 NaN\n",
"2015.0579 NaN\n",
"2015.0850 NaN\n",
"2015.1122 NaN\n",
"2015.1394 NaN\n",
"2015.1664 NaN\n",
"2015.1936 NaN\n",
"2015.2207 NaN\n",
"2015.2479 NaN\n",
"2015.2750 NaN\n",
"2015.3023 NaN\n",
"2015.3293 NaN\n",
"2015.3565 NaN\n",
"2015.3837 NaN\n",
"2015.4108 NaN\n",
"2015.4380 NaN\n",
"2015.4650 NaN\n",
"2015.4923 NaN\n",
"2015.5194 NaN\n",
"2015.5465 NaN\n",
"2015.5736 NaN\n",
"2015.6009 NaN\n",
"2015.6280 NaN\n",
"2015.6551 NaN\n",
"2015.6823 NaN\n",
"2015.7094 NaN\n",
"2015.7366 NaN\n",
"2015.7637 NaN\n",
"2015.8723 NaN\n",
"2015.8995 NaN\n",
"\n",
"[1060 rows x 1 columns]"
]
},
"execution_count": 16,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data.ix[1993.0123:2015.8995, ['TOPEX/Poseidon']]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-1.54"
]
},
"execution_count": 14,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].median()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-1.281545454545453"
]
},
"execution_count": 15,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].mean()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"http://stackoverflow.com/questions/29778636/median-of-pandas-dataframe"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"11.788058796093676"
]
},
"execution_count": 16,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].std()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"24.120000000000001"
]
},
"execution_count": 24,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].max() #6"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-26.77"
]
},
"execution_count": 25,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].min() #Level started negative and has risen slowly over the years"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"440"
]
},
"execution_count": 15,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['TOPEX/Poseidon'].count() #4"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Jason-1 | \n",
"
\n",
" \n",
" \n",
" \n",
" 945 | \n",
" 39.96 | \n",
"
\n",
" \n",
" 946 | \n",
" NaN | \n",
"
\n",
" \n",
" 947 | \n",
" 43.47 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Jason-1\n",
"945 39.96\n",
"946 NaN\n",
"947 43.47"
]
},
"execution_count": 17,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data.ix[945:947, ['Jason-1']]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [
{
"data": {
"text/plain": [
"305 2.42\n",
"308 8.32\n",
"309 10.29\n",
"310 11.01\n",
"312 8.26\n",
"314 5.32\n",
"316 6.44\n",
"317 5.33\n",
"320 9.25\n",
"321 6.50\n",
"323 8.03\n",
"324 6.34\n",
"326 7.92\n",
"327 7.57\n",
"328 3.85\n",
"329 5.05\n",
"330 9.11\n",
"331 8.31\n",
"332 8.93\n",
"333 10.96\n",
"334 12.21\n",
"336 13.02\n",
"337 9.42\n",
"340 7.29\n",
"341 9.19\n",
"344 11.00\n",
"345 7.30\n",
"348 12.35\n",
"349 14.61\n",
"351 6.30\n",
" ... \n",
"918 39.07\n",
"920 38.77\n",
"922 37.31\n",
"924 41.24\n",
"926 40.09\n",
"928 39.00\n",
"930 41.69\n",
"931 40.68\n",
"933 40.65\n",
"936 39.99\n",
"938 40.32\n",
"939 37.42\n",
"941 40.68\n",
"943 41.84\n",
"945 39.96\n",
"947 43.47\n",
"949 41.66\n",
"951 41.57\n",
"953 41.60\n",
"957 39.96\n",
"958 40.62\n",
"959 42.35\n",
"960 39.86\n",
"962 36.01\n",
"964 37.93\n",
"965 43.84\n",
"968 43.22\n",
"970 41.07\n",
"972 36.34\n",
"974 32.88\n",
"Name: Jason-1, dtype: float64"
]
},
"execution_count": 4,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].dropna()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"21.3"
]
},
"execution_count": 18,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].median()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"21.87150485436892"
]
},
"execution_count": 19,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"9.17064857558141"
]
},
"execution_count": 20,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].std()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"43.840000000000003"
]
},
"execution_count": 26,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].max() #6"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-3.3700000000000001"
]
},
"execution_count": 27,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].min() #slow increase in values"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"412"
]
},
"execution_count": 14,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'].count() #4"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"34.32"
]
},
"execution_count": 21,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].median()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"34.92374531835205"
