## Math 1700: Lecture 8 (June 22)

### 7.4 Integration of Rational Functions by Partial Fractions

$$
3 \times 2=6
$$

Question $1 \frac{\partial}{\partial x} x^{2} \sin (y)=2 x \sin (y)$

Question 2 Which of the following functions has a graph which is a parabola?

Multiple Choice:
(a) $y=x^{2}+3 x-3 \checkmark$
(b) $y=\frac{1}{x+2}$
(c) $y=3 x+1$

Question 3 What is the abscissa of the critical point of the function $f(x)=$ $x^{2}+2 x+1$ ?

Hint: What is the derivative of $f$ ?
$f(x)=2 x+2$
$x=-1$

Basic knowledge:

$$
\begin{equation*}
\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+C \tag{0.1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C  \tag{0.2}\\
& \int \frac{x}{x^{2}+a^{2}} d x=\frac{1}{2} \ln \left(x^{2}+a^{2}\right)+C \tag{0.3}
\end{align*}
$$
\]

Let us consider a rational function

$$
\begin{equation*}
f(x)=\frac{P(x)}{Q(x)} \quad P, Q \text { are polynomails } \tag{0.4}
\end{equation*}
$$

Step 1 : Exoress $f$ as a sum of proper fraction, that is, $\operatorname{deg}(P)<\operatorname{deg}(Q)$. (If $f$ is improper, i.e., $\operatorname{deg}(P) \geq \operatorname{deg}(Q)$, then we must take long division until a remainder $R(x)$ is obtained such that $\operatorname{deg}(R)<\operatorname{deg}(Q)$. The division statement is

$$
\begin{equation*}
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)} \quad S, R \text { are also polynomails) } \tag{0.5}
\end{equation*}
$$

Ex:

$$
\begin{align*}
\int \frac{x^{3}+x}{x-1} d x & =\int\left(x^{2}+x+2+\frac{2}{x-1}\right) d x  \tag{0.6}\\
& =\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x+2 \ln |x-1|+C \tag{0.7}
\end{align*}
$$

Step 2 : Factor the denominator $Q(x)$ as far as possible, as a product of linear factors $(a x+b)$ and irreducible quadratic factors $\left(a x^{2}+b x+c\right.$, where $\left.b^{2}-4 a c<0\right)$. For instance, if $Q(x)=x^{4}-16$

$$
\begin{equation*}
Q(x)=\left(x^{2}-4\right)\left(x^{2}+4\right)=(x-2)(x+2)\left(x^{2}+4\right) \tag{0.8}
\end{equation*}
$$

Step 3 : Express the proper rational function $R(x) / Q(x)$ from Equation (0.5) as a sum of partial fractions of the fomr

$$
\begin{equation*}
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}} \tag{0.9}
\end{equation*}
$$

Case 1 The denominator $Q(x)$ is a polynomial of distinct linear factors.

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right)
$$

where no factor is repeated (and no factor is a constant multiple of another). In this case we look for constants $A_{1}, \ldots, A_{k}$ such that

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

Case $2 Q(x)$ is a product of linear factors, some of which are repeated. Suppose a linear factor $(a x+b)$ is repeated $r$ times, that is, $(a x+b)^{r}$ occurs in $Q(x)$

$$
\frac{R(x)}{(a x+b)^{r}}=\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{r}}{(a x+b)^{r}}
$$

For instance,

$$
\frac{x^{3}-x+1}{x^{2}(x-1)^{3}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{(x-1)^{2}}+\frac{E}{(x-1)^{3}}
$$

Case $3 Q(x)$ contains irreducible quadratic factors, none of which is repeated. If $Q(x)$ has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$, the expression for $R(x) / Q(x)$ will have a term of the form

$$
\begin{equation*}
\frac{A X+B}{a x^{2}+b x+c} \tag{0.10}
\end{equation*}
$$

For instance,

$$
\frac{x}{(x-2)\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{x^{2}+4}
$$

Case $4: Q(x)$ contains a repeated irreducible quadratic factor. If $Q(x)$ has the factor $\left(a x^{2}+b x+c\right)^{r}$, where $b^{2}-4 a c<0$, then instead of the single fraction (0.10) the sum will have

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

Ex:

$$
\begin{aligned}
& \frac{x^{3}+x^{2}+1}{x(x-1)\left(x^{2}+x+1\right)\left(x^{2}+1\right)^{3}} \\
& =\frac{A}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+x+1}+\frac{E x+F}{x^{2}+1}+\frac{G x+H}{\left(x^{2}+1\right)^{2}}+\frac{I x+J}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$


[^0]:    Learning outcomes:

