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1 History and Motivation

The zero forcing number (of a simple graph) was introduced for the study of the
minimum rank problem [1]; it was also introduced independently for the study
of quantum control.

Some motivations of the zero forcing number (or its variants) are listed below
along with the references.

• Maximum nullity—Inverse eigenvalue problem, Engineering [1]

• Quantum control—Physics [3]

• Cops-and-robber game—Graph Theory [2]

• Fast-mixed search—Computer Science [5]

Most of variants of the zero forcing number and their relations can be found
in [2].

2 Zero forcing on patterns

On a graph G, the zero forcing game is a color-change game such that each
vertex is colored blue or white initially, and then the color-change rule is applied
repeatedly. If starting with an initial blue set B ⊆ V (G) and every vertex turns
blue eventually, this set B is called a zero forcing set. The zero forcing number is
defined as the minimum cardinality of a zero forcing set and denoted as Z(G).
The color-change rules for different types of graphs are given below. (Notice
that so far multiedges or multiloops are not allowed.)

• Simple graphs: If y is the only white neighbor of x and x is blue, then y
turns blue. [1]

• Loop graphs: If y is the only white neighbor of x, then y turns blue. [7]

• Simple digraphs (loops not allowed): If y is the only white out-neighbor
of x and x is blue, then y turns blue. [7]

1



• Digraphs (loops allowed): If y is the only white out-neighbor of x, then y
turns blue. [7]

The loop zero forcing number Z`(G) of a simple graph G is Z(G), where G
is the loop graph obtained from G by adding a loop to each non-isolated vertex.
The skew zero forcing number Z−(G) of a simpe graph G is Z(G), where G is
the loop graph obtained from G by adding no loops. (It is somehow nice that
here the minus sign is a superscription, since there is no direct relation between
Z−(G) and Z+(G), which will be introduced later.) There are also definitions
for multigraphs or bipartite graphs; see [9, 10].

2.1 Symmetry

For the minimum rank problem on a simple graph or a loop graph, the matri-
ces considered are all symmetric. However, the zero forcing number described
previously does not deal with the symmetry. For example, the pattern0 ∗ ∗

∗ 0 ∗
∗ ∗ 0


can have a matrix realization with nullity 1, yet any symmetric matrix realiza-
tion is always nullity 0.

We may modify the color-change rule to deal with this issue. Let C2k+1 be
a cycle of length 2k + 1 as a simple graph. The loopless odd cycle C2k+1 is the
loop graph obtained from C2k+1 by adding no loops. The odd cycle zero forcing
number Zoc(G) is the zero forcing number with the following color-change rule.

• If y is the only white neighbor of x, then y turns blue;

• if a loopless odd cycle C2k+1 appear as a component of the subgraph
induced on the white vertices, then V (C2k+1) turn blue.

For any loop graph,

M(G) ≤ Zoc(G) ≤ Z(G);

see [11] for the definition of M(G).

2.2 Enhanced parameter

For the minimum rank problem of a simple graph, the diagonal entries can be
either zero or nonzero. We may replace them be zeros and nonzeros and then
take the extremum.

A loop configuration of a simple graph G is a loop graph obtained from G
by designating each vertex as having or not having a loop. The enhanced zero
forcing number Ẑ(G) is defined as maxG Z(G), where the maximum is over all
loop configurations of G. Similarly, the enhanced odd cycle zero forcing number
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Ẑoc(G) is defined as maxG Zoc(G), where the maximum is defined over all loop
configurations of G. It is known that

M(G) ≤ Ẑoc(G) ≤ Ẑ(G) ≤ Z(G);

see [2, 11] for the deinition of M(G).

2.3 Minor monotone floor

For the study of the Colin de Verdière type parameters µ, ν, ξ, the Strong Arnold
Property of a matrix is required. However, the zero forcing number does not deal
with this issue. Fortunately, all Colin de Verdière type parameters are minor-
monotone, meaning if H is a minor of G then β(H) ≤ β(G) for β ∈ {µ, ν, ξ}.
The minor-monotonicity leads to the following definition.

Let β be a parameter on simple graphs. The minor monotone floor of β is
defined as

bβc (G) = min{β(H) : G is a minor of H}.

Thus, we have ξ(G) ≤ bZc (G) and ν(G) ≤ bZ+c (G); see [2] for more details.
The parameter bZc (G) is proved to equivalent to the zero forcing number

using the following color-change rule.

• If y is the only white neighbor of x and x is blue, then y turns blue;

• if x is a blue vertex with all neighbors blue and x has not performed a
force, then pick a white vertex y and y turns blue.

The color-change rules for bZ`c and bZ+c can be found in [2].

3 Zero forcing on sign patterns

Sign zero forcing Z±(G) can be found in [6].

4 Zero forcing regarding the inertia

Let G be a simple graph. We can consider the maximum nullity Mq(G) over
matrices with the pattern of G and at most q negative eiganvalues. Then
Mq(G) ≤ Zq(G) [4].

5 Zero forcing controlling the Strong Arnold Prop-
erty

A real symmetric matrix A is said to have the Strong Arnold Property if X = O
is the only symmetric matrix that satisfies A ◦X = I ◦X = AX = O. It was
shown that ZrmSAP (G) = 0 implies every matrix with the pattern of G has the
Strong Arnold property [12].
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