{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CDS-102: Lab 8 Workbook\n", "## Helena Gray\n", "### March 23, 2017" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code below imports the tidyverse package which will be used for analysis. It then reads in a comma separate value file into a variable named 'newcomb'." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading tidyverse: ggplot2\n", "Loading tidyverse: tibble\n", "Loading tidyverse: tidyr\n", "Loading tidyverse: readr\n", "Loading tidyverse: purrr\n", "Loading tidyverse: dplyr\n", "Conflicts with tidy packages ---------------------------------------------------\n", "filter(): dplyr, stats\n", "lag(): dplyr, stats\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
Xx
1 28
2 -44
3 29
4 30
5 24
6 28
7 37
8 32
9 36
10 27
11 26
12 28
13 29
14 26
15 27
16 22
17 23
18 20
19 25
20 25
21 36
22 23
23 31
24 32
25 24
26 27
27 33
28 16
29 24
30 29
3732
3825
3928
4024
4140
4221
4331
4432
4528
4626
4730
4827
4926
5024
5132
5229
5334
54-2
5525
5619
5736
5829
5930
6022
6128
6233
6339
6425
6516
6623
\n" ], "text/latex": [ "\\begin{tabular}{r|ll}\n", " X & x\\\\\n", "\\hline\n", "\t 1 & 28\\\\\n", "\t 2 & -44\\\\\n", "\t 3 & 29\\\\\n", "\t 4 & 30\\\\\n", "\t 5 & 24\\\\\n", "\t 6 & 28\\\\\n", "\t 7 & 37\\\\\n", "\t 8 & 32\\\\\n", "\t 9 & 36\\\\\n", "\t 10 & 27\\\\\n", "\t 11 & 26\\\\\n", "\t 12 & 28\\\\\n", "\t 13 & 29\\\\\n", "\t 14 & 26\\\\\n", "\t 15 & 27\\\\\n", "\t 16 & 22\\\\\n", "\t 17 & 23\\\\\n", "\t 18 & 20\\\\\n", "\t 19 & 25\\\\\n", "\t 20 & 25\\\\\n", "\t 21 & 36\\\\\n", "\t 22 & 23\\\\\n", "\t 23 & 31\\\\\n", "\t 24 & 32\\\\\n", "\t 25 & 24\\\\\n", "\t 26 & 27\\\\\n", "\t 27 & 33\\\\\n", "\t 28 & 16\\\\\n", "\t 29 & 24\\\\\n", "\t 30 & 29\\\\\n", "\t ⋮ & ⋮\\\\\n", "\t 37 & 32\\\\\n", "\t 38 & 25\\\\\n", "\t 39 & 28\\\\\n", "\t 40 & 24\\\\\n", "\t 41 & 40\\\\\n", "\t 42 & 21\\\\\n", "\t 43 & 31\\\\\n", "\t 44 & 32\\\\\n", "\t 45 & 28\\\\\n", "\t 46 & 26\\\\\n", "\t 47 & 30\\\\\n", "\t 48 & 27\\\\\n", "\t 49 & 26\\\\\n", "\t 50 & 24\\\\\n", "\t 51 & 32\\\\\n", "\t 52 & 29\\\\\n", "\t 53 & 34\\\\\n", "\t 54 & -2\\\\\n", "\t 55 & 25\\\\\n", "\t 56 & 19\\\\\n", "\t 57 & 36\\\\\n", "\t 58 & 29\\\\\n", "\t 59 & 30\\\\\n", "\t 60 & 22\\\\\n", "\t 61 & 28\\\\\n", "\t 62 & 33\\\\\n", "\t 63 & 39\\\\\n", "\t 64 & 25\\\\\n", "\t 65 & 16\\\\\n", "\t 66 & 23\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "X | x | \n", "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 1 | 28 | \n", "| 2 | -44 | \n", "| 3 | 29 | \n", "| 4 | 30 | \n", "| 5 | 24 | \n", "| 6 | 28 | \n", "| 7 | 37 | \n", "| 8 | 32 | \n", "| 9 | 36 | \n", "| 10 | 27 | \n", "| 11 | 26 | \n", "| 12 | 28 | \n", "| 13 | 29 | \n", "| 14 | 26 | \n", "| 15 | 27 | \n", "| 16 | 22 | \n", "| 17 | 23 | \n", "| 18 | 20 | \n", "| 19 | 25 | \n", "| 20 | 25 | \n", "| 21 | 36 | \n", "| 22 | 23 | \n", "| 23 | 31 | \n", "| 24 | 32 | \n", "| 25 | 24 | \n", "| 26 | 27 | \n", "| 27 | 33 | \n", "| 28 | 16 | \n", "| 29 | 24 | \n", "| 30 | 29 | \n", "| ⋮ | ⋮ | \n", "| 37 | 32 | \n", "| 38 | 25 | \n", "| 39 | 28 | \n", "| 40 | 24 | \n", "| 41 | 40 | \n", "| 42 | 21 | \n", "| 43 | 31 | \n", "| 44 | 32 | \n", "| 45 | 28 | \n", "| 46 | 26 | \n", "| 47 | 30 | \n", "| 48 | 27 | \n", "| 49 | 26 | \n", "| 50 | 24 | \n", "| 51 | 32 | \n", "| 52 | 29 | \n", "| 53 | 34 | \n", "| 54 | -2 | \n", "| 55 | 25 | \n", "| 56 | 19 | \n", "| 57 | 36 | \n", "| 58 | 29 | \n", "| 59 | 30 | \n", "| 60 | 22 | \n", "| 61 | 28 | \n", "| 62 | 33 | \n", "| 63 | 39 | \n", "| 64 | 25 | \n", "| 65 | 16 | \n", "| 66 | 23 | \n", "\n", "\n" ], "text/plain": [ " X x \n", "1 1 28\n", "2 2 -44\n", "3 3 29\n", "4 4 30\n", "5 5 24\n", "6 6 28\n", "7 7 37\n", "8 8 32\n", "9 9 36\n", "10 10 27\n", "11 11 26\n", "12 12 28\n", "13 13 29\n", "14 14 26\n", "15 15 27\n", "16 16 22\n", "17 17 23\n", "18 18 20\n", "19 19 25\n", "20 20 25\n", "21 21 36\n", "22 22 23\n", "23 23 31\n", "24 24 32\n", "25 25 24\n", "26 26 27\n", "27 27 33\n", "28 28 16\n", "29 29 24\n", "30 30 29\n", "⋮ ⋮ ⋮ \n", "37 37 32 \n", "38 38 25 \n", "39 39 28 \n", "40 40 24 \n", "41 41 40 \n", "42 42 21 \n", "43 43 31 \n", "44 44 32 \n", "45 45 28 \n", "46 46 26 \n", "47 47 30 \n", "48 48 27 \n", "49 49 26 \n", "50 50 24 \n", "51 51 32 \n", "52 52 29 \n", "53 53 34 \n", "54 54 -2 \n", "55 55 25 \n", "56 56 19 \n", "57 57 36 \n", "58 58 29 \n", "59 59 30 \n", "60 60 22 \n", "61 61 28 \n", "62 62 33 \n", "63 63 39 \n", "64 64 25 \n", "65 65 16 \n", "66 66 23 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Run this code block to load the Tidyverse package\n", ".libPaths(new = \"~/Rlibs\")\n", "library(tidyverse)\n", "newcomb<-read.csv(\"newcomb.csv\")\n", "newcomb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 1 ###\n", "\n", "The code below plots a histogram of the dataset using ggplot2." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nO3da4xc9X3w8XNmZmdnL75vHQubiykYMGBjAyYlSi+hFLVAYhKr0EBbaIobUClJ\nK4VLSoHQQBWoEhClhThRU0sNMkaQYFDkcAm0aiggoDYFYwigmrYGbDB4vfeZeV6MnhU1u8PO\nemdn57efzyufc2bO+fm/u7Nfn704LZfLCQAAzS/T6AEAAJgYwg4AIAhhBwAQhLADAAhC2AEA\nBCHsAACCEHYAAEEIOwCAIHKNHmB/vb29fX19jZ5iKpo5c+a+ffuKxWKjB2kyM2fOTNO0t7d3\nYGCg0bM0mY6OjsHBQetWq46OjlwuNzAw0Nvb2+hZmkxbW1uSJNatVm1tbfl8vlgsdnd3N3qW\nJpPP5/P5fDOu25w5c0Y7NOXCrlwua5cRZTKZUqlkcWqVyWTSNPV+NQ6ZTMa6jUOapplMJkkS\nSzc+1m0cfIIYn3K5nKZpsHXzpVgAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2\nAABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIO\nACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgB\nAAQh7AAAghB2AABB5Bo9wAjSNG30CFNUmqYWZ3ws3fhYt3EYXjFLNz7Wbdws3fgEW7e0XC43\neob/Y3BwsKWlpdFTAMB0sXHjxtEOrVmzZjInYSyKxWI2mx3t6JS7Yzc0NNTd3d3oKaaiOXPm\n7N27d2hoqNGDNJnZs2enadrT09Pf39/oWZrMjBkzBgYGrFutZsyYkcvl+vv7e3p6Gj1Lk2lv\nb0+SxLrVqr29vbW1dWhoaO/eveM7Q19f32iH3nvvvfHO1QRaW1tbW1s/+OCDRg9Sm3K5PHfu\n3NGOTrmwK5fLxWKx0VNMRZWVsTjjUyqVLN04WLdxqHwZxEvZOFSWzrrVavgrb+NeulKpNNqh\n2G+OUqkU70PVD08AAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh\n7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCE\nHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISw\nAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2\nAABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIO\nACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgB\nAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsA\ngCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcA\nEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAELnJucxTTz117733vv7664sWLbrooouO\nP/74ybkuAMD0MRl37J555pmbbrpp5cqVV1555S/90i/dcMMNb7/99iRcFwBgWpmMO3YbNmw4\n66yzzj333CRJli5desMNN2zfvn3+/PmTcGkAgOmj7mG3a9eubdu2XXzxxZXNQqHwzW9+s94X\nBQCYhuoedu+8806SJLt27brzzjv/67/+a+HCheeff/5JJ500/ICBgYFNmzYNbx555JGLFy+u\n91RNKp/P53KT9G2RYaRpmiRJS0tLowdpPplMxrqNQyaTSZIkm80WCoVGz9JkstlskiTWrVaV\ndUvTdNxLV+UzS+w3R0tLSyaTabq/Y7lcrnK07pXw7rvvJkny3e9+9/zzz1+wYMETTzxxww03\n3HzzzUuWLKk8YN++fTfeeOPw49euXetHK0bT3t7e6BGaVWtra2tra6OnaD7WbdxaWlpk8fhY\nt/HJZrOdnZ3VH7Nx48YR97/66qtLly4d8dDHnjOApvs7FovFKkfrHnb5fD5Jki9/+curVq1K\nkmTp0qUvv/zy5s2bh8MuTdOZM2cOP761tbV6ik5baZpamXGo3LGzdOPgXW58Ku9yifc6Jktd\n3+XCvxs34wtdg+/YzZkzJ0mSww47rLKZpukhhxyya9eu4QfMnj370UcfHd7s6enZvXt3vadq\nRvPmzXv//feHhoYaPUiTmTdvXpqm+/bt6+vra/QsTWb27Nl9fX3WrVazZs1qaWnp6+vr7u5u\n9CxNpnLjxLrVqrOzs1AoDA0N7dmzp/oje3p6Rtw/ODg42qHYn5ELhUKhUPjYdZuCurq6RjtU\n9193csghh3R0dGzfvr2yWS6XX3vttYULF9b7ugAA081kfCn2d37nd+68886BgYEFCxZs3rx5\n586df/mXf1nv6wIATDeT8SOWF1xwQTabveeee959990jjjjipptuWrBgwSRcFwBgWpmMsEvT\n9Itf/OIXv/jFSbgWAMC0NRn/pRgAAJNA2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhh\nBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHs\nAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQd\nAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLAD\nAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYA\nAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4A\nIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEA\nBCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCA\nIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQuUYPsL9sNtvZ\n2dnoKaaiNE3b29tLpVKjB2kyaZomSdLa2prLTbn39ikuk8lYt3HIZrNJkrS0tHgpq1VLS0uS\nJNZtP/fff/+I+7dt23b00UcnSZLNZtM0LZfLxWLxw/s/6rXXXhvxUDabzefzI17i4YcfHm2w\n1atXj2X+itH+FuM41QTKZrOZTKbp3uWql4A7dgAAQUy5f4sXi8Wenp5GTzEVtba29vT0DA0N\nNXqQJtPa2pqmaX9/f19fX6NnaTKzZ8+2buMwa9asTCYzODjY3d3d6FmaTOXGiXXbz8DAwIj7\ni8Vi5VA+n8/lcuVyubI5vL/KUw5wf0VNb6kq56n1VBOoUCgUCoVmfJdrb28f7ZA7dgAAQQg7\nAIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEH\nABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewA\nAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0A\nQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMA\nCELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAA\nQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAg\nCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAE\nIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAg\nhB0AQBDCDgAgCGEHABCEsAMACGJSw+7tt98+77zznn322cm8KADANDF5YVcsFm+55Zaenp5J\nuyIAwLQyeWG3YcOG3t7eSbscAMB0M0lh99JLL/3oRz/66le/OjmXAwCYhnKTcI19+/b97d/+\n7dq1aw866KCPHn3vvfdOP/304c21a9euXbt2EqZqRrNnz270CM2qs7Ozs7Oz0VM0H+s2boVC\noVAoNHqKpmTd9tPe3j7i/paWlg8fymQylc399ld5yrj3V3R1dVWf/MOqnKfWU024xl59HIrF