{
"cells": [
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"# Configure Jupyter so figures appear in the notebook\n",
"%matplotlib inline\n",
"\n",
"# Configure Jupyter to display the assigned value after an assignment\n",
"%config InteractiveShell.ast_node_interactivity='last_expr_or_assign'\n",
"\n",
"# import functions from the modsim library\n",
"from modsim import *\n",
"\n",
"from pandas import read_html"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.4"
]
},
"execution_count": 25,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"# Definitions; Variables\n",
"\n",
"hour= UNITS.hour\n",
"parking= 10\n",
"\n",
"cars1= State(parking=10)\n",
"\n",
"cars2= State(parking=10)\n",
"\n",
"# Parameters for cars1 ($25/h)\n",
"p1= .6\n",
"p2= .7\n",
"p3= .4\n",
"\n",
"# Parameters for cars2 ($35/h)\n",
"p4= .5\n",
"p5= .6\n",
"p6= .4"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"# Definitions; Functions\n",
"\n",
"# One car leaves per hour, so adding zero cars is the same as the total number of cars in the lot decreasing by one. The same is true for adding one car, two cars, etc.\n",
"\n",
"#$25 lot\n",
"def minus_one_car1():\n",
" cars1.parking -= 1\n",
"\n",
"def add_zero_cars1():\n",
" cars1.parking += 0\n",
"\n",
"def add_two_cars1():\n",
" cars1.parking += 2\n",
"\n",
"#$35 lot\n",
"def minus_one_car2():\n",
" cars2.parking -= 1\n",
"\n",
"def add_zero_cars2():\n",
" cars2.parking += 0\n",
"\n",
"def add_two_cars2():\n",
" cars2.parking += 2"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" values | \n",
"
\n",
" \n",
" \n",
" \n",
" parking | \n",
" 10 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"parking 10\n",
"dtype: int64"
]
},
"execution_count": 27,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"# New object\n",
"cars1= State(parking=10)\n",
"cars2= State(parking=10)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" values | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"TimeSeries([], dtype: float64)"
]
},
"execution_count": 28,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"# Empty TimeSeries\n",
"results1 = TimeSeries()\n",
"results2 = TimeSeries()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cars in $25 garage: 10 , Cars in $35 garage: 10\n"
]
}
],
"source": [
"# Gimme da numbers\n",
"results1[0] = cars1.parking\n",
"results2[0] = cars2.parking\n",
"print('Cars in $25 garage:', cars1.parking, ',', 'Cars in $35 garage:', cars2.parking)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"# I prolly don't need to define this Step for the third time but I REALLY don't wanna piss this thingy off\n",
"\n",
"if flip(p1) and cars1.parking < 225:\n",
" minus_one_car1()\n",
"if flip(p3) and cars1.parking > 0:\n",
" add_two_cars1()\n",
"\n",
"def step(p1, p2, p3):\n",
" if flip(p1):\n",
" minus_one_car1()\n",
" if flip(p2):\n",
" add_two_cars1()\n",
" if flip(p3):\n",
" add_zero_cars1()\n",
"\n",
"total_cost1 = 0\n",
"\n",
"# Now do the thing to show us the stuff\n",
"\n",
"for i in range(10):\n",
" step(p1, p2, p3)\n",
" results1[i] = cars1.parking\n",
" total_cost1 += 25 * cars1.parking"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"if flip(p4) and cars2.parking > 0:\n",
" minus_one_car2()\n",
"if flip(p6) and cars2.parking < 223:\n",
" add_two_cars2()\n",
"\n",
"def step(p4, p5, p6):\n",
" if flip(p4):\n",
" minus_one_car2()\n",
" if flip(p5):\n",
" add_zero_cars2()\n",
" if flip(p6):\n",
" add_two_cars2()\n",
"\n",
"total_cost2 = 0\n",
"\n",
"for i in range(10):\n",
" step(p4, p5, p6)\n",
" results2[i] = cars2.parking\n",
