The Role of Permutations in Cryptographic Hash Functions

Liljana Babinkostova, Dmitriy Khripkov, Nicholas Lacasse, Bai Lin, Michelle Mastrianni

REU 2015: Complexity Across Disciplines

November 16, 2015

Motivation Hash Functions

- 2 Sums of Permutations
- 3 Near Permutations
 - Definitions
 - Data

A hash function takes digital data of arbitrary length and outputs data of a fixed length. (The output is called the hash value.)

A *hash function* takes digital data of arbitrary length and outputs data of a fixed length. (The output is called the *hash value*.)

A good hash function is *collision resistant*, meaning it is hard to find two inputs that hash to the same output.

A *hash function* takes digital data of arbitrary length and outputs data of a fixed length. (The output is called the *hash value*.)

A good hash function is *collision resistant*, meaning it is hard to find two inputs that hash to the same output.

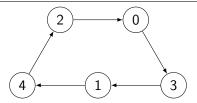
A good *cryptographic hash function* is practically impossible to invert.

$\left(\begin{array}{rrrrr} 0 & 1 & 2 & 3 & 4 \\ 3 & 4 & 0 & 1 & 2 \end{array}\right)$

 $\left(\begin{array}{rrrrr}
0 & 1 & 2 & 3 & 4 \\
3 & 4 & 0 & 1 & 2
\end{array}\right)$

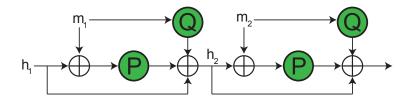
Three different representations

$$\left(\begin{array}{rrrrr} 0 & 1 & 2 & 3 & 4 \\ 3 & 4 & 0 & 1 & 2 \end{array}\right)$$

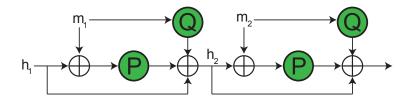


The Grøstl Hash Function

The Grøstl Hash Function

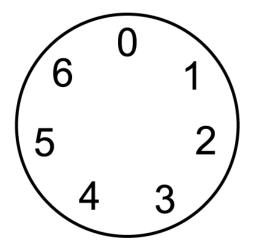


The Grøstl Hash Function



The Question: When is $P \oplus Q$ a Permutation?

Modular (Clock) Arithmetic



$\left(\begin{array}{rrrrr} 1 & 0 & 2 & 4 & 3 \end{array}\right) \\ + \left(\begin{array}{rrrr} 2 & 1 & 0 & 4 & 3 \end{array}\right)$

(10243) + (21043) + (31043)

Research Questions

Do they exist?

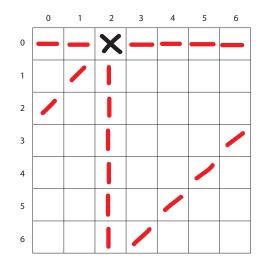
Do they exist?

If they exist, can we count them?

Do they exist?

- If they exist, can we count them?
- How can we construct them?

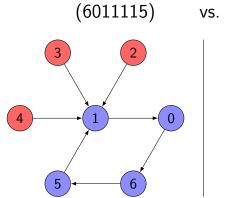
Toroidal Chessboard Construction Tool

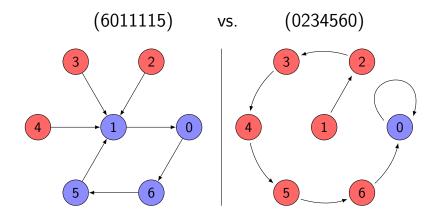


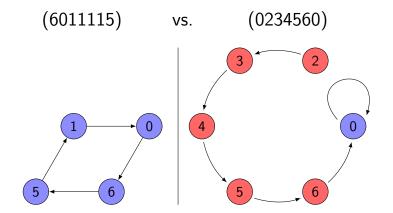


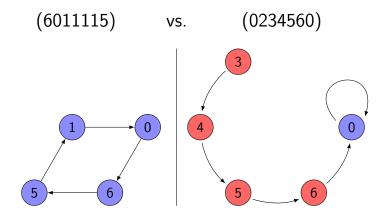
Near Permutations

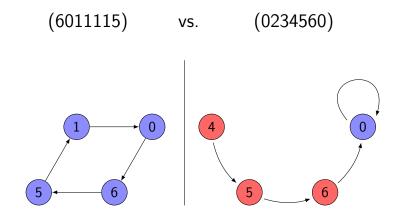
(6011115) vs. (0234560)

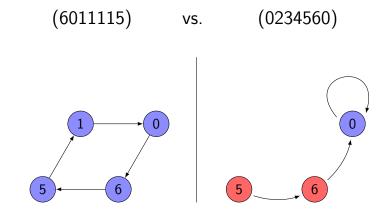


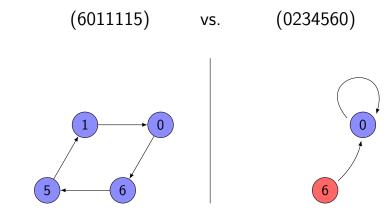


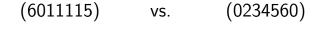


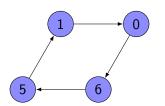












Coining some language

The size of a function, f, is equal to the number of distinct elements in its one-line notation.

The size of a function, f, is equal to the number of distinct elements in its one-line notation.

Example

(122340) has size 5

The size of a function, f, is equal to the number of distinct elements in its one-line notation.

Example

(122340) has size 5

Definition

Let f be a function. The k^{th} -step of f, is f iterated k times.

The size of a function, f, is equal to the number of distinct elements in its one-line notation.