\nYpWjdQ+7crl8xx13HHXUUb/xG7/R399f78sBANPTxo0bRzu0Zs2ayZykgeoedk888cS2bdtu\nu+22NE1HfEBHR8fVV189vHnkkUd2d3fXe6pm1NHR0dvbWyqVGj1Ik6nccOrv7x8cHGz0LE2m\nvb19cHDQutWqra0tm80ODg76p2ytWltbkySxbvsZGBgYcX+xWKwcyuVymUymXC5XPlqH91d5\nygHur6jpk3WV89R6qvFdZcRLtLS0tLS0NN2PdZbL5RkzZox2tO5ht23btnfeeef3fu/3hvdc\nd9118+fPX7duXWUzn89//vOfHz7a09PTdEs8OTo6OgYGBoaGhho9SJPp6OhI03RwcLCvr6/R\nszSZQqFg3cahtbU1m80Wi0VLV6tcLpckiXXbz2gv+6VSqXIok8lUwq6yOby/ylMOcH9FTW+p\n6p+8JuqNPo5ps9lsM77LNTLszjnnnNNOO63y5/7+/quuuuriiy8+/vjj631dAIDppu5hN3/+\n/Pnz51f+XInihQsXHnbYYfW+LgDAdOO/FAMACGIyft3JsEKh8OMf/3gyrwgAMH24YwcAEISw\nAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2\nAABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCDGGnaf/OQn\nf/7zn390//333//bv/3bEzoSAADjkat+eNu2bZU//Pu///sLL7wwZ86cDx8tlUoPPPDAv/zL\nv9RrOgAAxuxjwu6YY44Z/vPatWtHfIw7dgAAU8HHhN3f//3fV/5wySWX/Omf/umxxx673wNa\nW1vPPPPMuowGAEAtPibsvvzlL1f+cPfdd//+7//+qlWr6j8SAADj8TFhN+xnP/tZuVx+8803\nu7u7P3r08MMPz+fzEzoYAAC1GWvY/eIXv1i9evULL7ww4tGdO3d+4hOfmLipAACo2VjD7s//\n/M937Nhx1VVXHXzwwWma7ne0q6trogcDAKA2Yw27J554Yt26dWvWrKnrNAAAjNtYf0FxsVhc\nvnx5XUcBAOBAjDXsfuu3fuvxxx+v6ygAAByIsX4p9rbbbvvsZz/b0tJy3nnntba21nUmAADG\nYaxh97u/+7uDg4MXXnjhH/3RHy1YsKClpeXDR994442JHw0AgFqMNey6urq6uroWL15c12kA\nABi3sYbd/fffX9c5AAA4QGMNuz179ox6ilyus7NzguYBAGCcxhp2c+bMGe3QGWec8ZOf/GSC\n5gEAYJzGGnbXXnvthzf7+vpefvnlTZs2nXXWWZdffnkdBgMAoDZjDbvrrrvuozu3bdv2q7/6\nqxdeeOEEDgQAwPiM9RcUj+joo4/+kz/5k1tvvXWipgEAYNwOKOySJFmwYMEzzzwzIaMAAHAg\nDijsuru7169fP3fu3ImaBgCAcRvr99h98pOf3G9PqVR65ZVX9uzZc80110z0VAAA1GysYfdR\nmUxmxYoVZ5xxxl/8xV9M4EAAAIzPWMPuySefrOscAAAcoNru2P3v//7vT3/601deeWVwcPCo\no446/fTTFy1aVKfJAACoSQ1h961vfev666/v6ekZ3tPW1nbdddd97Wtfq8NgAADUZqw/FXvf\nffddccUVJ5xwwgMPPPDGG2/s2LHjoYceWrly5RVXXPHjH/+4riMCADAWY71j953vfGfp0qUP\nP/xwW1tbZc+iRYt+/dd//aSTTvr2t7/92c9+tm4TAgAwJmO9Y7d169azzz57uOoq2traVq9e\n/R//8R91GAwAgNqMNeza29u7u7s/un/v3r0dHR0TOhIAAOMx1rBbuXLlD3/4wzfeeOPDO3fs\n2PHDH/7wxBNPnPi5AACo0Vi/x+6mm2466aSTli9f/qUvfen4449P0/SFF15Yt25dX1/fN7/5\nzbqOCADAWIw17I499tiHH3748ssv//a3vz28c+XKld/5zneOPfbY+swGAEANavg9dp/61Kee\nfvrpN99885VXXimXy0ceeeSiRYsymbF+MRcAgLqqIcteeOGFiy++ePPmzZ/5zGdOO+209evX\nf+5zn3v++efrNxwAAGM31rB76qmnVq1atX79+uE9ixYt+td//ddTTjnl2Wefrc9sAADUYKxh\nd80118yYMePFF1/80pe+VNnzh3/4hy+//PJBBx10zTXX1G08AADGaqxh98wzz/zBH/zBL//y\nL3945/z58y+44IJnnnmmDoMBAFCbsYZdLpcrl8sf3d/f3z/ifgAAJtlYw+7kk0/euHHj7t27\nP7xzz54999xzz8qVK+swGAAAtRnrrzv55je/ecopp5x44omXXnrpcccd19LS8tJLL9122207\nduz453/+57qOCADAWIw17JYvX/7ggw9efvnlV1xxxfDOQw899J577vmVX/mV+swGAEANavgF\nxaeddtrzzz+/devWV155pb+/f8mSJcuXLy8UCvUbDgCAsash7JIkyeVyK1asWLFiRZ2mAQBg\n3PyHYAAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0A\nQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMA\nCELYAQAEIewAAIIQdgAAQQg7AIAgco0eYH9pmmaz2UZPMRVVVqZcLjd6kKaUyWS8X42DdRuH\nNE0TL2XjUlk667afTGbkWzBpmlYOVdZt+JHD+6s85QD3V9T0lqpynlpPNb6rjHiJTCbTjB+q\n1UtgyoVdLpebM2dOo6eYombMmNHoEZpVe3t7e3t7o6doPrlczrqNT2tra2tra6OnaErTc902\nbtw42qHXXntt6dKlH92fy+UKhcLwZiaTqWzut7/KU8a9P0mSF1988ZFHHhnx0Jo1az66c7Tz\nVEzU5/0qV6lyiaarjmKxWOXolAu7wcHB999/v9FTTEXz5s17//33h4aGGj1Ik5k3b16apt3d\n3X19fY2epcnMnj27r6/PutVq1qxZLS0tfX193d3djZ6lyXR2diZJMj3XraenZ7RDg4ODIx4d\n3p/P53O5XKlUqny0jvb4sZxqjPurH9q1a9dHd1b5C472lHGocpURL1EoFAqFwp49eybk6pOp\nq6trtEO+xw4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQ\nhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACC\nEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQ\nwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC\n2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEI\nOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhh\nBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHs\nAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQd\nAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEHkJuEaPT0969evf+qpp/bu3XvYYYed\nf/75y5cvn4TrAgBMK5Nxx+7OO+/8t3/7twsvvPC6665btGjRtddeu3379km4LgDAtFL3O3Z9\nfX2PPfbYV77ylU9/+tNJkhxzzDGvvvrq5s2blyxZUu9LAwBMK3W/Y7d79+7Fixcfd9xxlc00\nTefOnfvee+/V+7oAANNN3e/YLVy48NZbbx3e3LFjx9atWy+44ILhPb29vevWrRvePPHEE1es\nWFHvqZpRmqZtbW2lUqnRgzSZNE2TJGltbc1ms42epclkMpl8Pm/dalVZsVwu19HR0ehZmkwu\nl0uSZHquWz6fH+1QNpsd8ejw/kwmkyRJmqaVzdEeP5ZTjXF/9UMjvgWr/AVHe8o4VLnKiJfI\nZrOZTKbp3uWql8Bk/PBERblcfvLJJ2+//fYjjjjizDPPHN7f19f3gx/8YHiztbX11FNPnbSp\nmktra2ujR2hWLS0tLS0tjZ6i+VR/LaaKXC5XyRRqNVHrtnHjxtEOrVmzZkIuMY5Lv/jii0uX\nLv3o/u3bt4+4P0mSTCYz4prstz9N08rmaI8f+6k+dn+VQy+++OKDDz740f1V/oKjPSWp/S1V\n5Z2nra1tHIempmKxWOXoJL3u7Nq16/bbb9+yZcvq1avPO++8D3+2yGazCxcuHN6cMWNG9Ymn\nrWw2WyqVyuVyowdpMpXbJ5ZuHDKZTLlctm61ymQyaZqWy2X312tVufM0UetW5V233p9lqn/U\njHa0yrOqP6XydYkPP2zcp5rAqSbkVLW+pWp9o6dpmqZp032