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What is a Hash Function?

A hash function takes digital data of arbitrary length and outputs
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A good hash function is collision resistant, meaning it is hard to
find two inputs that hash to the same output.

A good cryptographic hash function is practically impossible to
invert.
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Do they exist?

If they exist, can we count them?

How can we construct them?
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Coining some language

Definition

The size of a function, f , is equal to the number of distinct
elements in its one-line notation.

Example

(122340) has size 5

Definition

Let f be a function. The kth-step of f , is f iterated k times.

Definition

A function’s terminal size is the number of vertices that are in
cycles.
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Periodicity in Permutation Sums

Theorem

Let π be a permutation of the cyclic group of n elements, and let f
denote π ⊕ θ. Then if the size of f is 2, the one line representation
of f is periodic.
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Permutations over Galois Fields

In Grøstl, and in other hash functions, we are working with bytes,
which are binary strings of length 8.

The set of all binary strings of a given length corresponds directly
to an algebraic structure called a Galois field .

Bytes correspond to the Galois Field of size 28.
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Permutations over Galois Fields

Sums of permutations behave differently over Galois Fields.

For example, while there is no pair of permutations P,Q on the
elements {0, 1, 2, 3} such that P + Q is a permutation, the Galois
Field of size 22 does have such permutations:

( 00 01 10 11 )
+ ( 01 10 00 11 )

= ( 01 11 10 00 )
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Counting Sums of Permutations Over Galois Fields GF (pr )

Theorem

If a is the identity permutation, the number of pairs of
permutations (a, b) of the elements in GF (pr ) with the size of a+b
equal to 2 is

(2p
r−1 − 2)

(
pr

2

)
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