Example

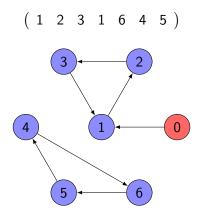
(122340) has size 5

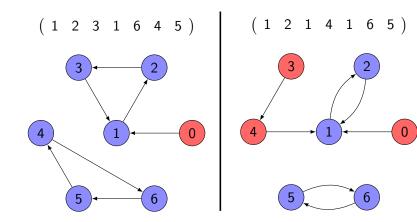
Definition

Let f be a function. The k^{th} -step of f, is f iterated k times.

Definition

A function's **terminal size** is the number of vertices that are in cycles.





			Size				
			1	2	3	4	
		1	1	1	4	0	
	Step	2	2	2	2	0	
<i>n</i> = 4		3	4	0	2	0	

Data

			Size				
			1	2	3	4	
		1	1	1	4	0	
	Step	2	2	2	2	0	
<i>n</i> = 4		3	4	0	2	0	
			1	2.	4	5	
		1	1	0.	0	3	
	Step	2	3	8.	0	3	
	Step	3	11	0.	0	3	
<i>n</i> = 5		4	11	0.	0	3	

Data

			Size			
			1	2	3	4
		1	1	1	4	0
	Step	2	2	2	2	0
<i>n</i> = 4		3	4	0	2	0
			1	2	4	5
		1	1	0	0	3
	Char	2	3	8	0	3
	Step	3	11	0	0	3
<i>n</i> = 5		4	11	0	0	3
			1	2	5	6
		1	1	5	24	0
		2	11	21	8	0
	Step	3	32	12	8	0
		4	44	4	8	0
<i>n</i> = 6		5	48	0	8	0

Data

			Size				
			1	2	3	4	
		1	1	1	4	0	
	Step	2	2	2	2	0	
<i>n</i> = 4		3	4	0	2	0	
			1	2	4	5	
		1	1	0		3	
		1	3	8	0		
	Step	2	-		_	3	
-		3	11	0	0	3	
<i>n</i> = 5		4	11	0	0	3	
			1	2	5	6	
		1	1	5	24	0	
		2	11	21	8	0	
	Step	3	32	12	8	0	
		4	44	4	8	0	
<i>n</i> = 6		5	48	0	8	0	
-			1	2	6	7	
		1	1	0	0	19	
		2	21	84	0	19	
		3	117	78	0	19	
	Step	4	195	72	0	19	
					•		
-		5	267	0	0	19	
n = 7		6	267	0	0	19	

Let π be a permutation of the cyclic group of n elements, and let f denote $\pi \oplus \theta$. Then if the size of f is 2, the one line representation of f is periodic.

Let π be a permutation of the cyclic group of n elements, and let f denote $\pi \oplus \theta$. Then if the size of f is 2, the one line representation of f is periodic.

Let π be a permutation of the cyclic group of n elements, and let f denote $\pi \oplus \theta$. Then if the size of f is 2, the one line representation of f is periodic.

In Grøstl, and in other hash functions, we are working with *bytes*, which are binary strings of length 8.

In Grøstl, and in other hash functions, we are working with *bytes*, which are binary strings of length 8.

The set of all binary strings of a given length corresponds directly to an algebraic structure called a *Galois field*.

In Grøstl, and in other hash functions, we are working with *bytes*, which are binary strings of length 8.

The set of all binary strings of a given length corresponds directly to an algebraic structure called a *Galois field*.

Bytes correspond to the Galois Field of size 2^8 .

For example, while there is no pair of permutations P, Q on the elements $\{0, 1, 2, 3\}$ such that P + Q is a permutation, the Galois Field of size 2^2 does have such permutations:

For example, while there is no pair of permutations P, Q on the elements $\{0, 1, 2, 3\}$ such that P + Q is a permutation, the Galois Field of size 2^2 does have such permutations:

$$(\begin{array}{cccccc} 00 & 01 & 10 & 11 \end{array}) \\ + & (\begin{array}{cccccccc} 01 & 10 & 00 & 11 \end{array}) \end{array}$$

For example, while there is no pair of permutations P, Q on the elements $\{0, 1, 2, 3\}$ such that P + Q is a permutation, the Galois Field of size 2^2 does have such permutations:

If a is the identity permutation, the number of pairs of permutations (a, b) of the elements in $GF(p^r)$ with the size of a+b equal to 2 is

$$\left[2^{p^{r-1}}-2\right)\binom{p^r}{2}$$

Research Questions

Do they exist?

Do they exist?

If they exist, can we count them?

Do they exist?

- If they exist, can we count them?
- How can we construct them?

Supported by the National Science Foundation grant DMS-1359425 and Boise State University. Thank you to Samuel Simon, REU CAD 2014 Alum (Simon Fraser University, Canada) for providing valuable comments.

- L. Babinkostova, K.W. Bombardier, M. C. Cole, T. A. Morrell, C. B. Scott, *Algebraic properties of generalized Rijndael-like ciphers*, **Groups**, **Complexity, Cryptology** Vol. 6, (2014), 37–54.
- B.D. McKay, J.C. McLeod and I.M. Wanless, The number of transversals in a latin square, *Des. Codes Cryptogr.* **40** (2006), 269-284.
- Martin Schlaffer, 2011. Cryptanalysis of AES-Based Hash Functions. PhD Thesis, Graz University of Technology, Austria.
 - L. Sunil Chandran, Deepak Rajendraprasad, Nitin Singh. On Additive Combinatorics of Permutations of \mathbb{Z}_n . Discrete Mathematics and Theoretical Computer Science, Vol. 16:2 (2014),3540.