olkqlKl9LmYywe+21177+9a8f\nfvjhd9xxx4IFC/Y7OnPmzB/96EfDmz09Pb4Db0Tz5s374IMPhoaGGj1Ik5k3b16apj09PX19\nfY2epcnMnj27r6/PutVq1qxZLS0t/f393d3djZ6lyXR2diZJMlHr1tvbO9qhen+WqXLpwcHB\nEY+Otn8sT8nn87lcrlQqVT5aD+RUEzjVgZ8qqf0tVesbvVAoFAqFPXv21HSVqaCrq2u0Q3UP\nu2KxeOONN65aterP/uzPfLMOAED91D3stmzZ8vbbb69evfrpp58e3jl37ly/7gQAYGLVPez+\n+7//O0mSu+6668M7Tz311CuvvLLelwYAmFbqHnZnnXXWWWedVe+rAAAwGf+lGAAAk0DYAQAE\nIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAg\nhB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCE\nsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQ\ndgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDC\nDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELY\nAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7\nAIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEH\nABCEsAMACELYAQAEIewAAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewA\nAIIQdgAAQQg7AIAghB0AQBC5Rg+wv1wuN2vWrMm51n333TfaoXPOOWdyZhi7NE07OzvL5XKj\nB2kyaZomSdLW1tba2troWZpMNpudtut2IC8OuVwuSZJ8Pj9pL2VhZLPZJEkmat0KhcJoh2q9\nxGjvDy+99NIxxxzz0f2vv/76iPuTJMnlciMONtr+sTyl8iqXyWQqmwdyqgmc6sBP9dJLLz36\n6KMjPiUZ5SNxtEuMdqo0TdM0/dznPvfRQ7W+0atMNeFKpVKVo1Mu7EqlUrFYnJxrVbnQwMDA\n5Mwwdi0tLYODg9XfnHxUS0tLkiRDQ0NDQ0ONnqXJZLPZYrE4ODjY6EEa4EBeHDKZTDabLZVK\nU/BlZIrL5/Npmk7Uuk3gK/xopyqXyyMeGm1/nZ6SzWbTNB3enMCrT81TVYz4Rqz1EplMJpPJ\nTMipqkw14crlcpV/ck/FsOvt7Z2ca1X5jDVpM4xde3t7f3+/OqlVe3t7mqaDg4N9fX2NnqXJ\ntLa2DgwMTM91O5AXh3w+n81mh4aGpuDLyBRXuWM3Ues2ga/wo51qtH/5VPkXUT2ekqZpJpMp\nl8uVzQm8+tQ8VcWIb8RaL5HL5dI0nZBTVZmqHjo7O0c75HvsAACCEHYAAEEIOwCAIIQdAEAQ\nwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC\n2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEI\nOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhh\nBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhBuysnoAAArySURB\nVLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACC\nEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQ\nwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC\n2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEI\nOwCAIIQdAEAQwg4AIAhhBwAQRG4SrlEul++9995HHnlk7969y5Ytu+SSS2bMmDEJ1wUAmFYm\n447dfffdd/fdd69evfryyy/fsWPH9ddfXy6XJ+G6AADTSt3v2JVKpU2bNq1Zs+aMM85IkmT+\n/PmXXXbZ9u3bjzrqqHpfGgBgWql72O3YsWPXrl0nn3xyZfOQQw6ZP3/+s88+Oxx25XJ57969\nw48vlUppmtZ7qooqF5q0GWqSpunUHGzqs3TjM23X7UBeHIYfMD2X7kBUVmyi1m0CX+FHe/xo\nHyBVPnDq+pThBZyoq0/NUw0fHePO6peYqFNVf9ZkqnvY7dmzJ0mSrq6uymaapl1dXZWdww84\n/fTThzfXrl27du3aek9V0dbWNtqhefPmTc4MNZk1a1ajR2hWHR0dHR0djZ6i+eRyuem5bgf+\n4lAoFAqFwsRNNI20trZOyHkm8BV+tFPlcrkRD422v65PyWQylc0JvPrUPFXFiG/EWi8xOaea\ncMViscrRuofdBx98kPzfBWpvb6/snLJefPHFjRs3jrh/6dKloz1lxEO17m/sqRp7dX+Rup6q\nsVeP9BcZ8cWhsVM19urN+BeZqFd4GmUcb8RJONUUkdb75xief/75v/qrv1q/fv3w3aarrrrq\n4IMPvvTSSyubg4ODzz333PDju7q6pubdsoabOXPmvn37qnc6HzVz5sw0TXt7ewcGBho9S5Pp\n7OwcGBiwbrXq7OzMZrMDAwO9vb2NnqXJVG4BWLdatbW15fP5YrHY3d3d6FmaTD6fz+fzzbhu\nVb6CV/c7dnPmzEmS5N133x0eYvfu3cuWLRt+QEtLy6pVq4Y3e3p6enp66j1VkxoaGhoaGmr0\nFE2pWCwODg42eoomUy6Xrds4lEqlbDZbKpUsXa0qX4S1brWqrFu5XLZ0tcpms/HWre6/7mTR\nokVz584dvif31ltv7dy5c8WKFfW+LgDAdFP3O3bZbPbss8/esGFDpfDWrVu3ZMkSv+sEAGDC\nTcb/PPH5z39+aGjoe9/73r59+5YtW3bppZdOhZ8HBgAIZjLCLk3Tc88999xzz52EawEATFuT\n8V+KAQAwCYQdAEAQwg4AIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4A\nIAhhBwAQhLADAAhC2AEABCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQhLADAAhC2AEA\nBCHsAACCEHYAAEEIOwCAIIQdAEAQwg4AIAhhBwAQRK7RAzBWvb29pVKp0VM0n3/8x38sFosr\nVqw49NBDGz1Lk+nr6xsaGmr0FM3ngQceePfddxcvXrx8+fJGz9JkBgYGGj1CU/r5z3/+i1/8\nYs6cOb/2a7/W6FmazNDQUF9fX6OnmGBTLuza29vb29sbPcUUZWXGYd26df39/VdfffWJJ57Y\n6FmYFjZt2rRly5YvfOELp512WqNnYVp4+umnN2zYcOyxx37hC19o9CxNqbOzs9EjTCRfigUA\nCELYAQAEIewAAIJIy+Vyo2eAOtq7d2+5XC4UCvl8vtGzMC309PQMDQ3l8/lCodDoWZgW+vr6\nBgYGcrmc78MmEXYAAGH4UiwAQBDCDgAgiCn3e+xgQvT09Kxfv/6pp57au3fvYYcddv7551d+\nW+xDDz30D//wDx9+5M0333zUUUc1aExCKZfL99577yOPPLJ3795ly5ZdcsklM2bMaPRQBOT1\njSqEHTHdeeedzz///B//8R/Pmzfv4Ycfvvbaa7/1rW8tWbJk586dRxxxxId/jedBBx3UwDmJ\n5L777rv77rsvvvjiuXPn/tM//dP1119/8803p2na6LmIxusbVQg7Aurr63vssce+8pWvfPrT\nn06S5Jhjjnn11Vc3b968ZMmSt95666ijjvrUpz7V6BmJplQqbdq0ac2aNWeccUaSJPPnz7/s\nssu2b9/ufgkTy+sb1fkeOwLavXv34sWLjzvuuMpmmqZz58597733kiTZuXPnggULenp63n77\nbT8SzgTasWPHrl27Tj755MrmIYccMn/+/GeffbaxUxGP1zeqc8eOgBYuXHjrrbcOb+7YsWPr\n1q0XXHBBuVzeuXPnY4899v3vf79cLnd0dFx44YWV+ytwgPbs2ZMkSVdXV2UzTdOurq7KTphA\nXt+oTtgRWblcfvLJJ2+//fYjjjjizDPP3Lt3b39//2GHHXb11VcXCoUHH3zw7/7u7z7xiU+c\ncMIJjZ6UpvfBBx8kSdLW1ja8p729vbIT6sHrGyMSdkTw5JNP3njjjZU/X3PNNZUvh+3atev2\n22/fsmXL6tWrzzvvvHw+n8/n77///uFnnXfeeU8//fTjjz/uhY8DV/kB2N7e3uH/46S3t3f4\nBh5MLK9vjEbYEcHKlSt/8IMfVP7c0dGRJMlrr7329a9//fDDD7/jjjsWLFgw4rPSNF20aJEv\nljEh5syZkyTJu+++O2vWrMqe3bt3L1u2rKFDEZPXN6rwwxNEkM/n5/x/+Xy+WCzeeOONq1at\n+sY3vvHhV72nnnrq/PPP/5//+Z/KZrlcfv311w899NAGTU0oixYtmjt37nPPPVfZfOutt3bu\n3LlixYrGTkU8Xt+ozh07AtqyZcvbb7+9evXqp59+enjn3LlzTzjhhI6OjltuueWcc86ZO3fu\n5s2b33nnnbPPPruBoxJGNps9++yzN2zYUCm8devWLVmyxO86YcJ5faO61E9EE8+mTZvuuuuu\n/XaeeuqpV1555c6dO7/3ve/953/+Z5IkRx999EUXXXTwwQc3YkYCKpfLGzZsePTRR/ft27ds\n2bJLL720s7Oz0UMRjdc3qhN2AABB+B47AIAghB0AQBDCDgAgCGEHABCEsAMACELYAQAEIewA\nAIIQdgAAQQg7AIAghB0AQBDCDgAgCGEHABCEsAPY33PPPdfS0nLRRRcN79m0aVOaprfccksD\npwL4WGm5XG70DABTzje+8Y1rr732Jz/5yRlnnLFnz55jjz328MMP/9nPfpbNZhs9GsCohB3A\nCAYHB0855ZTdu3e/8MILX/3qV+++++4tW7YcfvjhjZ4LoBphBzCyrVu3nnjiiaeeeurjjz9+\n1113XXzxxY2eCOBjCDuAUf31X//1Nddc85u/+ZubN29O07TR4wB8DD88ATCq119/PUmS7du3\nd3d3N3oWgI8n7ABGtmnTpu9///uXXXbZm2+++bWvfa3R4wB8PF+KBRjBrl27jjvuuOOOO+6n\nP/3pFVdccfPNNz/yyCOf+cxnGj0XQDXCDmB/5XL53HPPfeihh7Zu3bp48eKenp5ly5YVi8Wt\nW7d2dnY2ejqAUflSLMD+7r777nvuuedv/uZvFi9enCRJe3v7d7/73TfeeOOqq65q9GgA1bhj\nBwAQhDt2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAgvh/dpxm/WkukXwA\nAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "newcomb.ggplot<-ggplot(data=newcomb) + geom_histogram(binwidth = 1, mapping = aes(x=x), alpha=.5)\n", "ggsave(\"newcomb.ggplot.png\", plot = newcomb.ggplot, device=\"png\", scale=1, width=5, height=4)\n", "newcomb.ggplot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 2 ###\n", "\n", "A variable is created called 'newcomb_1' which filters out all the values of 'x' under 0." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "newcomb_1<-filter(newcomb, x>0)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 3 ###\n", "\n", "The code below gives summary statistics for the filtered data set 'newcomb' and the unfiltered dataset 'newcomb_1'." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\n", "
meanmaxminrangevarsd
27.75 40 16 24 25.841275.083431
\n" ], "text/latex": [ "\\begin{tabular}{r|llllll}\n", " mean & max & min & range & var & sd\\\\\n", "\\hline\n", "\t 27.75 & 40 & 16 & 24 & 25.84127 & 5.083431\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "mean | max | min | range | var | sd | \n", "|---|\n", "| 27.75 | 40 | 16 | 24 | 25.84127 | 5.083431 | \n", "\n", "\n" ], "text/plain": [ " mean max min range var sd \n", "1 27.75 40 16 24 25.84127 5.083431" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\n", "
meanmaxminrangevarsd
26.2121240 -44 84 115.462 10.74532
\n" ], "text/latex": [ "\\begin{tabular}{r|llllll}\n", " mean & max & min & range & var & sd\\\\\n", "\\hline\n", "\t 26.21212 & 40 & -44 & 84 & 115.462 & 10.74532\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "mean | max | min | range | var | sd | \n", "|---|\n", "| 26.21212 | 40 | -44 | 84 | 115.462 | 10.74532 | \n", "\n", "\n" ], "text/plain": [ " mean max min range var sd \n", "1 26.21212 40 -44 84 115.462 10.74532" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stat.table.filtered<-summarise(newcomb_1,\n", " mean=mean(x), max=max(x),min=min(x),range=max(x)-min(x),var=var(x), sd=sd(x))\n", "stat.table.filtered\n", "\n", "stat.table<-summarise(newcomb,\n", " mean=mean(x), max=max(x),min=min(x),range=max(x)-min(x),var=var(x), sd=sd(x))\n", "stat.table\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 4 ###\n", "\n", "The code below uses the dnorm() function to calculate the probability distribution for the filtered and unfiltered datasets.\n", "It takes the 'x' values (from the distribution) as input and returns the probability (taken from the bell curve) as output." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "newcomb_1_pdf<-dnorm(x=newcomb_1$x , mean = 27.75 , sd = 5.083431)\n", "\n", "newcomb_pdf<-dnorm(x=newcomb$x , mean = 26.21212 , sd = 10.745)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 5 ###\n", "\n", "The code below converts the histogram (unfiltered dataset only) into a probability mass function using\n", "the ggplot_build() function and stores the PMF values in a tibble." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data.ggplot.full <- ggplot_build(newcomb.ggplot)\n", "data.ggplot.table <- data.ggplot.full$data[[1]]\n", "histogram.table <- tibble(x = data.ggplot.table$x, density = data.ggplot.table$density, frequency = data.ggplot.table$count)\n", "#data.ggplot.table\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 6 ###\n", "\n", "A plot is created that overlays the normal distribution models on top of the PMF to see how\n", "well that they agree." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAIAAAADp837AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nO3deXwTdeL/8c9MziZtQkspFcopl6jlUARRVLxQEAUEwQK6qCCHLK6LJ/Jd8cCj\n+sVjPTg9VpHlEFwREQREPPjhfkEOESrXbkGBHrRNmzuZ3x/jZpEepNDJtMnr+fDho5nMZN4z\nyQzvTCYTSVEUAQAAoCVZ7wAAACD+UTgAAIDmKBwAAEBzFA4AAKA5CgcAANAchQMAAGiOwgEA\nADRH4QAAAJoz6h1AQx6Px+v16p1CWzabLRQK+Xw+vYPow+FwSJLk8Xj8fr/eWXQgSZLD4XC5\nXOFwWO8sOjCZTDabTQhRWlqqdxZ9WCwWo9FYUVGhdxB92O12o9Ho9/s9Ho/eWfSRnJzs8/kC\ngYDeQX4nNTW1urviuXAoihIKhfROoS1JkoQQcb+Y1TEYDCIxnugqybIsy3IoFErMwmE0GmVZ\nFgn8+lcURZKkhF18SZJkWU7kNSDLcsPa+/GRCgAA0ByFAwAAaI7CAQAANEfhAAAAmqNwAAAA\nzVE4AACA5igcAABAcxQOAACgOQoHAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDm\nKBwAAEBzFA4AAKA5CgcAANCcUe8AAADEyKpVqyoP7N+/f+yTJCCOcAAAAM1ROAAAgObi+SMV\ng8GQnJysdwptGY1GWZZlOaGLo8ViMRrj+ZVcHUmShBB2u11RFL2z6MBgMKh/xP1mXh1180/Y\nxVdfAEajsVZrwGw2Vx7YQNehLMtWq9VkMukd5L/C4XAN9yb0P1QAACA24vl9YSgUcrvdeqfQ\nlsPhCAaDcb+Y1bFarUIIn8/n9Xr1zqIDWZYtFktFRUXN7yrilcViUd/blZeX651FH0lJSWaz\nOWEX3+l0yrIcDAZrtQb8fn/lgQ10HZpMJq/X6/P59A7yOzabrbq7OMIBAAA0R+EAAACao3AA\nAADNUTgAAIDmKBwAAEBzFA4AAKA5CgcAANAchQMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAA\ngOYoHAAAQHMUDgAAoDkKBwAA0ByFAwAAaI7CAQAANEfhAAAAmqNwAAAAzVE4AACA5igcAABA\ncxQOAACgOQoHAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDmKBwAAEBzFA4AAKA5\nCgcAANAchQMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAAgOYoHAAAQHMUDgAAoDkKBwAA0ByF\nAwAAaI7CAQAANEfhAAAAmqNwAAAAzVE4AACA5igcAABAcxQOAACgOWPsZ6koyrJly9atW+dy\nubKzsydMmJCSkhLlOBUVFe++++4///nPQCDQuXPnCRMmNGrUKPaLAAAAakWHIxzLly9ftGjR\noEGDpkyZkp+fP2PGDEVRohlHUZSnn356165d48ePnzp1amlp6aOPPhoKhWK/CAAAoFZifYQj\nHA6vXLly6NCh/fr1E0JkZGRMnjw5Ly+vY8eOpx0nGAz++OOPr732WqtWrYQQbdu2vfvuu7//\n/vtevXrFeCkAAPXfqlWrThny888/t2/fXpcwiPURjvz8/MLCwh49eqg3W7ZsmZGRsXXr1mjG\nOXz4sMFgaNmypTo8JSUlKytr9+7dscwPAADOQKyPcJSUlAgh0tPT1ZuSJKWnp6sDTztOhw4d\nQqHQsWPHMjMzhRBer/fXX39t1qxZZMJAILBt27bIzfT09MaNG2u8QDqTZdlgMJhMJr2D6Clh\n14Asy0IIk8kUDof1zqIDg8Gg/pGYz74QwmAwSJKUsIsvSZL6/xrWQORFEqHuM08Z2EDXoSRJ\nDWvvF+vCUVZWJoRISkqKDLHZbOrA045z4YUXNm/ePDc3d9SoUQaDYcmSJV6v1+/3R0YrLy+f\nOHFi5Oa4cePGjRun3bLUE0aj0WKx6J1CT0lJSSe/WhJN5XOuE43T6dQ7gp4SfPHNZrPZbK7u\n3sr7RoPBUHlgw12HNptN7wi/U/NZlbEuHOrO0ePxRF4iHo8ncjCj5nHMZvOMGTPmzp37wgsv\n2O32fv36hcPhtLS02C4BAACotVgXjtTUVCFEcXFxpFEWFRVlZ2dHOU5GRsa0adPUgYqirFmz\npnv37pEJnU7nxx9/HLlpNptPnDih4cLUA8nJycFg0Ov16h1EH+pLxe12+3w+vbPoQJKkRo0a\nlZSUVP6eVyIwm812u10IEfebeXUsFovZbHa5XHoH0UdycrLJZPL7/RUVFdWNU3nfWOUOs4G+\nhBwOxymH+XWnKEoNRwFiXTiysrLS0tK2bdvWpk0bIcSxY8eOHj3arVu3aMZxuVxPP/30qFGj\nLrzwQiHEvn37jh8/ftlll0UmlGW5efPmkZtut9vtdsdowXSifls4wb8bHA6HE3MNqOdwhMPh\nxDyHI7LUifnsCzZ/IYQQNa+BypuGoiiVBzbcddiw9n6xLhwGg2HgwIGLFy9WW8W8efM6dOig\nfid27dq1BQUFOTk51Y0jSZLRaHzjjTdGjRoly/L8+fP79u2rnkAKAADqMx2uNDpkyJBgMDh/\n/vyKiors7OyJEyeqJxtv2bJl3759OTk5NYwzderUt95667XXXmvUqNHll18+evTo2OcHAAC1\nJcXxp7+J8JGKw+EIBoNxv5jVUU83Li8vT8yzWGRZTktLKy4uTsyPVCwWi3qCeWFhod5Z9JGU\nlGQ2m0tLS/UOog+n02kymXw+Xw1nsUR54a/+/fvXfT7tpaam1sMz2E75FsjJ+PE2AACgOQoH\nAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDmKBwAAEBzFA4AAKA5CgcAANAchQMA\nAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAAgOYoHAAAQHMUDgAAoDkKBwAA0ByFAwAAaI7CAQAA\nNEfhAAAAmqNwAAAAzVE4AACA5igcAABAcxQOAACgOQoHAADQHIUDAABojsIBAAA0R+EAAACa\no3AAAADNUTgAAIDmKBwAAEBzFA4AAKA5CgcAANAchQMAAGiOwgEAADRH4QAAAJqjcAAAAM1R\nOAAAgOYoHAAAQHMUDgAAoDkKBwAA0ByFAwAAaI7CAQAANEfhAAAAmjPqHQAAgKqtWrWqurus\nVqssy6FQyOfzaTGX/v37x2byxMERDgAAoLl4PsJhNBqdTqfeKbRlNBoNBoPJZNI7iJ6SkpIs\nFoveKXTjcDgURdE7hQ5k+bf3S3G/mVdHlmVZluN78a1Wa3V3qS8AWZZrGKcyo9EY5fjRr9gq\nHzAGz4ssyzabrVaLr7VwOFzDvfFcOMLhcCgU0juFttQjioFAQO8g+lCbVjAYDAaDemfRgSRJ\nJpPJ7/cnZuFQ27YQwu/3651FH+rrP74Xv4Z9uCRJkiQpilKr/Xz040e/Yqt8wBg8LwaDob7t\n/RRFqeHtX5wXDo/Ho3cKbZlMpmAwGPeLWR273S6ECAQCXq9X7yw6UN/feL3emt9VxCuLxaLu\n2hL29S+EkCQpvhe/hndTBoNBLRy1escV/Tu06FdslQ8Yg+fFarX6/f6zP4WlbiUnJ1d3F+dw\nAAAAzVE4AACA5igcAABAcxQOAACgOQoHAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgA\nAIDmKBwAAEBzFA4AAKA5CgcAANAchQMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAAgOYoHAAA\nQHMUDgAAoDkKBwAA0ByFAwAAaI7CAQAANEfhAAAAmqNwAAAAzVE4AACA5igcAABAcxQOAACg\nOQoHAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDmKBwAAEBzFA4AAKA5CgcAANAc\nhQMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAAgOYoHAAAQHMUDgAAoDkKBwAA0ByFAwAAaM4Y\n+1kqirJs2bJ169a5XK7s7OwJEyakpKREP86WLVuWLVt28ODBrKysMWPGXHjhhTFfAgAAUDs6\nHOFYvnz5okWLBg0aNGXKlPz8/BkzZiiKEuU4//znP5999tnu3bs/8sgjTZo0eeqpp44fPx77\nRQAAALUS7RGOLl263HHHHTk5Oeecc87ZzC8cDq9cuXLo0KH9+vUTQmRkZEyePDkvL69jx47R\njLN48eKbbrpp+PDhQojOnTs/9dRTeXl5GRkZZxMJAABoLdrCUVJSMnXq1Iceeuj666+/4447\nbrnlFpvNdgbzy8/PLyws7NGjh3qzZcuWGRkZW7duPblwVDdO48aN9+zZM3bsWHW41Wp95pln\nziADAAD11qpVqyoP7N+/f+yT1K1oC8fBgwe/+eabDz74YMmSJatXr05JSRk2bNgdd9zRp08f\nWa7F5zIlJSVCiPT0dPWmJEnp6enqwNOOU1BQIIQoLCycPXv2v//97+bNm48cOfLiiy+OTOj3\n+1euXBm52b59+zZt2kSfrSGSZdloNFqtVr2D6MlkMukdQR+SJAkhLBZL5Q8lE4HR+NvuK2Ff\n/0ajUZbl+F78yLNcmfr6lySphnEqU/eZ0YwZ/Yqt8gHP5nmJ8gElSTKZTOp6qCdq3hdF+zzJ\nstynT58+ffq8+uqrq1ev/uCDDxYuXLhgwYJWrVqNHj169OjRHTp0iOZxysrKhBBJSUmRITab\nTR142nGKi4uFEHPnzh05cmRmZuZXX3311FNP5ebmRmZdUVExc+bMyFTjxo1LkFNKzWaz3hH0\nZLFYLBaL3il0Y7fb9Y6gs+TkZL0j6Cm+F/+0OzdZlmu1AzQYDFGOH/2KrfIBz+Z5if4B61vd\nDIVCNdxb62+pmM3mm2++eeDAgZs3b7777rt/+umnp59++umnn+7Zs+cDDzwwbNiwmtuW+mUT\nj8cTWaEejydyMKPmcdSb48ePv+SSS4QQnTt33rt375o1ayKFQ5Ikh8MReZxEeOcnSVLcL2MN\n1Bdbgq+BBF98wQsggRdfU2e5Yuv8ean8gPXw2a+bIxyRx9q+ffvSpUuXLl26d+9eIUTPnj2H\nDRtWXFy8YMGC4cOH7927d/r06TU8QmpqqhCiuLjY6XSqQ4qKirKzs6MZRx3eunVrdaAkSS1b\ntiwsLIxM2KhRo/Xr10duut3uoqKiWi1gg+NwOILBoNvt1juIPtSqWlFR4fV69c6iA1mW09LS\nTpw4EQ6H9c6iA4vFor45ifvNvDpJSUlms7m0tFTvIBqqYedmtVplWQ6FQj6fL/oHDAQCUe4w\no39dVfmAZ/OyjPIBU1NT3W53rRY/Bk45gnCyaE+/2LJly8MPP9yuXbtu3bo988wzTqfzxRdf\nPHTo0ObNm//85z8/88wz+/bt69Wr16xZs2p+nKysrLS0tG3btqk3jx07dvTo0W7dukUzTsuW\nLe12e15enjpcUZQDBw40b948ykUAAAB6ifYIR8+ePYUQPXr0GD9+/LBhwyKHGSLsdnv37t1P\ne1UMg8EwcODAxYsXq61i3rx5HTp0UL+isnbt2oKCgpycnOrGkSSpf//+s2fP9vv9mZmZa9as\nOXr06OOPP17rhQYAALEVbeF4/vnnhw0bVvOXPl5//fVoHmrIkCHBYHD+/PkVFRXZ2dkTJ05U\nP4jdsmXLvn37cnJyahhn1KhRBoNhyZIlxcXF7dq1e/bZZzMzM6NcBAAAoJdoC8dHH33Up0+f\nyoVjxYoVs2fP/uyzz6KfpSRJw4cPVy/edbJp06addhxJknJyctRSAgAAGorTFI49e/aof/y/\n//f/du3apZ62GREOhz/55JNNmzZplQ4AAMSF0xSO8847L/L3uHHjqhznxhtvrMtEAAAg7pym\ncLz55pvqHxMmTLjvvvvOP//8U0awWCwDBgzQJBoAAIgXpykc48ePV/9YtGjR6NGj1StuAQAA\n1MppCod6Wa309PQvv/wyFnEAAEA8Ok3haNKkicVi8Xq9lS+8cbJDhw7VYSYAABBnTlM4WrVq\npf4sVteuXWOSBwAAxKHTFI7IoYsVK1ZongUAAMSpaH9LRQgRDocPHDig/v3LL7889NBDDz/8\n8M6dO7UJBgAA4ke0Vxo9fPjwzTffnJeXV15eHggErrvuut27dwshXn/99U2bNp3y62sAAAAn\ni/YIx7Rp03bu3Dlp0iQhxIYNG3bv3p2bm7t//36n0/nss89qmRAAADR40R7h+OKLLwYMGPD8\n888LIT7//PPk5OT77rvParX269dv3bp1WiYEAAANXrRHOIqLiyOXGd20adOll15qtVqFEB06\ndDh27JhW6QAAQFyItnC0atVq8+bNQoj9+/d///331113nTp87969/EA8AACoWbSFIycnZ/36\n9aNGjerfv7/BYBg8eHBJSckjjzzy3nvvXXXVVVomBAAADV6053BMnTp17969H374oaIozz77\nbLt27X744Yfnn3++U6dOTzzxhJYJAQBAgxdt4bDZbB988MGcOXOEEHa7XQjRsmXLjRs39ujR\nIykpScOAAACg4Yu2cAghFEU5ceJEeXl5ZEhGRsa//vUvIUTbtm3NZnPdpwMAAHEh2sKxf//+\nQYMG7dq1q8p7jx492rRp07pLBQAA4kq0heOBBx7Iz89/9NFHW7RoIUnSKfemp6fXdTAAABA/\noi0cX3311bx584YOHappGgAAEJei/VpsKBTq0qWLplEAAEC8irZwXH/99Rs3btQ0CgAAiFfR\nfqTy6quv3nzzzSaTacSIERaLRdNMAAAgzkRbOG677bZAIPCHP/zhrrvuyszMNJlMJ9976NCh\nuo8GAADiRbSFIz09PT09vU2bNpqmAQAAcSnawrFixQpNcwAAgDhWiyuNCiG++eabVatWHTt2\nbPLkyRkZGaWlpZ06ddIoGQAAiBvRFg5FUSZMmDB79mz15tChQ0+cONG3b9/JkyfPmjXLYDBo\nlhAAADR40X4tds6cObNnz54wYcLBgwfVIRdddNGUKVNee+21BQsWaBYPAADEg2gLx5tvvnnp\npZe+/vrrrVu3VoekpKS8/PLLvXv3fuutt7RKBwAA4kK0hSMvL+/aa6+t/Csqffv23bt3b12n\nAgAAcSXawtGsWbOioqLKw0+cOJGZmVmnkQAAQLyJtnD07t37gw8++Ne//nXywLy8vPfee69X\nr14aBAMAAPEj2sLx3HPPGQyGiy66aOrUqUKIZcuWjRs3rmvXriaT6bnnntMyIQAAaPBq8ZHK\n5s2be/Xq9dJLLwkh5s2bN2/evOuvv/67777LysrSMiEAAGjwanHhr/bt269cudLtdufl5ZnN\n5rZt21qtVu2SAQCAuFFT4aj5cuZ5eXnqHxkZGb17967LUAAAIL7UVDgGDx4czUP069dv9erV\ndZQHAADEoZoKx4YNGyJ/h0KhSZMmFRQUjB8/vlu3bgaDYfv27W+88caFF164cOFC7XMCAIAG\nrKbCcdVVV0X+fvzxx4uKirZu3dqqVSt1yODBg8eOHdu9e/cXXniBL6oAAIAaRPstleXLl992\n222RtqFq3rz5iBEj/vGPf2gQDAAAxI9oC8fhw4er/ElYSZJ++eWXOo0EAADiTbSFIzs7+6OP\nPiooKDh5YGFh4bJly7p166ZBMAAAED+iLRwPPvjgkSNHLr300nnz5m3btm3r1q3z58+/9NJL\nDx8+/OCDD2oaEQAANHTRXvjr5ptvfuuttx555JGxY8dGBjZu3Hju3Ln9+/fXJhsAAIgTtbjS\n6L333jts2LBNmzbl5eWZTKZ27dpdccUVDodDu3AAgASxatUqvSP8TpV5eIN9NmpROIQQaWlp\nt9xyi0ZR6pzJZGrcuLHeKbQlSZLJZEpKStI7iJ7sdrvdbtc7hW5SU1P1jqCzuN/MayBJUtws\nvs1mO4OpDAZDrSY0mUxnNiNVlWu7ygc8m+clygeUJCk5OTk5OfmMZ1TnQqFQDffWrnA0LMFg\n0O12651CW3a7PRgM+nw+vYPow+l0CiG8Xq/f79c7iw4kSXI4HOXl5eFwWO8sOoj8y1FWVqZ3\nFn1YLBaj0VhRUaF3kLpR2/2YyWSSZTkUCgWDweinCoVCZ7PDrPLFVuUDns3LMsoHTE5O9vl8\ngUDgjGekBXW3XKV4LhyKotS3Z6LOhcPhcDgc94tZs1AolJhrQJZlIUQgEEjMwqEuvhAiMZ99\nIYTRaDQYDHGz+DW/Oa7MZDKdwYThcLi2MzpZlWu7ygc8m+cl+gdsWHu/aL+lAgAAcMYoHAAA\nQHMUDgAAoDkKBwAA0ByFAwAAaI7CAQAANEfhAAAAmqNwAAAAzVE4AACA5igcAABAcxQOAACg\nOQoHAADQHIUDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDmKBwAAEBzFA4AAKA5CgcAANAc\nhQMAAGiOwgEAADRH4QAAAJqjcAAAAM0Z9Q4AAEAdMHs8IhxW/zb6fIZQKGC1elNS9E2FCAoH\nAKDhSTlypNEvv9gPH7YfPuz89VfH0aPmiorKowWtVld6enmTJup/foNBbts2bDDEPjAoHACA\nhsHo852ze3fz7duztm+3FRdHNYnXm3r4cOrhw+rNHkIEFy8+2rHjrxdc8Mv555c2b65lXvwO\nhQMAUK+ZPJ42333XcuvWpnv2GAKBk+/yp6SUZmaWnnNOWWZmeXp6yGgMWq2Re40+X3JBQXJB\nQUphofqH0eczer1Z27dnbd8uhHCnph7q2TPvqqvKzjkn1kuVeCgcAIB6yvHrr52++OLcr782\neb2RgeVNmhzp0uV4jx4l7du