" total_cost2 += 35 * cars2.parking"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde1yUZfr48Q9nEBCQg4iCAsqNgGimZZ7zVGumHSyzVm1z1/22bVbf3ZI0tYN23tq0db/pZlbb/jLNXGuttNQts7TMPHt7AAVUPHCSMwwzvz+eYQRFGRSYAa736+XL4ZlnnucCR665j5eLxWJBCCGEcDaujg5ACCGEqI0kKCGEEE5JEpQQQginJAlKCCGEU5IEJYQQwilJghJCCOGUJEEJ0YCUUpscHcOFlFJPK6UOOzoOIepLEpQQDqKU2qSUsiil/lLLc49an5PEIlotd0cHIERzp5TyAV4CxgBRSqkMQAN/0lrvrOPl6cAUpdSTWuvyasd/BxxrlICFaCYkQQlx9WYCvwbutz5+DLgO8LHjtV8DNwK3A8sBlFIDgUjgLetxrMejgb8A/YBA4Ajwstb6/WrneAF/Be4FzMCHQN6FN1VK3QOkAPFAFrAKmK21LrL7uxaikUkXnxBX7xrgS631GqBUa/291voNrfUPdrzWDLyN0WKqMg34F3BhsvDDSGg3Az2AxcA7Sqkbq53zInAnMBm4wXqNh6pfRCl1P/B3jGSXYD13BPB/dsQrRJORFpQQV+874Aml1L2A5xW8/m1gjlIqFsgGxgMDgbHVT9Ja7wZ2Vzu0UCk1AqO1tFEp5Qs8CDystf639Zw/K6WGYrS4qjwNPFmt5ZWqlPoj8F+l1HStde4VfA9CNDhJUEJcvVcAE/AkkKSUOorRZfas1vqi7rULaa1PKqXWAlMxutv2a61/VkrVSFBKqTbAHOBWoANGMvQCNlpPibV+veWCW2zGGB9DKRUKdAZeU0q9Wu0cF+vfXYEf6/6WhWh8kqCEuEpaaxNGknpFKbUZY8LEq0Ac1sRgh8UYLakcYMElznkFGAf8CTiA0X33FyDA+nxVkrlciYKqbv1HOJ/Yqsu0M14hGp0kKCEalklr/alSqhNGorLXF0AZRuvmX5c4ZzDwgda6ajKFK0YSPGV9/jBQDgwA9lV7Xf+qB1rrU9ZZhkprvaQe8QnR5CRBCXGVlFLPAFutf1BKxWNMPNhu7zW01malVA/AVWtdcKnTgHFKqY+BQuB/gQisCUprXaSU+j9gnlLqlPX8qRgz9U5Xu84s4G2lVB6wGqgAugO/0lr/3t6YhWhsMotPiKt3GOOX/mFgCMakiZPAlPpcRGtdoLXOv8wpj2GsjdqIMZvvOLDygnNSMJLO+8A2jMkRf7vgPu8DdwO3WM/5EWPixPH6xCtEY3ORirpCNByl1Cat9VBHxyFESyAtKCGEEE5JWlBCCCGckrSghBBCOKUWM4vPugdZX4zB6UoHhyOEEMI+bhgLz3/UWpdVf6LFJCiM5PSto4MQQghxRQZh7Hpi05IS1EmADz74gPDwcEfHIoQQwg5ZWVncd999YP0dXl1LSlCVAOHh4XTq1MnRsQghhKifi4ZmZJKEEEIIpyQJSgghhFOSBCWEEMIpNekYlHVTzYkY5azPAV8Bf9JaZ1mLql24/f9OrXWvpoxRCCGEc2jqSRIHgN8DaUAYRi2bd4Gbqp3TodrjiqYLTQghhDNp0gSltf5/1b48qpR6Gfh/F5yT1ZQxCSGEuDJlFZW4AJ4ebo1yfYdNM1dKBQD3YpQmqH78KMbY2BbgCa11epMHJ4QQ4pKy80tYtekwX3x/jNiOAbz88KBGuU+TJyil1H3AW4AvRoG30danTmIUV9sOtANmAxuVUkla65KmjlMIIURNp3OKWbnxEOu3pmOqNAMQ2ymg0e7niBbUGowiaZHAMxjJ6i6ttcaoAAqAUuonIB0YA6xwQJxCCCGAE2cLWfn1ITb8lEGl2aiA0T+5AxNGKGI6tqAEZS1nXQAcUkppIFMplaC13nfheUqpw0CXpo5RCCEEZJwq4KOvD/LNz5mYLeDqAkOu6cRdI7rRObxto9/f0eugXKx/X7TFhVLKB4jBKHEtrsDChQuZNGmS7etJkyaxcOFCB0bUsDIzM1FKkZmZ6ehQmp2GfC+kpKQ0yHWE80g7kc+L7/3IQ69sYNP2TFxcXBjRN4q/zxjOn399bZMkJ2jCFpRSygN4GlgNnMbo4nsO+BmjNTUNyAL2AoHAXKAQWNtUMTqLSZMmsW3bNgC8vLwICwujT58+3H///cTHxzs4Ovtt3bqVyZMn06VLF7788ssazz311FOsWLGCP/7xjzz88MMOihCGDRvG8ePHAfD396d79+48/vjjJCcnN/h9/vjHP3LHHXfYdbyxLVy4EA8Pj0a9x9///ne++OILjh07Rtu2bRk1ahSPPfYYvr6+wPn3R3Xx8fH8+9//vuQ1J02axHXXXXdF75lVq1bx5ptvsmHDhnq/trU4mJ7LR18dZOteYzK1u5srI6+L4s5h3Wjfrk2Tx9OUXXwWoDvwAMYkiCxgHTBHa222JrDXgE5APsbsvuFa68ImjNFpPPDAAzzwwANUVFSQnp7OihUrGD9+PAsWLGDYsGEOiam8vBxPT896v66kpIRdu3bZfumXl5ezbt062rdv39AhXpGZM2cyevRo8vLyeP3115k2bRpffvklAQH171u/0p9RY7lUPIGBgVd97TVr1rBkyRKOHj3K5s2b6datG3PmzCE6OhqAHTt28Nvf/pbExESys7OZPXs2RUVFvPDCCzWus3nz+QoL7u4taf/q5mNfWjbL1x/kZ30aAE93V26+oQu3D+1KSKCPw+JqsneD1toEXPJjotb6b8DfmioeZ9emTRtCQ0MBiIiIoF+/fnh7e/P0008zaNAgPDw8qKys5PXXX2fVqlUUFhbSt29fnn76aSIjI+26x/z589mwYQNnz56lU6dOPPTQQ4wePdr2/LBhw7jvvvv46aef+O6773jyyScZOHAgTz/9NDt27AAgNjaWV199lc6dO1/yPmPGjGHNmjW2BLVx40Y6d+6Mt7d3veI5efIkKSkp/Pzzz8TExPCHP/zhontt2bKFV199lcOHD9OhQwemTJnCvffee9mfg7+/P6GhoYSGhjJ37lwGDx7Mzp07GTx4MCUlJbz88st8/vnnmEwm+vTpw5w5c4iIiACM7i2z2UxwcDCrVq1iwIABvPbaa3X85C9t9+7dzJ8/n7179xIcHMz999/P/fffDxhdmsOHD+frr7+27dhf1Qox5hgZLaNt27YxePBg3n33XTp27Mjy5csvus+FLRGlFC+99BKrVq1i586ddO3alRdeeIG4uLha40xNTSUlJYUZM2bw448/Mm3aNHbs2EFZ2fl6c4sXL7Y9jomJ4ZFHHmHu3LkXXavqfd4Q3nnnHd59912ys7NJTExk9uzZJCYmsnXrVp588knb9wrw3nvvcf311zfYvZsbi8XCrsNnWb7+ILuPnAXA29ON0f2juW1oLEH+3nVcofE5egxK1MOkSZM4deoU+/YZ80nefvttPvnkE1544QVWrlyJh4cHf/jDHzCbzXZdLzAwkNdff53PPvuMyZMn88QTT9h+0VVZvHgxw4cP5z//+Q/Dhg3j2WefJSgoiJUrV/Lxxx8zadIkXF0v/zYaO3Ysa9euxWQyAcYn77Fjx9Y7nieeeAKTycSKFSt4/PHH+ctf/lLj9ampqTz88MPcd999/Oc//yElJYWFCxde1L14OVVJs6LC2MRk7ty5pKens2TJEj766COCgoJ48MEHa/yM169fj8Vi4cMPP+SRRx6x+14XKioqYtq0acTFxbF69Wr+9Kc/8de//pUvvviiXtfZs2cPBw4cYNmyZTz//PN2v+7NN9/k/vvvZ/Xq1bRr145Zs2Zd8lytNW3btmXKlCn4+fmRnJzMlClTLtsFnZubi7+//0XHhw0bxtChQ3nsscc4ceKE3fFeaO3atSxYsIA///nPrF69mq5duzJt2jSKi4u55pprmDlzJuHh4WzevJnNmzdzzTXXXPG9mjOLxcJP+08x483NPPV/W9h95CxtvN2ZMCKOt58axW9uTXSK5AQtqx5UvTzzjx/4af+pJrtfn+7tmfvbfld1jZiYGACOHz9Oz549ee+995g+fTpDhgwB4MUXX2TIkCFs2bKFgQMH1nm9hx56yPZ4woQJbNiwgfXr19s+YQKMHDmS8ePH277OyspizJgxtliqunMuJz4+nuDgYL777jt69erFli1beO6551i3bp3d8Rw5coRt27axbt06W2tt6tSpzJkzx