Using ATEX in SageMathCloud (part 1)

Kiran Kedlaya (guest lecturer: Alina Bucur)
University of California, San Diego

$$
\text { January 23, } 2017
$$

Lecture 6 from Math 152: Intro to Mathematical Software (University of California, San Diego based on lectures by William Stein, University of Washington

Announcements

Announcements

(1) Discussion sections meet as usual this week. Please attend your assigned section.
(2) No instructor office hours this Tuesday. TA office hours meet as usual.
(3) HW 2 due Tuesday, January 24 at $8 p m$. Correction: problem 3c should read "The set of positive integers $n<1000$ such that $n^{3} \equiv 1$ (mod 3)."
(9) HW 2 peer evaluations due Thursday, January 26 at 8 pm .
(6) We are still monitoring the waitlist. We will email you if space becomes available.

General Remarks about LTEX

| TTEX... $^{\text {. }}$

(1) Create professional quality documents involving mathematics. Most research mathematicians (and many scholars in nearby disciplines) use EATEXfor writing their papers.
(2) Completely open source and free. You can install it anywhere.
(3) There are many ways to use $A T_{E} X$, but SageMathCloud is one of the easiest for beginners.

ATEX Tutorial: first steps

Do the following

(1) Create a new blank latex document.
(2) Edit it, changing the title and your name, and seeing the result to the right.

- Find a random math-related wikipedia article, and copy/paste a paragraph of text into your document (this shouldn't work too well, but gives you some math to play with).
- Try out forward and inverse search.
- Make errors and see them listed under issues.
- Download the PDF.

O Click build, then latex to see the output.
(Change preview zoom and resolution.

ATEX Tutorial: next steps

Do the following

(1) In your document, type some formulas surrounded by dollar signs. Try each of the following and some variations on them:
(2) $\$ x^{\wedge} 3 \$$
(3) $\$ \backslash \sin \left(x^{\wedge} \backslash p i\right) \$$
(4) $\$ \mathrm{e}^{\wedge}\{2 \backslash \mathrm{pi} i\} \$$
(5) \$ $\mathrm{frac}\{2\}\{3+\mathrm{x}\} \$$
(6) $\$ 1+2+\backslash c d o t s+n \$$
(3) \$\sum_\{i=1\}^\{n\} i\$
(8) $\$ \backslash i n t _\{0\} へ\{\backslash p i\} \backslash \sin (x) \$$
(0) \$\sqrt\{x^3 + 2\}\$

ATEX Tutorial: sagetex

Do the following

(1) Put sepackage\{sagetex\}inthepreambleofyourlatexdocument.Thismeansputitafter\documentclass...andbefore\begin\{document\}.}(2)Trytypingthisformulain:$\$2018=\sage\{$factor(2018)$\}\$$.(3)Oncethatworks,trysomethingsfromhttp://mirrors.ibiblio.org/CTAN/macros/latex/contrib/sagetex/sagetexpackage.pdf(9)\sageplot[width=.7\textwidth]\{plot(sin,0,1$)\}$undefined

Plot