]
},
"execution_count": 22,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"8.815705537014296"
]
},
"execution_count": 23,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].std()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"55.890000000000001"
]
},
"execution_count": 28,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].max() #6"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"19.969999999999999"
]
},
"execution_count": 29,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].min() #Started around 20, slowly over years increased to 50s"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"267"
]
},
"execution_count": 13,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-2'].count() #4"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 1062 entries, 0 to 1061\n",
"Data columns (total 4 columns):\n",
"year 1062 non-null float64\n",
"TOPEX/Poseidon 440 non-null float64\n",
"Jason-1 412 non-null float64\n",
"Jason-2 267 non-null float64\n",
"dtypes: float64(4)\n",
"memory usage: 33.3 KB\n"
]
}
],
"source": [
"data.info()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"1)Purpose of measurements, why millions were spent on them:"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"TOPEX/Poseidon:"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Mapping ocean surface topography, looking at sea level"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"\"TOPEX/Poseidon' radar altimeter provided the first continuous global coverage of the surface topography of the oceans.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"\"TOPEX/Poseidon provided measurements of the surface height of 95 percent of the ice-free ocean to an accuracy of 3.3 centimeters.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Ocean circulation patterns, and climate can also be better understood by this."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Jason-1:"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Continuation of researching ocean topography...So is Jason-2"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"2) Methods"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Altimeter= \"An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"https://en.wikipedia.org/wiki/Altimeter"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Uses radar to get distance"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/projects/anaconda3/lib/python3.5/site-packages/numpy/lib/function_base.py:3834: RuntimeWarning: Invalid value encountered in percentile\n",
" RuntimeWarning)\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" TOPEX/Poseidon | \n",
" Jason-1 | \n",
" Jason-2 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 440.000000 | \n",
" 412.000000 | \n",
" 267.000000 | \n",
"
\n",
" \n",
" mean | \n",
" -1.281545 | \n",
" 21.871505 | \n",
" 34.923745 | \n",
"
\n",
" \n",
" std | \n",
" 11.788059 | \n",
" 9.170649 | \n",
" 8.815706 | \n",
"
\n",
" \n",
" min | \n",
" -26.770000 | \n",
" -3.370000 | \n",
" 19.970000 | \n",
"
\n",
" \n",
" 25% | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 50% | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 75% | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" max | \n",
" 24.120000 | \n",
" 43.840000 | \n",
" 55.890000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" TOPEX/Poseidon Jason-1 Jason-2\n",
"count 440.000000 412.000000 267.000000\n",
"mean -1.281545 21.871505 34.923745\n",
"std 11.788059 9.170649 8.815706\n",
"min -26.770000 -3.370000 19.970000\n",
"25% NaN NaN NaN\n",
"50% NaN NaN NaN\n",
"75% NaN NaN NaN\n",
"max 24.120000 43.840000 55.890000"
]
},
"execution_count": 3,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data.describe()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"jason1 = data['Jason-1'].dropna()\n",
"#jason1"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
"j1meansum = 0.0;\n",
"j1count = 0;"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n"
]
}
],
"source": [
"print (j1meansum)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9011.06\n",
"412\n"
]
}
],
"source": [
"j1meansum = 0.0;\n",
"j1count = 0;\n",
"for x in jason1:\n",
" j1meansum += x\n",
" j1count +=1\n",
"print(j1meansum)\n",
"print(j1count)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"21.8715048544\n"
]
}
],
"source": [
"j1mean = j1meansum / j1count\n",
"print (j1mean)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"34565.42686699028\n"
]
}
],
"source": [
"j1sum = 0.0;\n",
"for x in jason1:\n",
" j1sum = float(j1sum) + float((x-j1mean)**2)\n",
"print (j1sum)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"9.159512386196605"
]
},
"execution_count": 50,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"j1std = float(np.sqrt(j1sum/j1count))\n",
"j1std"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"43.84\n",
"-3.37\n"
]
}
],
"source": [
"jason1 = data['Jason-1'].dropna()\n",
"maxlist = -1000\n",
"minlist = 1000000\n",
"j1count = 0\n",
"#orderlist = []\n",
"for x in jason1:\n",
" if (x > maxlist):\n",
" maxlist = x\n",
" #orderlist.append(x)\n",
" if (x < minlist):\n",
" minlist = x\n",
" #orderlist.insert(0, x)\n",
" x += 1\n",
" \n",
"print (maxlist)\n",
"print (minlist)\n",
"#print (orderlist)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "TypeError",
"evalue": "list indices must be integers or slices, not numpy.float64",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mn\u001b[0m \u001b[0;32min\u001b[0m \u001b[0morderlist\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0morderlist\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0morderlist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minsert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0morderlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: list indices must be integers or slices, not numpy.float64"
]
}
],
"source": [
"orderlist = []\n",
"for x in jason1:\n",
" if (orderlist == []):\n",
" orderlist.append(x)\n",
" else:\n",
" for n in orderlist:\n",
" if (x >= orderlist[n]):\n",
" orderlist.insert(n, x)\n",
"print (orderlist)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"nan"
]
},
"execution_count": 15,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"data['Jason-1'][2015.8995]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"year\n",
"2003.3300 -3.37\n",
"2002.0537 2.42\n",
"2002.4340 3.85\n",
"2002.4611 5.05\n",
"2002.1898 5.32\n",
"Name: Jason-1, dtype: float64"
]
},
"execution_count": 18,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"jason1.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"orderlist = jason1.sort()\n",
"print(orderlist)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
"orderlist = d"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/ifstatements.html"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"def Jomeanstd(name):\n",
" \"return standard deviation and mean of column 'name'\"\n",
" \n",
" numbers = data[name].dropna() ##getting rid of naN\n",
" meansum = 0.0;\n",
" countlist = 0;\n",
" sumlist = 0.0;\n",
" for x in numbers: ## counting how many are in list and adding up all values\n",
" meansum += x\n",
" countlist += 1\n",
" meanlist = meansum/countlist ##gives the mean of the list\n",
" #print (name, \" mean:\", meanlist)\n",
" for x in numbers: ###adding up the sum of the squares of x_1-mean\n",
" sumlist = float(sumlist) + float((x-meanlist)**2)\n",
" stdlist = float(np.sqrt(sumlist/countlist))\n",
" print (name, \" mean:\", meanlist)\n",
" print (name, \" std:\", stdlist)\n",
" return (meanlist, stdlist)"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"TOPEX/Poseidon mean: -1.28154545455\n",
"TOPEX/Poseidon std: 11.774655654981524\n",
"Jason-1 mean: 21.8715048544\n",
"Jason-1 std: 9.159512386196605\n",
"Jason-2 mean: 34.9237453184\n",
"Jason-2 std: 8.799181238443293\n"
]
}
],
"source": [
"ToPomean, ToPostd = Jomeanstd('TOPEX/Poseidon')\n",
"J1mean, J1std = Jomeanstd('Jason-1')\n",
"J2mean, J2std = Jomeanstd('Jason-2')"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"43.743009708737837"
]
},
"execution_count": 87,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"J1mean*2"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"https://explorable.com/calculate-standard-deviation"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"https://wiki.python.org/moin/ForLoop"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/functions.html"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"3) Units are mm and years?"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"5) Data is arranged in a csv, with commas being the delimiter separating the values. There is also a rather large header."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"8) To make a clear concise form, put the data into a table, probably using pandas"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"10) What is the standard?"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}