/aaJUuWMHHiRO68804AIiMjmTJlCh999BE33XQTdSktLeWNN97A29ubHj16kJmZyeeff87333+Pn58fAM8++yx9+/Zl165d9OplbBMZFhbGjBkzcHFxudzlmTt3Ls8991yNYyUl55f4ffrpp3h5eTF37lzc3NyIjY1Fa82yZcu4+eab64y/iqurK/PmzcPHp35dM/fdd5+t+/jBBx9k4sSJlJaWXtTSBUhMTKSwsJAFCxaQm5tb57ULCgpYunSp7d8GjJbT/PnzSUpKIi8vj0WLFjF58mQ+++yzWu9Zl3fffZdJkyYxZswYAJ5++mm+/fZbPv30UyZMmIC/vz9ubm4N2mJrTsxmC1v3ZvHRV5rDmfkA+LfxYNzgWG4ZGIOfT+OOSV6JVpugmiOLxWJ7XFBQwJkzZ+jZs6ftWGBgINHR0aSmptqVoFavXs37779PZmYm5eXllJeXX/Sft3v37jW+njhxIrNmzWLNmjUMGDCA0aNH21XBeOzYsaxZs4aTJ0/St29f2rVrV6940tLSCAgIqNGVWP17Bzh48CAHDx7kgw8+sB0zmUy27rhLqUocpaWlhIaG8sorrxAWFsamTZuoqKhg0KCaq+RLS0vJyMiwJaj4+Pg6kxPA9OnTGTVqVI1j1WdZpqamkpSUhJvb+W1jevXqxUcffVTntauLjo6ud3ICanTnVf3cc3Jyav35RUVFsWTJEhYtWsSOHTsYNGgQo0ePZvr06bZJEFXKy8t5+OGHiYyMZNq0abbjMTExtg86AElJSdx4441s3LiRX/3qV/WOPzU1tcb13d3dSUpKIjU1td7XakkqzRa27DrBR18d5OjJcwAE+nlx+9BYftU/Gh8v500DzhtZI7va1owjVP1Ha4iKwdu3b+epp55ixowZXHvttfj6+vL888/buuGqXPiL7t5772XQoEFs2LCBjRs3snDhQt5++2169+592fuNHTuWRYsWkZaWxgMPPFDveCwWS51JoLi4mKlTp3L77bfXOF7XwHtV4vD396+ROIuLi/H19WXVqlUXvSY4ONj22N5kEBwcfNFYXfXYqn8AqU1VV2r18y7896pPPBeqHkvVz/py3cU33HADN9xwAykpKYwZM4Z58+ZRVFTEvHnzasT32GOPUVRUxLJlyy77b+Hn50dUVJRtVqW4OpWVZv674zgrvj5I5mljrllwgDd33NiVUdd3xtvT+X/9O3+Ewub9998nPDychIQE3N3dCQkJYefOnbZ+/7y8PNLS0mp8Kr2UX375hbi4ONsneIvFQnp6OkFBQXW+tqrrbMqUKfzud79j7dq1dSao9u3b06NHD3bv3s3w4cPrHU90dDR5eXmkp6cTFRUFwK5du2pcIz4+nqNHj152wkZtakscYAymFxYWYjKZiI2Nrdc1r0RMTAzr16+nsrLS1or65ZdfbP+eVcnz7NmztokwBw8ebPS47DFw4EB+/etf8+GHH9qOmc1mZsyYQXp6Ou+///5FLasLlZaWkpmZWWeL91Kio6PZuXOn7f1lMpnYs2cPgwcPBowEXFl50ZLLFqfCZGbDTxms3HCQrOxiAMKCfBg/PI4RfSPxcG+cjV0bgyQoJ1VcXMyZM2dqTDP/8ssvWbhwoe1T6OTJk1mwYAHh4eF06NCB1157jcjISPr371/n9aOiojh8+DCbNm0iKiqKDz74gFOn6h6Te/755xk6dChRUVFkZWWhtbaNgdXlrbfewmQy1foJv654unbtSt++fZk1axazZs0iJyeHt99+u8Y1pk6dysSJE1mwYAG33HILZrOZnTt3UlFRwcSJE+2KsbrY2FhGjRrFI488QkpKCp07d+bkyZN8/vnnPPbYY7Rt27CLFW+99Vb++te/8swzzzBlyhT279/PP//5T9tEB29vb5KSknjrrbeYMWMGaWlp/Otf/2rQGOz1zTffcOzYMYYPH47FYiEjI4PPPvuMhIQE2zmzZ89m69atLFmyhIqKCs6cOQMYidbNzY3ly5cTEhJCt27dOHfuHG+++SZt2rSp8/105swZ9u/fX+NYdHQ0kydPZvbs2SiliI+P55133qG8vNw2JhUREUF2djZ79uwhIiICf3//Rl8L1pTKKypZv/UYKzce5myeMbbZIcSXu4d3Y+i1kbi7Nb85cZKgnNTSpUtZunQpnp6etoW6K1asqDEmNHXqVPLz80lJSaGoqIg+ffqwaNGiOmfVAYwYMYK7776bxx9/HFdXV8aPH8/IkSPrfJ3JZGL27NmcPn2aoKAgxowZY/cv/8t1PdkTz8svv8yMGTMYP3480dHRPProozz66KO255OSkli6dCmvvfYa//jHP/D29iYuLq7GuER9vfrqq7z++us8+eST5Obm0r59ewYOHIiXl9cVX/NS/Pz8WLJkCfPmzWPcuHEEBwczffr0GlPt58+fz8yZM7nttttITk7moYceYsaMGQ0eS106duzIypUreeutt8jOzmbjxo227r4qK1euBOC2226r8dqqafImk4kXX3yRrKws/P396d27N8uWLauzpbV8+fKLps6vXr2aMWPGkJWVxUsvvUROTg6JiYksXrzYdr1rr72WMWPGcP/991NQUNBippmXlpn44oejrNp4mNwCY5p/ZHt/7h4Rx6CeEbg1w8RUxaWufu/mQinVBUirvkZECNH4UlJSePHFFx0dRqtTXFrBf75LY/V/j3CuqByAmIgA7h4Zxw1JHXB1rXvijjOoWt8HRGutj1Z/TlpQQgjRjBQWl/Ppt6ms+TaVwhJjvV5cVCATRir6dm9v14zS5kISlBDiqkjrqWnkF5bx72+O8NnmNErKjNmbiTHBTBgRR6+40BaVmKpIghJCCCeWc66UTzYd5vPvj1JWbsxC7NUtlLtHxtEjNsSxwTUySVBCCOGEzuSW8PHGQ6zbeowKk7EerU/39kwYEUd8l4sXurdEkqCEEMKJZGUXseLrQ2z4KR1TpTGJ7YYeHbh7RBxdO139LvTNiSQoIYRwAhmnCli54RCbfs7EbLbg4gKDe3Xk7hFxdO7QNAUCnY0kKCGEcKCjJ8/x0VcH2bzzOBYLuLq6MKxPJHcN70ansIt3f29NJEEJIYQDHM7IY/lXmh/2VFWvdWF43yjGD+tGePDlFyu3FpKghBCiCR04msOH6zXbD5yvXjuqX2fuGNqN0CDHVa91Rs13DwxRp4ULF9Yo5zBp0iQWLlzowIgaVmZmJkopMjMzHR1Ks9OQ74Xq2xuJ2lksFnYfPsusv3/H4wu/ZfuB03h5unH70K78Y9ZIfn97siSnWkiCckKTJk1CKYVSiuTkZEaMGEFKSgoHDhxwdGj1snXrVpRStRYLfOqpp1BKOTxhDhs2zPaz7tOnD5MmTbpol/SGuk9tZTsudbyxLVy4sNayJw1pwYIF3HTTTSQnJ9O/f3/+9Kc/2TaMhfPvj+p/xo0bd9lrXk1iXbVqla0gY1OxWCz8fOA0M97czMy/f8euw2fx8XLnruHdeHvWSB64NZGgts5RvdYZSRefk3rggQd44IEHauxmPn78eBYsWNDk/8mqlJeX4+npWe/XlZSUsGvXLpKTk23XWbduHe3bt2/oEK/IzJkzGT16NHl5ebz++utMmzaNL7/8koCAgHpf60p/Ro3lUvEEBl79dOU1a9awZMkSjh49yubNm+nWrRtz5syxVVmOiYnhmWeeoVOnTuTk5PDiiy+SkpJy0S70mzdvtj2uq3ZXc2GxWNi2N4vlXx3kUEYeAH4+HowdHMutA6Pxa+M87xFnJi0oJ9WmTRtCQ0OJiIigX79+/OUvf2HcuHE8/fTTVFQY+29VVlby6quv0r9/f5KTk5k6dSoZGRl232P+/PkMHz6cnj17csstt7B27doazw8bNoy3336bBx98kOTkZD7++GMyMjKYOnUqvXv3pnfv3tx1110cO3bssvcZM2YMa9assX29ceNGOnfufFENprriOXnyJFOmTKFHjx6MGzeOvXv3XnSvLVu2cMcdd5CcnMxNN91kVzkKf39/QkND6datG3PnziU3N5edO3cCRnJ95pln6NevH3369OF//ud/OHHihO21KSkpPPHEE7z00ktcf/31V93dtXv3bu655x569OjB0KFDWbZsme252ro0q1ohVaq6dZcsWcLAgQNrdPFWd2FLRCnF6tWrmTx5Mj179uTOO++8bK2p1NRUUlJSGD9+PEOGDGHRokUMHTqUsrIy2zljxoyhX79+dOrUieTkZH7729/y888/X3St0NBQ2x976pFdzjvvvMPQoUPp0aMH99xzj+09snXrVp588kmOHz9ua61t3br1qu5VG7PZwuadx5n+l03Me2cbhzLyCPDzZMotCbz91EgmjlKSnOqhZXxcuQInP5xPyZGL/7M0Fp/Y3nS4Z9ZVXWPSpEmsXLmSffv20bNnT95++20++eQTXnjhBVs9qD/84Q/8+9//tqvkRmBgIK+//jpBQUFs2bKFJ554gtjY2Bq/8BYvXszjjz/OzJkz8fT05KmnniIoKIiVK1fi4uLC7t2767zX2LFjeeCBB0hJScHd3Z01a9YwduxY1q1bV694nnjiCcxmMytWrODs2bM8++yzNV6fmprKww8/zMyZM7nuuus4fPgwM2fOJDg4uNZuxtp4exvdLVUfAubOnUt2djZLlizB19eXJUuW8OCDD/LJJ5/Yvu/169czYcIEPvzwQ7t+7pdSVFTEtGnTGDlyJPPnz2ffvn3Mnj2b8PBwbr75Zruvs2fPHsLCwli2bFm99md78803mTlzJtHR0Tz//PPMmjWLFStW1Hqu1pq2bdva6lYlJyfbWsi1KSgo4LPPPqu1sOWwYcMwm81cc801PP7441dcsHDt2rUsWLCA5557ju7du/POO+8wbdo01q9fzzXXXMPMmTNZunSprQzIlbSQL6Wy0sw3vxjVazNOGdVr27X14o4bu3HT9Z3xduKy6s5MfmrNSFVl1ePHj9OzZ0/ee+89pk+fbivw9uKLLzJkyBC2bNnCwIED67zeQw89ZHs8YcIENmzYwPr162skqJEjRzJ+/Hjb11lZWYwZM8YWS1V3zuXEx8cTHBzMd999R69evdiyZQvPPffcRQnqcvEcOXKEbdu2sW7dOlvLa+rUqcyZM8f2miVLljBx4kTuvPNO4Hzl348++siuBFVaWsobb7yBt7c3PXr0IDMzk88//5zvv/8ePz8/AJ599ln69u3Lrl276NWrFwBhYWHMmDGjzmQwd+5cnnvuuRrHSkpKbI8//fRTvLy8mDt3Lm5ubsTGxqK1ZtmyZfVKUK6ursybN6/epd/vu+8+W/fxgw8+yMSJEyktLbUl7eoSExMpLCxkwYIF5ObmXvKaa9asYe7cuRQXF9OzZ08WL15sey40NJT58+eTlJREXl4eixYtYvLkyXz22We13rMu7777LpMmTbIVKHz66af59ttv+fTTT5kwYQL+/v64ubkRGhpa72tfSoXJzMbtGaz8+hAns4uM7yvIh/HDujGibxSeHs2neq0zarUJ6mpbM45QvXZXQUEBZ86coWfPnrZjgYGBREdHk5qaaleCWr16Ne+//z6ZmZmUl5dTXl5+0X/e6gUSASZOnMisWbNYs2YNAwYMYPTo0YSHh9d5r7Fjx7JmzRpOnjxJ3759beXL7Y0nLS2NgICAGt2C1b93MMqfHzx4kA8++MB2zGQy1fmJvCpxlJaWEhoayiuvvEJYWBibNm2ioqKCQYMG1Ti/tLSUjIwMW4KKj4+3q6Uyffp0Ro0aVeNY9S641NRUkpKSbOXeAXr16sVHH31U57Wri46OrndyAoiLi7M9rvq55+Tk1Przi4qKYsmSJSxatIgdO3YwaNAgRo8ezfTp02sUHBw2bBjJycmcPHmShQsXMmfOHBYsWAAYH7iqPuiAUXDyxhtvZOPGjfzqV7+qd/ypqak1ilO6u7uTlJREampqva9Vl/KKSr76MZ2VGw5xJtdavTbYl/HDu3HjtZF4uMvoSUNotQmqOar6j9YQBRm3b9/OU089xYwZM7j22mvx9fXl+eefx2Qy1Tjvwl909957L4MGDWLDhg1s3LiRhQsX8vbbb9fadVPd2LFjWbRoEWlpabXOHqsrHovFUmcSKC4uZurUqdx+++01jtc18F6VOPz9/WskzuLiYnx9fWudZRccHGx7bG8yCA4OvmjcrXpsdRUPreo+rH7ehf9e9YnnQtVjqfpZm83mS55/ww032Krojhkzhnnz5lFUVMS8efNs5/j5+eHn50eXLl2IiYlh8ODBHD58mK5du150PT8/P6Kiojh+/PgVxd8USstNfPnDMVZtPEzOuVIAOoX5cfeIOAb36tisq9c6I0lQzcj7779PeHg4CQkJuLu7ExISws6dO4mPjwcgLy+PtLS0Gp9KL+WXX34hLi7O9gneYrGQnp5u1yB1VdfZlClT+N3vfsfatWvrTFDt27enR48e7N69u6p6Zr3iiY6OJi8vj/T0dKKiogAumg4eHx/P0aNHL0oCdaktcYAxcaCwsBCTyURsbGy9rnklYmJiWL9+PZWVlbZW1C+//GL796xKnmfPniUyMhLgshMZmtLAgQP59a9/zYcffnjJc6oS66XG6UpLS8nMzLziMajo6Gh27txpe3+ZTCb27NnD4MGDASMBV1ZWXtG1i0srWLvlKKv/e5j8QqN6bZcObZkwMo4bekTg1kyq1zY3kqCcVHFxMWfOnKkxzfzLL79k4cKFtk+6kydPZsGCBYSHh9smSURGRtK/f/86rx8VFcXhw4fZtGkTUVFRfGkdUbUAACAASURBVPDBB5w6darO1z3//PMMHTqUqKgosrKy0FrbxsDq8tZbb2EymWr9hF9XPF27dqVv377MmjWLWbNmkZOTc9F05alTpzJx4kQWLFjALbfcgtlsZufOnVRUVDBx4kS7YqwuNjaWUaNG8cgjj5CSkkLnzp05efIkn3/+OY899hht2zbsBp633norf/3rX3nmmWdskw/++c9/8vzzzwPGBI6kpCTeeustZsyYQVpaml2zFBvDN998w7Fjxxg+fDgWi4WMjAw+++wzEhISAGOSyZtvvsnw4cMJDg7m5MmTvPHGGyQmJtKlSxcAli9fTkhICN26dePcuXO8+eabtGnTps7305kzZ9i/f3+NY9HR0UyePJnZs2ejlCI+Pp533nmH8vJy25hUREQE2dnZ7Nmzh4iICPz9/fHw8LjsvQpLKozqtd8csVWv7RoZyD0j4uibEN5syqo3V5KgnNTSpUtZunQpnp6ehIWF0adPH1asWFFjTGjq1Knk5+eTkpJCUVERffr0YdGiRXbNJBsxYgR33303jz/+OK6urowfP56RI0fW+TqTycTs2bM5ffo0QUFBjBkzxu5f/pfrerInnpdffpkZM2Ywfvx4oqOjefTRR3n00UdtzyclJbF06VJee+01/vGPf+Dt7U1cXFyNcYn6evXVV3n99dd58sknyc3NpX379gwcOBAvL68rvual+Pn5sWTJEubNm8e4ceMIDg5m+vTpjB492nbO/PnzmTlzJrfddhvJyck89NBDzJgxo8FjqUvHjh1ZuXIlb731FtnZ2WzcuNHW3QdGF+GRI0f4+OOPycvLIzQ0lAEDBjB9+nTb+9NkMvHiiy+SlZWFv78/vXv3ZtmyZTXGsGqzfPlyli9fXuPY6tWrGTNmDFlZWbz00kvk5OSQmJjI4sWLbde79tprGTNmDPfffz8FBQW89957XH/99bXeI6+gjDXfHuE/36VRXGp0o3bv0o57RiquUS2zeq0zcqmr37u5UEp1AdK+/vrrBhmjEULYJyUlpdmXfc89V8qe1Gz2Wv8cPXnO9lxy1xAmWKvXSmJqeJmZmVXdstFa66PVn5MWlBCi1TmdW8yeI1UJ6SzHzxTVeN7D3ZVecaHcNSyO7tGto3qtM5IEJYS4Ks7eerJYLJw8W8Se1Gz2HDnL3tRsTueW1DjH29ON+C7tSIoNJikmhG6RgbKGyQlIghJCtChms4WMUwXVuuzOknOurMY5vt7uJMQYySgpNpiYjgG4yxRxpyMJSgjRrFWaLaQdz7cmpLPsTc2hoLi8xjkBfp4kxgSTGBNMj9gQosLbytTwZkASlBCiWakwmTmSmcdua3fd/qM5tpl2VYIDvEmKCSExNpikmGA6hfnJBIdmqEkTlFLqGWAiEAmcA74C/qS1zrI+fz3wNyAJSLU+93lTxiiEcC5lFZUcPJZrG0M6cCyX8oqaC27Dg9uQWK3Lrn27NpKQWoCmbkEdAH4PpAFhwF+Ad4GblFLBwOfA+8BkYBzwiVKqh9b6UBPHKYRwkOLSCg4czWVPqtFCOpieh6my5pZLke39SIwJIcnabRcSKNVoW6ImTVBa6/9X7cujSqmXgapj92G0qh7VWluAfUqpX2EktD83ZZxCiKZTVFLB3tRsW5fdkeP5mM3n12e6uEBMRACJsUYySowOJtC/4RdKC+fjsDEopVQAcC/wnfXQdcBGa3Kq8jUwoqljE0I0vryCMlb/9zBrt6RRUna+y87V1YW4qEDbGFJCl3ZS5K+VavIEpZS6D3gL8AW2AlX7uIQBOy44/Yz1uBCihcjOL2HVxsN88cMx21hSfOcgkruFkhQTTHyXdvhIgT+BY1pQa4BtGBMlnsFIVncBMqIpRAt2OqeYlRsOsX5bum1M6frEcO4eEUdc1NWVehctU5MnKK11AVAAHFJKaSBTKZUAnOLi1lIocLqJQxRCNKATZwtZ8dUhNm7PoNJswcUFBiRHcPeIOGI6NlzZddHyOLodXdVqqsRoVT12wfPDMLoBhRDNTHrWOVZ8fYhvdmRitoCrCwzt3Ym7hncjKrxhS5WIlqleCUoplQx0Az7XWhcrpbyACq31pctunn+tB/A0sBqjVRQJPAf8DBwCzgJPK6X+itHtNxa4HvhtfWIUQjhW6vF8PvrqIFt2n8BiATdXF0b2jWT88G5EhPg5OjzRjNiVoJRS7YBVwGDAgpGkUjEW1Z4D/teOy1iA7sADQDsgC1gHzLEmuGyl1GjrNR+0Xv8OWQMlRPNwMD2X5esPsm1fFgDubq6MvD6K8Td2I6xdGwdHJ5oje1tQr2J0w3UB9lY7vhJjsW2dtNYm4I46zvkBuNbOmIQQTmBvajbL12t2HDwDgKeHGzff0Jk7hnYlOEAW0IorZ2+CGgWM01qnK6WqHz8IRDV4VEK0AEUlFVgslha5hsdisbDr0Fk+/Eqz50g2AD5ebozuH81tQ7rKQlrRIOxNUO2A3FqO+wN1jj8J0RrkF5axNzXb2FX7SDZpJ/OxWKBzuL+xT1xsCIkxwbRr6+3oUK+YxWJh+4HTLF+vOXDM+JXg6+3OrYNiuXVQDG19W14yFo5jb4L6GbgZWHTB8SnILDvRSmXnl7DnSLatzEPGqcIaz7u7ueLiAseyCjiWVcDaLUcBiAjxtSWrpJjgZjE+YzZb2Lr3JMu/OsiRzHwA/Nt4ctuQWG4ZEI2vj4eDIxQtkb0J6hlgtVKqE+AGTFJKJWJs6DqssYITwllYLBZO5ZwvE74n9SxZ2cU1zvH0cKN7lyDbJqZxnYNwdYGD6XnGxqdHjNIQJ84WceJsEeu2HgMgNMjHuumpsRN3RIiv0+zEXWm2sGXnCZZ/pTmWVQBAoL8Xtw/pyq/6d5EdH0SjsuvdpbVer5S6FZiN0aU3A/gJuElr/d1lXyxEM2SxWMg8XWjrrtubepaz+aU1zvHxcichuh1JsUZCiu0UiIf7xVVZqwrlMQIqK80cOZ5vS3R707I5k1vCxu2ZbNyeCUCQv5etdZUUG0Jke39cm7i4XmWlmf/uyOSjrw5x/IzRMgwO8ObOG7sxql9nvKQcumgCdn/80VpvADY0YixCOIzZbOFY1jnbjtp7U7PJL6xZldW/jYc12RgtneiIgHpXZXVzcyUuKoi4qCDuuLGr7b62hJWaTW5BGZt3nmDzzhO2+yZEB5MUa9Q7io5oi1sjlSevMJnZ8FM6K74+xKkco4UY1q4Ndw3rxvC+kXi4S2ISTUfa56JVMlWaSbW2ZPaknmVfWg5FJRU1zgny9zo/VhQbTGRYw7dkXF1diI4IIDoigFsHxdhablXJas8Ro+W2dW8WW/ca64t8vNzpHt3OaGHFhNA1svaWW32UVVSyfusxPt5wyNZS7Bjqy13D4xjSuxPujZQQhbicSyYopVQFxuLaOmmtZeqOcGrlFZUcyjDGgvYcyebA0RxKy2tWZQ0L8qkxeaGDA8aCXFxciGzvT2R7f26+oYtt7Ot8wsrmZHYRPx84zc8HjG0qPT3ciO8cZIxjxQYTFxWEt6d9nz1Ly0x8/v1RPtl0mNyCMgCiwv2ZMCKOAT071ruFKERDuty7+HecT1BBwFyMEu2brccGAsMxJlAI4VRKy0wcOJZjnWGXjT6WS4Wp5oqIjqHnZ9MlRjvnbDoXFxfCg30JD/ZleF9jyWF2foktWe1JzSbjVAG7Dp9l1+GzALi7udAtMogka4G/7l3a0ca75iy74tIK/vNdGqv/e4RzRUZXZkzHACaMiKNfUocmH/MSojYuFkvdjSSl1L+An7XWr15w/E/A9VrruxspPrsppboAaV9//TWdOnVydDiiiRWVVLAvLdu2DulwRh6V5prv7S4d2tq66xKjgwlqxuuRqssvLGNf2vmElXbCWH9VxdUFYjoFkhQTTEJ0MGkn8lnzbaqtS1NFBTFhZBx9urd3mtmDovXIzMxk+PDhANFa66PVn7N3DGoMMKeW4//G2ABWiCZlzy/lrpGB1nGaYBJigvFvgTs6AAT4eXFDjwhu6BEBQGFJBfsvSNZVf1b/94jtdYkxwdwzMo6e3UIlMQmnZG+CKgH6AYcvON7P+pwQjaq2bq3q7OnWai38fDzomxBO34RwoGZ3577UHNp4u3PbkFiSYkMcHKkQl2dvgloM/F0pFQd8jzE2NQB4BFjQSLGJVupSEwOqu3BigOrcTtbmXIK3lzu94sLoFXdhPVAhnJu9C3VnK6XOAn8GnrIePo7R7fdGI8UmWomLplanZnM2r2bDvGpRbGIDTq0WQji3+izUfQN4QynlD7horc81XliiJattcWpeYVmNc84vTjV2aWjMxalCCOdU74W6WuuCus8S4rzatvepbVFs1Y7fSTHBDtneRwjhXOxOUEqpKcC9QGegxnQorXVMA8clmrEKUyUH0/NsOyEcOJZDSdnFi2Krtg3qEeuYRbFCCOdmb8n3/8WYTr4UGAL8A4gDrkPGoFq90jIT+lhutUWxOZTXsig2MaZ5lZgQQjiWvS2oacD/aK3/pZSaCrymtU5VSj2HUcywRTBVmiktr8RPattcVlFJBfuP5rDHurHqoVoWxXYO9z+/S0MzL9InhHAMexNUFFBVVqMUo5IuwHvAFuDhBo7LIZ5Z8gO/HDpDpzC/GnuyhQT6ODo0hzIWxeYYNY1Ss0k7no/5wkWxnQJsu3wnRAdLZVUhxFWzN0GdAQKBY0AmcA2wE+gItJjmRvfoduw7mkPm6UIyTxfyxfdHAQgPblOjPk/7dm1a9HhJzrlS9h7JZrc1IaVnXbwoNq5ToC2JJ0S33kWxQojGY2+C+gYYhZGUlgOvK6VuAoYCXzROaE3v3pviuWt4HEeO57HXumPBvrRssrKLycou5usfMwCjcFv1hNUpzK9ZJyxjUexZ2y4NJ89esCjW3ZX4Lu1s3XWqs/27ZQshxJWy97fMw4CX9fFLQCUwCPgn8FwjxOUwHu6uxHduR3zndtw5rBuVZgtHT+TbJgDsOZJNdn4p3+w4zjc7jgMQ4OdprNmxJqzOHdo6bZkCi8XC8TOFtgWxe1ONiq7V+Xi50d36/STGBNMtMlAK1Qkhmpxdu5k3B021m7nZbCHzdIGtFPie1LPknKu5yNTX253u0cH0sO4LF9sp0GEF36oWxVZPSHkFNeP18/E4v8t3TDAxEQGyKFYI0SQaYjdzYeXq6kJUeFuiwtsyun80FouFk9lFti7BPanZnM4p5qf9p/hp/ykAvDzd6N65nS0BxEUF4dlI+8ZVVppJPZFfY5eGwgsWxQZaF8X2iAkmMTaEKFkUK4RwQpdNUEqpcnsu0por6rq4uBAR4kdEiB8jr+8MwOncYvZZk9WeI9kcP1PIL4fO8MuhM4DRjRgXFWTrQuvepR3eXlf2WaHCZK0Ua01I+49mX7QoNiTQh6TY812QEbIoVgjRDNT1W9EdOAq8A6Q3ejQtRFhQG8KubcPQayMByC0oZV+qsW5oT2q2rcttb2o2AG6uLnTtFGhMQrBO077UWqzScmNRbNV4WG2LYiNCfKt12RmzDoUQormpK0HdjrFIdzZGuffFwKda68rLvkrUEOTvzYCeEQzoaRSUKygut7Ww9qZmc+R4Pjo9F52ey6pNh3FxgegOASRauwS9PNxs2wYdzszDVFlz3DAq3N9amC+EhJh2BAe07nVbQoiWwd6S75HAb4EHADeMFtU/tNZpjRue/Zpzyffi0goOHM21LYQ9mJ6HqdJc67muLhDdMYCkmPNrkAL8vGo9VwghnN1VT5LQWmcAc5VSzwC3AE8AM5RSIVrrvAaOt9Vp4+1B7/gwescbBeXKKio5aNvb7izlFWYSotuRFBtC9y7t8JWtmIQQrUB9R+YHAfcAfTC2OCpt8IgEXh5u9OgaQo+uIYBydDhCCOEQdSYopVQocD/wO4yNYd8HrtFaH2jc0IQQQrRmdU0zXwHcCvyAUW7jY6112eVeI4QQQjSEulpQd2JMLy/HaEXdr9TFXU5a61ENHpkQQohWra4E9R7QIHshKaVmAXcB3YBcYBUwU2tdaH1+KLDxgpft1Fr3aoj7CyGEaF4um6C01vc34L36Ay8D24H2GGuq/IHfXHBeh2qPKxBCCNEqNdlefFrrW6p/qZSaDbxVy3lZTRWTEEII5+XIzWJDgIvWUCmljgKuGNPYn9BayxZLQgjRCjmkpoJSKgD4M7C02uGTwFRgHDAFCAM2KqVk3x4hhGiFmrwFpZTyAj4GUoEXq45rrTWgq533E8YMwjHAiiYOUwghhIM1aQtKKeUOfIgxOeJ2rbXpUudqrQuAw0CXpolOCCGEM7GrBaWUigDQWp+wfn0NcC+wV2u9zM5ruGJMW+8KDKmaXn6Z832AGOCYPdcXQgjRstjbxfcvjOSyVCkVDGzAGDP6vVIqVGv9ih3XWAwMBUYDnkqpcOvxM1rrSqXUNCAL2AsEAnOBQmCtvd+MEEKIlsPeLr4kYKv18R1AqtY6AWMyw2/tvMZUjDVOOzCSW9WfSOvzHsBrGAlqLWAChtfV0hJCCNEy2duC8gXOWR8PAz61Pv6J8wnmsrTWl60xrrX+G/A3O+MRQgjRwtnbgkoDBiul/ICRGNV1AUKBgsYITAghROtmbwvqNWAZxphQGvCd9fhgYE/DhyWEEKK1s6sFpbX+B3A9xr55g7TWVRvIpmKU4RBCCCEalD0FCz2AzcAUrfXq6s9prdc0VmBCCCFatzpbUFrrCiAWY1adEEII0STsnSSxHGNhrhBCCNEk7J0kkQP8r1JqELANKKr+pNb6+YYOTAghROtmb4L6NUYV3K7WP9VZAElQQgghGpRdCUprHd3YgQghhBDVOaQelBBCCFEXu+tBKaW6AncBnQHP6s9prR9o4LiEEEK0cvaW27gJ+DdwAEgAdmKUwnAFfmy06IQQQrRa9nbxPQe8rLXuBZQBE4Ao4BtgVSPFJoQQohWzN0F1x6gHBcaCXR+tdRFGzaYnGiMwIYQQrZu9CaoYcLM+zuJ8GXYT0L6BYxJCCCHsniSxHbgO0MBG4HmlVCfgPowChEIIIUSDsrcFNQtItz6eA2QCrwA+wO8bIS4hhBCtnL0LdXdUe3wWuKXRIhJCCCGQhbpCCCGukLm0CEtlRaNd/5ItKKXUOnsvorUe1TDhCCGEcFamglxKM/ZRemwvJRn7qDiTgVdENzr+5sVGud/luviON8odhRBCNAsVeacpTd9Hafo+StL3YsrNqvG8i7sn3lHdG+3+l0xQWuvfNNpdhRBCOBWLxUJFzklK0/fakpLp3Nka57h4euPdqTveUQn4RCXg1SEWF3ePRovJ7r34hBBCtBwWi5mKMxmUpO+zJqX9VBbl1TjH1dsP78jueHdOwCcyAc/waFxc3S5xxYZ3uTGoxfZeRGs9rWHCEUII0Rgs5krKs9IoydhH6bF9lGbsx1xaWOMcN99AvKO64x2ViE9UAh6hkbi4OG4u3eVaUN3svIalIQIRQgjRcCymCspOHrG2kPZRmnkAS3lJjXPc2obgE5WAd1QC3lGJeLTrgIuLi4MivtjlxqBubMpAhBBCXDlzRRllxw/aElLZ8YNYTOU1zvFo1wHvyKqElIBHYJiDorVPvceglFLeAFrr0oYPRwghhD3MZcWUZmpK0/dSkr6PshNHwGyqcY5HaCQ+UYlGQorsjrt/OwdFe2XqU7DwNxhbHnWxfp0GzNdaL2uUyIQQwkHMZSWYCnMdHcYFLFScPU5pxj5Kju2j/FQaWMznn3ZxxTM85nyXXWR33Nq0dVy4DcDegoWPAC8Cfwf+C7gAQ4BFSil/rfXCxgtRCCGahqkwl/ytazi3fR2WCifvJHJ1wytC4R3V3WgldVK4evs6OqoGZW8L6mHgEa119Zl9q5VSB4DHAUlQQohmy3Qum7zvV1Pwy1e2cRv3wPa4uDrXbnBu/u3wjrSuQeoYh6unt6NDalT2JqhI4Otajn8NLGi4cIQQoulU5J0ib8snFOzcaBu/aRN3HUED7sQroquDoxP2JqhMYChw5ILjQ63PCSFEs1GefYK8Laso3P1f6ziOC77d+xM44E682ndxdHjCyt4E9XdggVKqK/AtxtqnIRhdf3MaKTYhhGhQ5afTyd3yMUX7thiJycUVvx5DCOx/B54hnRwdnriAvfWgXlVKlQAzrH/AaDn9WWv998YKTgghGkJZViq5m1dSrLcaB1zd8e85jMD+t+MRFO7Y4MQl2T3NXGv9N+BvSil/69cF9bmRUmoWcBfGDhW5wCpgpta6sNo51wN/A5KAVOBPWuvP63MfIYSoUnr8IHmbV1J8eDsALm4e+PcaTuANt+EeEOrg6ERd6rMOKhiIxujeS72Ce/UHXga2A+2BxYA/8Jtq1/8ceB+YDIwDPlFK9dBaH7qC+wkhWqmS9L3kbV5JSdouAFw8vGjbexQB149tdotVW7M6E5R13On/MCZEVG3SZFFKfQX8QWttV7LSWlcvE6+VUrOBt6oduw84BzyqtbYA+5RSvwJ+D/zZnnsIIS7PXFqEBXBrYetlwCgXUZK2i7zNKyjN2A8Y5SEC+vyKgOtuxc03wMERivq6bIJSSgUB3wDFGGNPezCSVA/gf4BN1hZO/hXcOwSovrf7dcBGa3Kq8jUw4gquLYQAKovyz+9enb6P8tPHAAueYVHGnmydE40tcPyCHB3qFbNYLBQf3k7e5pWUnTA6W1y9fWnb9xYC+o7GzcffwRGKK1VXC+phIB/oW32sCPhCKfUWsBX4IzC/PjdVSgVgtIqWVjscBuy44NQz1uNCCDuYzmVbq58aNX4qsi8ojO3mjgsulJ9Op/x0Oue2fwGAR7sI2waiPlEJzWJ8xmIxU6S3krf5Y2PbH8C1TVsCrruVgD434+rVxsERiqtVV4K6GXjpguQEgNb6nFLqFeC31CNBKaW8gI8xxrGqF7J3nj3ehWgGLBYLprxTNRKSKe90jXNc3D3x7qTwtm4Y6hXRFVxcKDtx2FY1tTRTU5FzgoqcExT88hUA7gGh1td0NxJWkPOUYbCYKynav4Xc7z6m4kwGYNQxCrhhHG2vGdXid1doTepKUAqjlXQp3wOv2HszpZQ78CHG5IjhWuvqW++e4uLWUihwGiGEUZI7+zilx/Ya3Xbp+6gsyKlxjotXG7w7xePT2ZqQwqNxcbu4JLePtaUEYKk0UZaVdr7Ud8Z+TPlnKNy9icLdmwBw8wuybkCagE/nBDxCOjV5ITtLpYnCPd+Qt2UVFTknjbjahhB4w2349xyGq4dXk8YjGl9dCaotxpTwS8nFSDZ1Ukq5Au8BXYEhtbTKtgGPXXBsGJdPkEK0WBZzJeWn0627V+81KqAWn6txjquPv61bzjsqAc+wzvUuye3i5o53x254d+wGN9xW475VrbPKwlyK9n1H0b7vzt83srv13ol4tq//fe1lMVVQsGsjeVs+wZRvfF51DwwjsP8d+CcPrTUBi5ahrgTlClRe5nkLYO+7cjHGTMDRgKdSqmp13BmtdSXwAfC0UuqvGLP7xgLXY3QhCtHiGS2Z1PNdbxn7MZcV1zinqiXjU1UBNaRjg7dkXFzd8AqPxis8moC+t5xvuaVXJay9VBbkUHxwG8UHtxmv8WqDdydlqz3k1SHmqhOHuaKMgl++Iu/71baWokdwBIH978QvaVCjJUThPOpKUC7ACqVU+SWe96zHvaZa/75wIkQ0cFRrna2UGo2xUPdBjDGqO2QNlGipzKZyyk4cojR9v20s6MISD+4BYXh3TrDtYO0eFN7kY0EuLi54hnTCM6QTbXuPumDsa7917OsUJUd2UHLE+O/t4u6JVydla9l5RXSzuwvOXF7Cue1fkr/1UyqLjIm+HqFRBA0cj298P0lMrUhdCepdO66RZs+NtNZ1/q/SWv8AXGvP9YRobszlpdYKqPsozdhH2fFDWCorapzjERxhm9DgE9ndKWfTubi44BEUjkdQOP49hwHW2YMZ+2zlxivOZlJ6dDelR3cbL3Jzxzuim61b0LtTPK5ePjWuay4tIv+nz8nf9hnmEmOjGs/wGIIGjqdNXN8mH/MSjnfZBKW1/k1TBSLE1TCXl2K6YMKA41kw5WRRYp18UJaVCubqPeYueIZ1tk7vrlqPFOiwaK+Ge9tg/BIH4Zc4CDDWX5Vm7Ld+7/spP3WU0oz9xgLaLavAxRWv8Bhb5deyrCOc+3GtrUvTq6MiaOB4fGKvcZrZg6Lp2b3VkRDOqLL4HPnbPiP/p8+xXDBe43RcXPHq0NW23sg7Mr7FLiJ18w3AN74fvvH9AKgsLTISlLWFVXbyCGUnD1N28jD5W9fYXufdOZGggXfh3TlJEpOQBCWap9pKc7sHhOHi5lzjE26+gZft1mot3Lx98e3WB99ufQBjnKk086B17G0/rl6+BPYbi3dkdwdHKpyJJCjRrJjOZZP3w2oKdpwvze0Tcw1BA8fjHRnv4OiEvVw9fWgT05M2MT0dHYpwYpKgRLNglOZeTcGuDVBZVZq7L0EDxktpbiFaKElQwqlV5Jwg9zspzS1EayQJSjil8jPp5H4npbmFaM0kQQmncnFpbjf8k4cTOOAOKc0tRCsjCUo4BSnNLYS4kCQo4VBGae6PKUnbCRhb5LTtPYqAfuOkNLcQrZwkKNHkLBYLJUd3kbd5JaXp+wApzS2EuJgkKNFkLBYLJYd/JnfzCinNLYSokyQo0egsFjPFehu5m1deXJr72ptw9fZ1cIRCCGckCUo0mkuW5u43jra9pTS3EOLyJEGJBldraW7/YKM0d6/hUppbCGEXSVCiwUhpbiFEQ5IEJa6aUZr7a2tp7mwAPNpFEDjgTvwSB+LiJm8zIUT9yW8OccXM5SWc+3kd+T+skdLcQogGJwlK1FtlSSHntn9xcWnuAeNpo6Q0txCiYUiCEnWqLD5Hafp+SjL2UXpsL+Wnj1l3FgevjnHW0ty9pQKqEKJBSYISFzEV5NhKc5dk7LNNEbdxdcenkXPuYAAADu5JREFUSxKBN9yOd5cekpiEEI1CElQrZ7FYMOWfoTR9r5GQ0vdhys2qcY6LuydeHePwjkrAJyoBr45xMlVcCNHoJEG1MhaLhYqcE+dbSOn7qDx3tsY5Lp7eeHeKxzsq0UhIHWJxcZcp4kKIpiUJqoWzWMyUn043ElLGPkrT99tm3FVx9fbDO7K7rYXkGR4tM/CEEA4nCaqFsZgrKc9Ko8TaQirN2I+5tLDGOW6+gXhHdcc7MgGfzol4hEbKzDshhNORBNXMWUwVlJ08Qol1DKk08wCW8tIa57i1DcEnKgFv6x+PdhEysUEI4fQkQTUz5ooyyo4ftLaQ9lJ2/BAWU3mNc9yDwvGJSjyfkALDHBStEEJcOUlQTs5cXmobPypJ30fZiSNgNtU4xyM0Ep/IBLw7J+Id2V0q0QohWgRJUE6qsqSQ/B//w7kf/4O5tOj8Ey6ueIbHGBMaIhPwjuqOW5u2jgtUCCEaiSQoJ1NZlE/+tk/J/+kLLOUlgLGNkE90sjGO1CleCvwJIVoFSVBOwlSQS/7Wf3Pu53VYKsoA8IlOJnDgeHyiEh0cnRBCND1JUA5myj9D3verKfjlayyVFQC06XotgQPH490xzsHRCSGE40iCcpCK3CzytnxCwa5NtkkPbdT1BA0cj1d4jGODE0IIJyAJqomVn80kb8sqCvd8a+wI7uKKb+JAgvrfiWdYlKPDE0IIp9GkCUopdQfwENAHaKu1dqn23FBg4wUv2am17tV0ETae8tPHyN28kqL93wMWcHHFL/lGAvvfgWdwhKPDE0IIp/P/27vzaKvKMo7j33svFwQZrjhFDoHDesRMcUAU0cKpGJaCaZZoOaWrzDBymUFGEy6H1MrKnF0tTVNQUysEGSLEAZRQUR4D8bIgSVneC6KXyXv6490HtgfOAbR793vP+X3WOuucPT/7rHvPs9/9vvt9W7sE1QmYCjwFXF1knR6pz+tbPKIWtvatRTTMfIgPXp8dZlS3o8shA6nrP5zaut2zDU5EJGKtmqDc/V7YWFoqts7yYsvakjVLF9AwczxNi+YCYciKLn1OpO7oYbTrunPG0YmIxC+6OigzexOoBmYBV7j7kkwD2g65XI419a/Q8PQE1rz5MgBVtTvQ9fCT6dbvFNp13injCEVE2o6YEtRbwAXAC0B34Cpgmpkd5O5NmUa2FblcjqY3/kXDzPGsXboAgKoOneh2xCC6HTlUPT2IiHwM0SQod3fA89NmNgdYAgwFHsoqrlJyuRwf/HsOjTPHs/athUAYW6nbkUPp2ncwNerxQUTkY4smQRVy9/fMbCHQM+tYCuVyzby/4FkaZ45n3dv1AFR36kpdv1PoeviXqO7QMeMIRUTavmgTlJl1BPYB6rOOJS/X/CGr58+kcdbDrF+xFICazjtRd/Qwuhx6EtW1HTKOUESkfLT2c1Ddgb2B/ZLp/DNOrwLnAsuB+UAdMBZYDfytNWPcktyH63nv5X/QOOsRNjSERobtuu5CXf/hdD7keKrbtc84QhGR8tPaJahTgLtT03OT915ALXAjsCewEngaOMHdPzpeeStq3rCO1fOmhsS0agUQBgOs638aXT53HFU1tVmFJiJS9lr7Oah7gHuKLP5d8spc8/q1vDd3Mo3P/IUPV78LQO0ue1J3zJfpfOAxVFXXZByhiEj5i7YOKgvNa5tY9cJEGp97jOYPVgHQfree1A04nR0P6EdVVXXGEYqIVA4lqJT/TriepsXzAOjQY1/qBpxBp/2PoKqqaitbiojI/5sSVEqHPQ2qa+jWdzAd9+