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Abstract

For finite groups G not of prime power order, Oliver’s description
[17] of the fixed point sets of smooth G-actions on disks depends on
the classA, B, C, D, E, or F (cf. 2.1 below) the acting group G belongs
to. If G is perfect, G belongs toA∪B∪C ∪E.

Using Oliver’s results, in a straightforward way we describe sufficient
conditions for manifolds to occur as the fixed point sets of smooth
G-actions on complex projective spaces, in the case G is a finite perfect
group from the classA∪B∪C. For G = A5, the smallest finite perfect
group in class E, the straightforward procedure fails and therefore,
we resort to the reflection method in equivariant surgery to obtain a
similar result on smooth G-actions on complex projective spaces.

1 Introduction

Let G be a finite group. A great deal of research in the subject of transforma-
tion groups is dedicated to realizing an invariant I(X) where X varies within
a category of smooth G-manifolds all homotopy equivalent to a manifold Y ,
and all having some additional properties of the manifold Y . For example, if
Y is a sphere, a disc, or Euclidean space, then the manifolds X are supposed
to be the homotopy spheres, discs, or Euclidean spaces, respectively. In
these cases, numerous results describe the possible values of the invariant
I(X) = XG, the fixed point set of the G-action on X. We shall study the rich
variety of this invariant in the case Y is a complex projective space and the
manifolds X are the homotopy complex projective spaces.

Finite group actions on (cohomology, homotopy) CPn’s has been studied
previously (we refer the reader to the survey by Dovermann et al. [2] or a
different one by Suh [23]). However, most of the research was focused on
realising so called defects, or proving algebraic rigidity in the context of
Petrie’s Conjecture [20, 21]. To our knowledge all previously constructed
actions on homotopy CPn’s are either G-homotopy equivalent to linear ones,
or have the G-poset structure of a linear action, e.g. the fixed point set is a
disjoint union of spaces homotopy equivalent to complex projective spaces
(of possibly different dimensions). In this paper we are mainly concerned
with the diversity of the fixed point sets possible.
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Define the set FixD(G) as the sets of smooth manifolds F which can be
realised as a fixed point of a smooth action of G on Dn for some n. An
analogous notations for FixS(G) (fixed points of actions on spheres) and
FixCP(G) (fixed points of actions on complex projective spaces) will be used
throuhgout the paper. The main aim of the paper is to investigate to which
extent the implication

F ∈ FixD(G) =⇒ F ∈ FixCP(G)

holds for perfect groups G. We will not focus on any particular dimension
but rather look for general methods to allow the transit above.

Construction of exotic actions We briefly sketch our programme for con-
struction of exotic (i.e. not equivalent to linear) actions of perfect groups on
complex projective spaces.

Theorem 1. Let G be a finite perfect group in classA, B, or C.

• If G belongs to classA, there are no further assumptions.

• If G belongs to class B or C, we suppose that the dimension of a con-
nected component of F is even.

If F ∈ FixD(G) then F ∈ FixCP(G).

The construction proceeds according to the following programme.

1. We start with a smooth action of a perfect group G on a disc with the
given fixed point set F with ∂F = ∅ and we create a double of the disc
to obtain action on a sphere with F t F as the fixed point set.

2. We perform necessary modifications of the action to claim that

• the action occurs on an even-dimensional sphere S2n,

• the fixed point set
(
S2n)G � F t F t F0 contains the third compo-

nent: F0 = {x}, a single point (if possible), or F0 = S2k an even-
dimensional sphere S2k,

• the tangential G-module V at x ∈ F0 admits a complex structure.

3. We create the complex projectivisation of V and form equivariant
connected sum Y = CVPn #S2n.

4. We construct f : X → Y , a G-normal map of degree 1, such that the
fixed point set XG consists of a single copy of F .

5. Finally we perform equivariant G-surgery of type H < G on f to obtain
a homotopy equivalence f ′ : X′ → Y .
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Since, by the construction, the resulting manifold X′ is normally bordant to
Y = CVPn #S2n (which is simply connected) it follows that X is actually a
smooth G-manifold diffeomorphic to CPn.

Proof of Theorem 1. In the case of a perfect group G ∈ A ∪ B ∪ C it is
possible to modify the action directly on the sphere to add just a single
isolated point to the fixed point set of a smooth G-action on a sphere
(provided that the dimension of F is even in case G ∈ B ∪ C). These
steps are described in detail in Section 3. The theorem then follows by
Proposition 5.

Theorem 2. Let G = A5, the alternating group on 5 symbols. If F ∈ FixD(G)
then F ∈ FixCP(G).

The proof of Theorem 1 does not apply to perfect groups in class E
(e.g. G = A5), as we can not add an isolated point to the fixed point
set of a smooth action on S2n (all connected components of the fixed
point set are of the same dimension). In the case, after the third step the
fixed point set

(
CPn

)G consists of F and the second component S2k #CPk,
thus we are still far from realising the invariant F . To amend this we
employ equivariant surgery and modify the action on the CPn to delete
the superfluous components of the fixed point set. We use the version of
equivariant surgery as developed by Petrie, Dovermann and Rothenberg
[3, 4] with further refinements by Lück and Madsen [6, 7], and Morimoto
[8, 10].

In Section 4 we provide the details of surgery steps and finally prove
Theorem 2. It seems very likely that the theorem holds for all perfect groups
but so far we were unable to prove it.

Throughout the paper, unless explicitly stated otherwise, we share the
following assumptions: G is a finite perfect group; all manifolds are closed
and smooth, and all G-actions are smooth. We will also always tacitly assume
that G-actions mentioned do not “reduce” to any of p-groups of G, i.e. that
SP ≠ SG for all Sylow subgroups P of G.

2 Actions of perfect groups

2.1 Actions on discs and spheres

Following B. Oliver [17], consider (the reduced) K-theory rings: K̃O(F),
K̃U(F), K̃Sp(F) (for real, complex and quaternionic K-theories) and the
following diagram of realification, complexification and quaternionisation
maps.

K̃O(F) cR----------------------------→ K̃U(F) qC-------------------------------→ K̃Sp(F),

K̃Sp(F) cH-------------------------------→ K̃U(F) rC---------------------------→ K̃O(F).
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Let p,q denote two different prime numbers. We can divide all finite
groups into six disjoint classesA, B, C, D, E and F defined as follows.

A: G has a pq-dihedral subquotient1.

B: G has no pq-dihedral subquotient, but G has an element of order pq
conjugate to its inverse.

C: G has elements of order pq, but none of them is conjugate to its inverse,
and G2, the 2-Sylow subgroup is not normal in G.

D: G has elements of order pq, but none of them is conjugate to its inverse,
moreover G2 /G.

E: G has no element of order pq, G2 is not normal in G, and G is not of
prime power order.

F : G has no element of order pq, G2 / G, and G is not of prime power
order.

We can exclude grups from classes D and F from our analysis, as these
have the normal the 2-Sylow subgroup G2, hence are not perfect. The
folowing theorem is a corollary of [17] specialised to the case of perfect
groups.

Theorem 3 (B. Oliver). Let G be a finite perfect group not of prime power
order. A compact manifold F belongs to FixD(G) if and only if the tangent
bundle τ(F) satisfies one of the following conditions.

G ∈A: no conditions

G ∈ B: cR ([τ(F)]) ∈ cH
(
K̃Sp (F )

)
+ Tor

(
K̃U (F )

)
G ∈ C: [τ(F)] ∈ rC

(
K̃U (F )

)
+ Tor

(
K̃O (F )

)
G ∈ E: [τ(F)] ∈ Tor

(
K̃O (F )

)
From the properties of τ(F) one can infer more information about the

dimensions of the connected components Fα of F .

G ∈A The dimensions of the Fα’s are arbitrary.

G ∈ B∪C The dimensions of the Fα’s are of the same parity.

G ∈ E The dimensions of the Fα’s are the same.
1I.e. there exist subgroups H,K à G such that K /H and H

/
K � D2pq .
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Theorem 4 (M. Morimoto [12]). Suppose that F is a closed manifold. For a
perfect group G

F ∈ FixD(G) if and only if F ∈ FixS(G).

Moreover, we can choose pairs (D, S) realising F as the fixed point set, such
that the equivariant normal bundles of F are the same (in particular the disc
and sphere are of the same dimension).

Note that there might exist disks realising F with a normal bundle which
can not occur on a sphere.

A series of papers [14, 15, 16] and finally [12] leads to the result above.
The ideas of the construction of the appropriate G-CW complex and a
G-bundle over it are described in the first three papers, whereas the last
provides detailed account of the surgery performed to obtain the final
actions on spheres. Although from the point of view of actions of perfect
groups the first three are superseeded by [12], we feel a reference is in order.

2.2 Linear actions on complex projective spaces

We very briefly recall all necessary facts on linear actions on CPn. Let
G be a finite group and let V be a complex representation space of G (a
complex G-module) of (complex) dimension n and denote by 1G the complex
irreducible trivial representation.

By CVPn we denote the complex projectivisation of V ⊕ 1G, i.e.

CVPn =
(
V ⊕ 1G Ø {0}

)/
∼ ,

where (λz1, . . . , λzn+1) ∼ (z1, . . . , zn+1) for λ ∈ C Ø {0}. As a topological
space CVPn is diffeomorphic to CPn, and the G-action on CVPn induced
from V will be referred to as linear. Note that in the definition above we
could have taken a unitary representation V and define

CVPn = PC(V ⊕ C) = S(V ⊕ C)
/
S1 .

The H-fixed points of the linear action on CVPn come from (complex)
1-dimensional representations of resGH V . In the case of perfect groups these
can be multiples of either 1H (trivial) or ρ, the non-trivial representation
that factors through Z/2 (the antipodal representation). Since we added the
trivial representation to V before projectivisation, the fixed point set of
CVPn is non-empty.

Let x ∈ PC ((k+ 1)1G) ⊂ CVPn denote a point in the connected compo-
nent coming from the trivial subrepresentation of V , e.g. set

x = [0 : 0 : . . . : 0 : 1]

in the projective coordinates. Then TxCVPn, the tangential G-module at x
is isomorphic as the G-module to V . The following is an easy corollary from
the description above.
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Proposition 5. If a perfect group G acts smoothly on a sphere S2n with the
fixed point set diffeomorphic to F t {pt}, then there exists a smooth G-action
on CPm such that

(CPm)G = F.

By results of Section 3 this is enough to prove Theorem 1, as groups
in classA admit (unconditionally) actions with isolated fixed point x, and
so do groups in classes B and C when the dimension of F is even. Then
the action on even sphere S2m as in Lemma 7 admits a complex normal
representation V at x and the connected sum S2m#CVPm is the requred
complex projective space.

3 Preparing the setting

Our plan for this section is as follows. Given a smooth action of a group G
on the sphere Sj with even dimensional manifold (not necessarily connected)
F2k as the fixed point set, we modify the action of G on Sj in the following
fashion.

1. We introduce a point x or S2k as a new connected component to the
fixed point set;

2. Ensure that we have enough control over the normal representations
at x or at Sk in the fixed point set.

3. We create the equivariant connected sum,

S2n #CVPn.

4. We check that S2n #CVPn satisfies the appropriate gap-conditions.

3.1 Complex structure on TpSj

Suppose that a closed, smooth manifold

F = F0 t F1

can be realized as the fixed point set of a smooth G-action on a sphere
Sj . Choose p ∈ F0 ⊂ Sj and consider the the decomposition of tangential
G-module TpSj :

TpSj = τ(F0)
∣∣∣p⊕ ν(F0)

∣∣∣p� RdimF0 ⊕ ν(F0)
∣∣∣p

where the G-action on ν(F0)
∣∣∣p, the fibre over p of the normal bundle of F0, is

without fixed points (except the origin). Since τ(F0)
∣∣∣p has the trivial action,
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then (as a necessary condition to the existence of a complex strucure) we
need dimF0 = 2k. Assume so.

Recall that for a G-module W we denote by W the product G-vector
bundle X ×W → X. Consider the G-bundle over F0

τ(F0)⊕ ν(F0)⊕ ν(F0)
∣∣∣p -→ F0.

This bundle has an obvious extension to a bundle over the whole F , namely

η def.=
(
τ(F)⊕ ν(F)⊕ ν(F0)

∣∣∣p -→ F
)
.

We claim that τ(F) ⊕ ν(F) ⊕ ν(F0)
∣∣∣p is a good candidate for the normal

bundle of the G-fixed point set of a smooth G-action on the disc D2n. To
prove the claim we need to introduce another piece of theory.

Let resGH ξ ∈ K̃OH(F) denote the element of the reduced H-equivariant
KO-theory of F determined by the vector bundle resGH ξ obtained from ξ
by restricting the action to a subgroup H of G. Let p be a prime dividing
the order of G and let P denote a p-subgroup of G. Consider the group
K̃OP(F)(p), a P -equivariant KO-theory ring of F localised at the ideal (p).
B. Oliver in [17] has defined an element

O(ξ) def.= resG{e}(ξ)+
∑
P≠{e}

[
resGP (ξ)

]
∈ K̃O(F)⊕

⊕
P≠{e}

K̃OP(F)(p)

where sum runs over all P -groups of G and over all primes p dividing the
order of G. We ommited the infinitely p-divisible part (from the original
definition) as in the case of ξ over a compact manifold F it becomes trivial
in the localisation at (p).

The element O(ξ) is the obstruction to extending the G-vector bundle
ξ over F to a G-vector bundle Ξ over a contractible G-CW-complex. The
following theorem is a consequence of Theorem of B. Oliver [17] and the
Equivariant Thickening Theorem due to K. Pawałowski [18].

Theorem 6 (see [19, Theorem 8.2]). Suppose that G is a finite perfect group.
Let F be a smooth compact manifold and ν0 be a real G-vector bundle over F
such that dimνG0 = 0. Set U(G) = C[G]−1G, i.e. the orthogonal complement
of 1G in C[G]. Then the following two statements are equivalent.

• For every sufficiently large natural number l there exists a smooth
action of G on some disk D such that DG � F and as G-vector bundles
ν(F ↩ D) � ν0 ⊕ lU(G).

• O(τ(F)⊕ ν0) = 0.

If τ(F)⊕ ν(F) satisfies the second condition of the theorem, then η =
τ(F)⊕ ν(F)⊕ ν(F0)

∣∣∣p satisfies the condition as well. Indeed, η and τ(F)⊕
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ν(F) differ only by a direct summand which is a product bundle, hence
K-theory classes [τ(F)⊕ ν(F)] and [η] are equal. Therefore we can obtain
a G-action on a disc Dm, and then (by forming its double) on the sphere
Sm which realises F t F as the fixed point set. Note that, by construction,
m = 2k + 2 dimν(F) + 2ldimR

(
rC(U(G)

)
is even. Set n = k + dimν(F) +

ldimR
(
rC(U(G)

)
.

By Theorem 4, we may assume that the sphere S2n contains precisely
F as the fixed point set. Over a single point x ∈ F ⊂ S2n the tangent fibre
τ
(
S2n)∣∣∣

x
decomposes (as G-module)

τ(F)
∣∣∣
x
⊕ ν(F)

∣∣∣
x
⊕ ν(F0)

∣∣∣p⊕ lU(G)
hence over p ∈ F0 we have the following isomorphisms

τ
(
S2n

)∣∣∣
p
= τ(F0)

∣∣∣p⊕ ν(F0)
∣∣∣p⊕ ν(F0)

∣∣∣p⊕ lU(G)
� R2k ⊕

〈
ν(F0)

∣∣∣p
�
⊕ i

〈
ν(F0)

∣∣∣p
�
⊕ lU(G)

� k1G ⊕
(
ν(F0)

∣∣∣p⊗ C
)
⊕ lU(G).

This proves the following lemma.

Lemma 7. Let G be a finite perfect group and suppose that G acts smoothly
on a disc with the fixed point set F such that ∂F = ∅. Suppose moreover
that dimF0 = 2k for a connected component F0 ⊂ F . Then G acts on an
even-dimensional sphere S2n with the fixed point set F and for every x ∈ F0,
the tangent space TxS2n can be endowed with a complex structure.

3.2 The normal representation

Knowing that the connected component F0 has a complex structure on a
fibre of the normal bundle we want to describe explicitly the tangential
representation at some p ∈ F0 ⊂ S2n.

Lemma 8. In the setting as above the G-action on S2n can be chosen in such
a way that, for a point p ∈ F0, we have

TpS2n � k1G ⊕ rU(G)

for a positive integer r .

Proof. Since TpS2n has a complex structure, by the previous lemma, we may
decompose it as the direct sum of complex irreducible representations

TpS2n � k1G ⊕
⊕
χ≠1G

nχχ.
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Recall that for a perfect group G, we have U(G) � r(G) − 1G thus, for a
sufficiently large s (i.e. s á maxχ{nχ}), we may treat TpS2n as a direct
summand of the G-module sU(G)⊕ k1G. Consider the representation

W def.= (sU(G)⊕ k1G)− TpS2n,

where the minus sign denotes taking the orthogonal complement in some
G-invariant metric.

By the same argument as above we have

O(τ(F)⊕ ν(F)⊕W) = O(τ(F)⊕ ν(F)) = 0.

By Theorem 6 we may realise F as the fixed point set of a G-action on
an even-dimensional disc with the normal bundle isomorphic to τ(F) ⊕
ν(F)⊕W ⊕ lU(G), hence on the sphere S2k+2s+2l of the same dimension. By
the construction, the G-representation on the tangent space at p ∈ F0 is
isomorphic to

TpS2k+2s+2l � k1G ⊕ ν(F0)
∣∣∣p⊕W ⊕ lU(G) � k1G ⊕ (s + l)U(G).

We refer the interested reader to [12] for the details of the construction
of the action on a sphere which we used above. In Section 6 therein, one
can find the precise construction and a different argument for the normal
representation of the fixed point set.

Connected sum For classes of groups A, B and C we are able to add an
isolated fixed point x to (S2n)G, and these cases are dealt with in Theorem 1
and its proof. In the following we focus on the case of groups in class E.

For all perfect groups in the class E (e.g. G = A5) the modification of
the action on sphere only goes as far as adding a connected component
F0 = S2k to the fixed point set. Let x ∈ S2k, then we can assume that
V = TxS2n, the tangential representation at x carries a complex structure
and (S(V))G = S2k. Using results on linear actions on CVPn (Section 2.2)
we can create equivariant connected sum Y = CVPn#S2n and conclude that

(Y)G � CPk#S2k t F t F.

The aim of Section 4 will be to remove the CPk along with one copy of F
from the fixed point set.

gap-conditions In order to perform equivariant surgery we need to know
that Y = CVPn#S2k satisfies certain dimensions gaps between YH and Y>H .

Let G be a finite group and let M be a G-manfidold. Fix a pair of sub-
groups (H,K), where H < K à G and consider MH =

∐
MHα, the decompo-

sition of H-fixed point set of M into connected components. We say that M
satisfies
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• the gap-condition for (H,K) if

2 dim(MHα)K + 1 à dimMHα,

• the coboridism gap-condition for (H,K) if

2 dim
((
MHα

)K
\
(
MHα

)NG(H) + 1
)
à dimMHα,

• the strong gap-condition for (H,K) if

2
(
dim(MHα)K + 1

)
≤ dimMHα,

hold for all connected components MHα of MH .
The gap-conditions are essential to G-surgery theory. The following

theorem due to Morimoto, corrects an error of [5].

Theorem 9 (Morimoto, [13]). Let G be a perfect group and let C2 denote the
cyclic group of order 2. Set

V =m1G ⊕nU(G).

Let U denote a G-tubular neighbourhood of (CVPm+n)G. Then

• CVPm+n satisfies the gap-condition for the pair ({e}, C2) if and only if
m+ 1 = n.

• U satisfies the gap-condition for ({e}, C2) if and only if m+ 1 à n.

• If m + 1 à n then U satisfies the strong gap-condition for all (H,K)
such that H ≠ {e} and [H : K] á 3.

Proof. Set Y = CVPn+m and let 1C2 , % denote the two complex representa-
tions of C2. Then

YC2 � YC2
1C2
∪ YC2

% .

The dimensions of the components can be computed as

dimYC2
1C2
= dimPC

(
(m+n(|G|/2− 1)+ 1)1C2

)
= 2m+n|G| − 2n

dimYC2
% = dimPC (n|G|/2) = 2(n|G|/2− 1) = n|G| − 2

Thus gap-condition for subgroups ({e}, C2) and components
(
Y ,YC2

1C2

)
holds if and only if

dimY − 2 dimYC2
1C2
= 2(n−m) > 0.

Analogously for
(
Y ,YC2

%

)
we require that 2(m − n + 2) > 0, and both

conditions are satisfied only when n =m+ 1.
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For the neighbourhood U note that UH is connected for every subgroup
H à G and thus we only have to consider components YH1H . Since dimUH =
dimYH1H ∩ U , by a similar computation one can show that for subgroups
K < H we have

dimYK1K − 2 dimYH1H = 2(n−m)+ 2m|H|([H : K]− 2).

If [H : K] á 3, then the right hand side is greater than or equal to 2m|H|
and the conclusion follows.

4 Surgery

4.1 Equivariant degree and bordism

The equivariant degree of a G-map is an element of

Hom
(Π(Y)→ Z),

where Π(Y) = {π0
(
YH

)}
H∈S(G) denotes G-poset given by the fundamental

grupoids of the H-isotropy submanifolds in X, ordered by inclusion. Given
a G-map f : X → Y denote by Π(f ) the map induced on posets of X and Y .
Let α ∈ Π(X) be a connected component of an H-fixed point set and set
β = Π(f )(α). We may define the equivariant degree of the map f as

degf(β) =
∑

degfHαi ,

where sum runs over all αi ∈ Π(f )−1(β).
Remark. Equivariant degree is constant on conjugacy classes of (the natural)
G-action on Π(Y), hence we may sometimes refer to degree as a map

degf : Conj (Π(Y))→ Z.
For the purpose of this article we introduce the following (non-standard)

definition.

Definition 10. We say that a G-map f : X → Y is of equivariant degree one
if for every H ∈ Iso(X) \ {G}

1. every connected component XHα of XH is oriented and

2. for all β ∈ Π(Y) \π0(YG) we have degf(β) = 1.

Suppose that V is a complex G-module. When the base space is under-
stood from context V denotes the G-bundle over the base space which is
non-equivariantly trivial with the G-action on the fiber given by V .

Definition 11. • A G-normal map is a pair (f , b) which consists of a
G-map f : (X, ∂X) → (Y , ∂Y) of smooth G-manifolds and a stable
G-bundle isomorphism b : T(X) ⊕ nC[G] → f∗ξ, where ξ → Y is a
G-bundle for some integer m.
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• A G-framed map (f , b) is a G-normal map, where ξ = T(Y)⊕mC[G]
and consequently for some integer n,

b : T(X)⊕nC[G] �------------→ T(Y)⊕nC[G]

Equivariant cobordisms A G-manifoldW is called a G-cobordism between
X and Y if ∂W = −X t Y as G-manifolds. A normal cobordism between
normal G-maps is defined analogous to the non-equivariant case.

Definition 12. Suppose that (f , b) : X → Y and (f ′, b′) : X′ → Y are normal
G-maps to the same G-bundle ξ → Y . We say that they are normally G-
cobordant if there exists a G-normal map(F, B)(

F : (W, ∂W)→ (Y × I, Y × ∂I) , B : T(W)→ (πY ◦ F)∗ξ ⊕R
)
,

such that the boundary of a G-manifold W is −X tX′, and

(F, B)
∣∣∣
X
= (f , b), and (F, B)

∣∣∣
X′
= (f ′, b′)

as G-maps.

Construction of a framed G-map of degree 1 The idea of the following
construction is due to Petrie [22], with further improvements by Morimoto
in [11]. Let Ω(G) denote the Burnside ring of G, i.e.

Ω(G) = {[X] : X is a finite G-CW-complex},

where [X] = [Y] if and only if χH(X) = χH(Y) for all subgroups H of G,
where χH(X) = χ(XH) is the (oriented) Euler characteristic of the H-fixed
point set.

Proposition 13. Let G be a perfect group. Then there exists an indepotent
element β in the Burnside ring Ω(G) such that χG(β) = 1 and χH(β) = 0 for
all proper subgroups H of G.

Example. For G = A5 there is a unique element of the property, given by

β = [G/G]− [G/A4]− [G/D10]− [G/D6]+ [G/C3]+ 2[G/C2]− [G/e],

where the subgroups of A5 are given as

• C2 = 〈(1,2)(3,4)〉

• C3 = 〈(3,4,5)〉

• D4 � C2 ⊕ C2 = 〈(1,2)(3,4), (1,3)(2,4)〉

• C5 = 〈(1,4,5,3,2)〉
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• D6 = 〈(1,2)(3,4), (3,4,5)〉

• D10 = 〈(1,2)(3,4), (1,4,5,3,2))〉

• A4 = 〈(1,2)(3,4), (1,3)(2,4), (1,2,3)〉

Let n(C[G])• denote the 1-point compactification of the n-fold directed
sum of C[G]. For a finite (pointed at a fixed point) G-CW-complex Y denote
by

ω0
G(Y) = lim

n→∞
[Y ∧ (nC[G])•, (nC[G])•]G0

the set of pointed G-equvariant homotopy classes. Note that we can “extend”
(an equivariant homotopy class) γ : Y ∧ (nC[G])• → (nC[G])• to an identity-
covering map

bγ : Y ×nC[G]→ Y ×nC[G],
by first choosing γ : Y × (nC[G])• → (nC[G])•, an extension of γ, and then
seting bγ(a,v) = (a, γ(a,v)) and restricting to Y ×nC[G].

Given a G-set A ∈ Ω(G), we use the Equivariant Segal conjecture to
identify A with a stable equivariant homotopy class α ∈ω0

G(pt). The direct
correspondance is given by first equivariantly embedding A into (nC[G])•
for some n, then collapsing onto the Thom space Th(A, (nC[G])•) (non-
equivariantly the disjoint sum of spheres). Finally we map to (nC[G])• by
the map sending each sphere in the Thom space onto (nC[G])• identically
on each of the connected components. The the composition of the collapse
on the Thom space and the covering map defines α.
Petrie, in [22, p. 196-199] (Pseudoequivalences of G-manifolds), uses S(nV ⊕R). Petrie’s

description lacks assumption that C[G] ⊂ V . This seems to me like a (minor) in-

accuracy. Is the condition really needed for well-definedness of ω0
G(Y)? if neither

C[G] 6⊂ V nor even R[G], how do we embedd equivariantly G ↩ V?

Lemma 14 ([11, Lemma 4.6]). Via isomorphism Ω(G) �ω0
G every element

A =
∑
H
aH[G/H] =

∑
H

(
ϕ+H −ϕ−H

)
[G/H] ∈ Ω(G)

(ϕ±H are non-negative integers) can be represented by a base-point preserving
G-map α : (nC[G])• → (nC[G])• such that

• α is transverse to {0} ∈ nC[G],

• we have a decomposition of α−1(0) as a G-set (the minus signs come
from orientations)

α−1(0) =
∐
H

∐
ϕ+H

[G/H]t
∐
ϕ−H

−[G/H]





A5-actions on CPn — Draft of January 27, 2017 — 14

• the Gx-normal derivatives of α (maps on the Gx-normal slices) at every
point x ∈ α−1(0),

(nC[G])Gx =
(
Tx (nC[G])•

)
Gx →

(
T0 (nC[G])•

)
Gx = (nC[G])Gx

are the identity maps.

We may consider ωkG(Y) as a module over the Burnside ring, with
multiplication by A given as pre-composition with id∧α. For the mul-
tiplicatively closed set B = {1, β} the localisation theorem implies that
B−1j∗ : B−1ω0

G(Y)→ B−1ω0
G(YG) is an isomorphism. Thus given an element

x ∈ ω0
G(YG) we can find an element y ∈ ω0

G(Y) such that j∗(βy) = βx.
Indeed for every x there exists y ′ ∈ω0

G(Y) such that B−1(x) = B−1j∗(y ′).
By the very definition of localisation this amounts to saying that βcx =
βdj∗(y ′′) for some natural numbers c and d (in our case c,d ∈ {0,1}).
Thus βc+1x = j∗(βd+1y ′′) and we can set y = βdy ′′.

Proposition 15. Let Y be the manifold G-diffeomorphic to CVPn#S2n (as con-
structed in Section 3). There exists a degree-one G-framed map (f , b) : X → Y
such that XG � F .

Moreover, for every proper subgroup H of G resGH(f , b) is H-normally
cobordant to resGH idY = resGH

(
idY , idTY⊕nC[G]

)
, the identity map on Y .

The theorem follows from [11, Theorem 4.4], however we provide it in
the specialised form for the convenience of the reader.

Proof. We will be interested in a very particular choice of x. Recall that

ω0
G(Y

G) =ω0
G

(
CPk

)
⊕ω0

G(F0)⊕ω0
G(F1),

where F0 � F1, and let x = (1CPk ,1F0 ,0). Here 1 denotes the map given by
z ∧ v , v , and 0 sends z ∧ v to •, the point at infinity.

There exists a stable equivariant homotopy class y ∈ω0
G(X) such that

βy restricts to βx on the fixed point set. If we set γ = 1Y − βy , then

j∗(γ) = j∗(1Y )− (1CPk ,1F0 ,0) = (0,0,1F1).

We “extend” γ to a map bγ which we will refer simply by b. After picking
appropriate representative of x (using Lemma 14), the G-fixed points of
γ−1(0) consist solely of (CPk,•)t (F0,•)t (F1,0). Indeed (a,v) ∈ γ−1(0)
is fixed by G only if a ∈ YG and v ∈ γ−1(0). Over CPk and F0 the map γ is
homotopic to constant map at •, and γ over F1 is the identity map.

It follows easily that b−1(YG × {0}) = F1 × {0}. We can put b (or actually
γ) in general position, by an equivariant homotopy relative to F1 × {0}, as
b is transverse on the set due to Lemma 14. Setting X = b−1 (Y × {0}) we
obtain a degree one G-framed map (f , b)
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X

Y ×nC[G]

Y

Y ×nC[G]

f = b
∣∣∣
X

b

with the required properties.
Note that resGH b is equivariantly homotopic to a map which sends

(a,v) , (a, resGH γ(a,v)). Since for all proper subgroups H of G we have
resGH β = 0, it follows that

resGH γ = resGH 1Y − resGH(βy) = resGH 1Y .

Moving the H-equivariant homotopy into general position (relative its ends)
we obtain the H-normal bordism

(FH , BH) : (WH , X t Y)→ (Y × I, Y × ∂I)

between resGH (f , b) on the one end and resGH idY on the other.

On the map (f , b) we would like to perform G-surgery of type H (where
H is a proper subgroup) to change f : X → Y into a pseudoequivalence
f ′ : X′ → Y , i.e. a G-map which is an ordinary homotopy equivalence.

4.2 Reflection method

In what follows we always assume G = A5.

Theorem 16 (Reflection method of [9]). Let H denote any proper and non-
trivial subgroup of G. The degree one normal G-map (f , b) : X → Y obtained
in the previous section can be modified by G-surgeries of types H to a map
(f ′, b′) : X′ → Y such that

(1) X′G � F

(2) f ′H : X′H → YH is a homotopy equivalence for all proper and non-
trivial subgroups H.

Furthermore, theH-normal cobordisms forH = D4,D6,D10 (all 2-hyperelementary
subgroups of G)

(FH , BH) :
(
WH , T (WH)⊕nC[G]

)
→

→
(
resGH (Y × I) , resGH

(
T(Y)⊕nC[G]

))
between

(
resGH f ′, resGH b′

)
and

(
idresGH Y

, idresGH(T(Y)⊕mC[G])
)

can be modified

by H-surgeries to (F ′H , B
′
H) such that
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(3) for all non-trivial p-groups P in H

F ′PH : W ′PH → Y P × I

are homotopy equivalences.

Postponing the proof of the proposition till the next section we will prove
Theorem 2 assuming it.

Proof of Theorem 2. By Theorem 16 the map (f ′, b′) satisfies assumptions
of Theorem 1.1 of [1], hence the surgery obstruction is well defined.

Write the correct statement.

Note that dimXsing < 3 dimX, where Xsing denote set of points in X with
non-trivial isotropy subgroup, thus we may claim that the final obstruction
σ(f ′, b′) belongs to the Wall L-group L2n(Z[G];w).

By the normal bordism invariance of surgery obstructions we have G-
obstruction σ(f , b) = σ(f ′, b′). The bordism bordism invariance to H-
bordisms

(
F ′H , B

′
H
)

proves that resGH σ(f ′, b′) = 0 for all H-bordisms, where
H = D4,D6,D10. Since

σ
(
resGH(f

′, b′)
)
= resGH

(
σ(f ′, b′)

)
by Dress’ Induction Theorem we have σ(f , b) = 0. Thus we may perform
the (free) G-surgery on f ′ : X′ → Y such that the resulting map f ′′ : X′′ → Y
is a homotopy equivalence.
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