mjxCQikiElqJTux52ZdQgiIpJQpYqIiERJCUpERKKkBCUiIlFSghIRkSgpQYmISJSUoEREJErl1My8BmD58rIYMV5EpCKkfrM360OunBJUD4ARI0ZkHYeIiGy/HsCi9IxySlCzgWMJQ8d/mHEsIiKybWoIyWl24YKqXC7X+uGIiIhshRpJiIhIlJSgREQkSkpQIiISJSUoERGJkhKUiIhESQlKRESipAQlIiJRUoISEZEoKUGJiEiUyqmro0/MzH4IXArUAZOAi9z97WyjioeZjQHOAPYHGoCHgdHuvjrTwCJnZo8Aw4CB7j4943CiY2aHAdcDRwNrgcnu/pVso4qLmdUBNwBDgM7AS8CV7j4j08BamEpQCTM7DxgNXAL0JySp+zMNKj79geuAw4CzgJOBmzONKHJmdg6wY9ZxxMrMegNTgRlAX8Lf2AOZBhWnG4HDgVOBQ4DngSfMrFumUbUw9cWXMLMXgcfdfWwyvQ+hZ93PufsrmQYXKTM7A7jV3btnHUuMzGwPYBahE+N6VILajJlNABrc/cKsY4mZmc0HbnH33ybTXYBVQF93n5NpcC1IJSjAzDoQrkqm5ue5+xvAm0C/jMJqC3YBGrMOImJ3AFe7+5KsA4mRmdUAXwLqzWy6mS03s0lmdlDWsUXoGWC4me2cfG/nA0uBV7MNq2UpQQU7E76Lwvqmd4DdWj+c+CW3Fi4H7so6lhiZ2cVArbvfmnUsEdsV6ARcQbidPpjwo/tUUkKQTS4FVgIrCPV0VwJD3P2DTKNqYUpQQVXWAbQlSYlzAvAGcE3G4UTHzPYGxgK6bVVa/vdnvLvf6u4vAhcn84dmF1aULgN6AicS6uoeAB4zs52yDKqlKUEFK4BmNi8t7crmpaqKZmbtCP8cXYDh7r4h45BidBjwKWChmW0ws/x3NMXM7swwrtisIAwu6vkZ7r6ecOGzV1ZBxcbMOgI/Bb7j7lPcfa67fw9YB3w12+halhIU4O5rgXnAwPw8M+tFuGJ5LqOwomNm1cAfgf2AQWpeXtQU4GCgT+oFoUT146yCio27rwPmEv6egI0XQD0B1dttUpu8CkcKb6bMf8PVii9hZucDvwLOITSOuAnA3Y/PMKyomNkdhHqCwcDy1KJ33L3wn0dSzCyHWvFtxszOAu4kJO/ZwHeB4YDpAmgTM5tJGBp9JPAuoZHEKOBgd389y9hakh7UTbj7XWa2O/AHoBswGbgo26iic0HyPrdgfi9CUhfZLu7+JzPbjVCXWUd4vuckJafNnAn8Enic8Fzdq8Cwck5OoBKUiIhEqqzvX4qISNulBCUiIlFSghIRkSgpQYmISJSUoEREJEpKUCIiEiUlKCk7Sc/Yd2QdRyzMrNrM5prZ6al5OTM7O8u4SjGzr5nZbDNTP5kVTA/qSpuR9MZQSr279wROA6LsI9DMngKWuvu5rXjY8wgdIk9oxWN+Ug8APwJGAPdmHItkRCUoaUt6pF6nJvOOTM3rC+Du77r7qkwijNP3gNvcPYqn8s2s/dbWSWK9k9CLt1Qo9SQhbZKZDQD+CfRy9zcLlk0HFuZHaU2mFwFvEbqvag/8DriKcJV+CeFi7TZ3H5PaT7tk+TcICXAR8JtSYzyZWVfg18AgYCdCb/gPufsoM7sn2VfaQHefnnSzdS0wBNgBeAn4obvPSPb7BWAacEoS98FJPJe5++QS8fQhdE21h7v/JzU/l5z30cAwwsCTN7v7dal1uhC61zmN0Hv9K8Bod5+ULO8JLAaOdfeZqe0WAve6+09SxxoJHJWc3yR3P8PMRhP64NuDMDrsi4Tue5qS7XoRejbv7e4Lip2jlC+VoKRSnE7oEXoAoZPN0cATQGfCkOyXA6PNbFBqmzsIP84XA72BnwHXmtkFFPcLwnAbpwL7E/pQey1ZNpKQVB9kU6lvVjKcwjRCEhgEHAr8DZhsZr0L9n9jEsehwLOEMYH2KBHP54Fl6eSUMhaYQeht/frk3Aamlt8FfBE4Ozne08ATZnZAieMVM5YwKuxhwBgzO40w6N5Iwvd0EvD39AbuvpiQ4AciFUl1UFIpFrv7D5LPr5vZ94G93H1wat4o4ATg78nV+9eBA1NX74vNzAijmxYb1+kzwFx3zw/TsgSYBeDuK81sHdDk7ht7gzezc4GuwJmp8bXGmdkJhOSYvs11jbs/kWx3MWEAu28RSnpb0gtYVmTZn9399uTzb8zs28DJwDQz24+Q1Ie4+5PJOiPN7FjCCLjnF9lnMY+6+835CTMbQugRf2IyBtQS4F9b2G4ZsM92HkvKhBKUVIp5BdPL+eiQIfl5+UErjyA0LJgTctJG7dh8XJ603wMTzOwIwrhQE4En3b25xDZ9CQMcNhYcqwPQVLDuM/kP7r7BzJ4HDiyx747AmiLLChPCMmD35HN+nzMK1plBuC24vZ4vmH6QMLRGvZlNInxXj7r7ewXrrSGcg1Qg3eKTSrG+YDpXZF7+fyL/3p+PDjx4EKH+Z4uS0sbewDhCXdK9wFQzqykRWzXhNmCfgldv4JulToqQREt5B+heZNm6gun0+Zc6Xr7iujk1L612C9u9n55w92XAAYSS2NuEejU3s8KRdLsTzkEqkEpQIlv2QvK+d/6W2rZy93eB+4H7zexuQqnnQOBlQlIoTFZzCLcTV7n721vZ/VGEsYDyjTj6UroZ9ovA5WbWPhnBdlvNT96PI9SH5R3LpvHA8onj0/mFydhOperENkpGsp4ITDSzq4D/Ehps3JzsqyOwL+H7kQqkBCWyBe6+0MzuAm43sysISWZH4HBgV3e/dkvbmdk4QnKbTyhhjABWs2kI88XAQDPbF1iZvO4jNAX/q5mNAV4n3Go7HnjN3R9NHeJKM1ue7GdUst4tJU5lGqHE04/QQGNbz3+RmT0E/D6p66on1HUdBJyVrNNkZk8DV5jZAsLvyThg7db2nzQ0qSbc+msk1P11IUm+iQHJvv6xrXFLedEtPpHiLgJuAsYQfjinEJqJv1FimzWEVnYvEK78DwYGufvKZPkNwApCndg7wDHuvobQ2m4OcDchQT1MeMarvmD/lwM/J9QfHQOc6u5LiwXj7g2Eh17P2aYz/qgLgScJJbR5yfGGFjT5Pp+QgGclx7mN0Jx/axoIDxBPJ9zeHAVc5O5TUuucDdyn0XUrl56DEmkDUs9B7VUqIRXZNn+b7LNFmptHJ6mLegk4tPA5N6kcKkGJlDl3X0Rort4r61i2Q0/gm0pOlU11UCIVwN0fzDqG7eHu21xfJuVLt/hERCRKusUnIiJRUoISEZEoKUGJiEiUlKBERCRKSlAiIhKl/wHy/umxVDaT1QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"execution_count": 35,
"metadata": {
"needs_background": "light"
},
"output_type": "execute_result"
}
],
"source": [
"# Make it pretty\n",
"\n",
"plot(results1, label='Dollars Made Per Hour in $25 Lot')\n",
"decorate(title='Number of Cars Per Hour',\n",
" xlabel='Time step (hours)',\n",
" ylabel='Dollars Made')\n",
"\n",
"plot(results2, label='Dollars Made Per Hour in $35 Lot')\n",
"decorate(title='$ Made',\n",
" xlabel='Time step (hours)',\n",
" ylabel='Dollars Made')"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}