7bTafzxflo0nhsHvTpktKS5v9+GOTffvkYNB24kTn1as7f/75\n0U6d8vr2/fdFF4WN/LOoFdYsAKB+kRSl+fbtndaubfbjj0JRhBBCko516HC4a9fDXbqon4NY\nrVZZlkUoFP3DKrJ8uFmzpCuv3HnzzUafr+mePS23bm2zebPR68386afMn37yOhz7+vTZ3a+f\n1+nUaNESGYUDAFCPtNi2rfvixc5fflFvBpKS9l922Z5rr63bTz2CFsuRLl2OdOnyz9tvb/Pt\ntx2+/DLtX/+ylpVd8Omnndat292v34833hhISqrDOYLCAQCoFxofPHjxokVN9+xRb5adc86e\na67Zf/nlmv7DH7Ba866+Ou/qq9MPHOiwfn3b774zer3ZH3/ccf36nTfdtPeaa0Imk3ZzTygU\nDgCAzgz5+X3eeqvN5s3qByilzZptHTYsv1s3IUkxy1DYtm1h27Y7b7mly7JlbTZvtrhcF3/4\n4Xmff/7DkCH7L788lkniFYUDAKCfQMA2a1bSK6+k+v1CCK/T+cOgQT9feaWi06UyXE2afD1+\n/I8DBnRbsiRr+3Z7cfFl8+ad+/XX3911l6tpU10ixQ0KBwBAH8Zdu5Lvu8/4449CiKDZvPuG\nG34cMCBw0vda9XKiRYv1DzyQkZd30aJFTfbvz9yz5+bHH/9hyBDRr5/gomFnisIBAIi5QMA2\na5bt5ZdFICCE8N900z+uvdadmqp3rN853qHD6unTO37xRfelS41e70WLFgX37i1/+eVg5856\nR2uQ+PE2AEBMGX/8sdH119tyc0UgEE5Lc82ZU/b22/WtbagUSdpz3XX/eOaZXy68UAhh3Lat\n0bXX2l56qVZfx4WKwgEAiBVFSXrrrUbXXWfctUsI4R8woOTrr32DB+sd6zTK09O/mDr1m7Fj\nldRUEQjYnnvOedttckGB3rkaGAoHACAWpPLylLvvtk+fLgIBJS3N9dZbZe+8E27SRO9c0dp/\n+eUnvvnGf+21QgjTV1816tvX9O23eodqSCgcAADNGfbsaXTddZZPPhFCBHr2PLFxo+/WW/UO\nVWvhJk3KFi6sePxxYTTKx445hwyxzZolqddCxelQOAAA2rIsW9aoXz/Dvn1CkjwTJpSuWBHO\nzNQ71JmSJM+UKaXLl4fPOUeEQraZM69+6SWLy6V3rAaAwgEA0EwwmPzIIynjx0tut5KS4po/\nv+LJJ0XD/4G0QK9eJRs2BPr2FUI037mz/5NPOn/9Ve9Q9R2FAwCgCcnlcubkWOfPF0KEzjuv\nZM0a38CBeoeqM+HGjUsXLXI//LAiSSnHj9/41FPn7N6td6h6jcIBAKh78pEjzgEDTBs2CCF8\nt9xSsnp1qF07vUPVNVl2T5268b77gmazuaLimhdfbP/ll3pnqr8oHACAOmbcvbvRgAHGn34S\nQnjGjnXNmaPYbHqH0sq/L774s+nTK9LS5FDo0rff7vH++5xGWiUKBwCgLpnXrHH27y8fOSJM\npvJZsypmzhRynP9bc6Jly9XTp59o2VIIcd7atVe99prk8egdqt7R4cwdRVGWLVu2bt06l8uV\nnZ09YcKElJSUKMc5ceLEvHnzdu7c6ff7O3XqNGbMmFatWsV+EQAAVbIuWJD82GMiFFJSUsrm\nz1dPq0wEFWlpn02bdsWbb2b98EOL//u/wNChZQsXKk6n3rnqER1a5/LlyxctWjRo0KApU6bk\n5+fPmDFDqXT0qcpxFEXJzc3Nz8+///77p02b5vP5ZsyY4fV6Y78IAIDKbLNmJT/8sAiFws2b\nl376aeK0DVXQat0wZcqe664TQpi2bHHecot8/LjeoeqRWBeOcDi8cuXKoUOH9uvXr0ePHlOn\nTs3Ly8vLy4tmnOPHj+/atevee+/t3r37hRdeOHny5MLCwv3798d4EQAAp1IU+4wZtpkzhRDB\nzp1LVq8Onnee3pl0oMjyllGjtg8eLIQw/vij86abDP/+t96h6otYF478/PzCwsIePXqoN1u2\nbJmRkbF169ZoxvH7/X369GnTpo06vPIHMQAAHSiKfdq0pL/+VQgR7Nq1bPnyBnxdr7qwfdCg\n8uefF7JsOHjQeeONRr4uK4SI/TkcJSUlQoj09HT1piRJ6enp6sDTjtOiRYsHH3xQHeH48eMf\nf/xxixYtOnbsGJnQ7Xa//PLLkZu9e/fu1auXxgukM6PRKMuyHO8nZNXMYrEYG/51hM6AJElC\nCLvdXvlDyURgMBjUP5KTk/VNohd18z/jxV+xYkWVwwcNGlS7BwqFTOPHG7hEeTQAACAASURB\nVN5/XwgR7tMnuHSpzeGoeUZ79uzp1KnTKQMPHDhQeWAN1Ne/LMtmszn6qQwGQ63GP8UXX3xR\neWDlB9yzZ8/KTp1aTZzY88035ePHbf37f/Xww4Xt20e5bqtMWPmJlmXZarWaTKbossdCOByu\n4d5Y76bLysqEEElJSZEhNptNHRj9OHPnzt20aZMkSQ899NDJ/9L4fL6PPvoocjM9Pf2qq66q\n+2WoZ2RZTsx/biNMJlO92uRizGKx6B1BZ1arVe8Iejrjxa9uv1G7B/R6xe23i08+EUKIgQPl\nxYsrT155RlXutc5sVyZJUq2mis0OU53LkSuv/M5u7zVrlrmi4qpnn/36sceiXLdVJqxy2vq2\n9wuFQjXcG+t/qNTPQTweT6TBeTyeyMGMKMd58MEHp06d+tNPP/3P//yPyWS65JJL1OEGg+G8\nkz41bNy4cTAY1HJp9GcwGBRFqblUxjF1swyHw4m8BuL+RV4dSZLUgxwJuwZkWZYkqeZdfA2q\n22pqsT49HsOQIdIXXwghlNtvD82fL4xGUWnyyjOqcq9V211Z5MhuraaKzQ4zMpcj3bt/9eij\nl7/wgsnjufyZZ0KXX65cfvlpJ68yYeXnxWAwhMPhenWAMxwORw49VhbrwpGamiqEKC4udv7n\ny0JFRUXZ2dnRjLNnz55Dhw7dcMMNQghJkjp37ty+ffvNmzdHCofD4fjb3/4WeRy3233KhzXx\nx+FwBINBt9utdxB9qDXU7XYn5peVZFlOS0srKytLzL5lsVjUNydxv5lXJykpyWw2l5aWntnk\n1W01Ua5Pyet1jB4tffmlEMJ7553lL7wgKiqinFEwGIxyYA2sVqssy6FQyOfzRT9VbedyZk6e\nS37btl88+OA1ublmj0e56aayDz8MXHppzZNXmbDy85Kamup2u2u1+DFwyhGEk8X6s/+srKy0\ntLRt27apN48dO3b06NFu3bpFM05RUdGcOXMq/vOaDoVCBQUFjRs3jmV+AIDk96fcdZdJbRuj\nR5fn5sb9pb3ORsG556595BGf3S5VVDiGDzdt2qR3In3E+giHwWAYOHDg4sWL1VYxb968Dh06\nqCd+rl27tqCgICcnp7pxPB6P0+l8/vnnhw4dajAYPvvss7KysquvvjrGiwAAiUzy+1PGjDGv\nXSvUtvHSS0KS9A5V3xW1br32oYcGvPyydOKEY+TIsvffD1xxhd6hYk2Hkw2HDBkSDAbnz59f\nUVGRnZ09ceJE9WTjLVu27Nu3Lycnp7pxbDbbE0888fbbbz/33HNCiHbt2s2cOfOcc86J/SIA\nQGKSfL6UO+4wr18vhPCOGVP+/PO0jSgVt25d+ve/O4cNk0pLHaNGlS1cGIjifI54okPhkCRp\n+PDhw4cPP2X4tGnTTjtOq1atnnjiCa0TAgAq+13b+MMfaBu1FezWrXTpUuewYVJJiWPkyLIl\nSwL/OQcxEfCpGwAgCoFAyj33/NY21LNEaRu1F+zatXTpUsXplNxux+23G3/4Qe9EsUPhAACc\nTiiUMmmSefVqIYR31Kjy3FzaxhkLdulS+uGHit0ulZU5hw83/vST3olihMIBAKiRoiQ/9JBl\n+XIhhG/gwPIXX6RtnKVgjx5lixcrNptUXOwYPNjw+x8Ui1cUDgBATewzZljfe08I4b/xRtec\nOaL6KzsheoFLLil7913FbJaLipxDhxr+9S+9E2mOwgEAqJbtmWeSXn9dCBHo29c1b55I7B9S\nqFuBq65yzZkjjEb5118dQ4bIv/yidyJtUTgAAFVLeuUV28svCyECvXqpb8f1ThRv/AMGuF57\nTciy4d//dg4bJhcX651IQxQOAEAVrO+8Y3/6aaH+4vzChcpJP6iJOuQbOlQ9LcaQl+cYMUIq\nL9c7kVYoHACAU1lWrEh++GEhROi880r//nclJUXvRPHMO3p0xfTpQgjjtm2OO+4wBAJ6J9IE\nhQMA8Dumr75KnjRJhMPh5s1LP/xQSUvTO1H880ye7Jk8WQhh2rTpitdfl870R4DrMwoHAOC/\njP/3f4477pD8/nDjxqVLl4abN9c7UaKomD7de8cdQogW27ZdNn++VJ9+d75OUDgAAL9pdOSI\n8/bbpYoKJSWlbPHiULt2eidKJJJUnpvru+UWIUTbb77p8f77egeqYxQOAIAQQiQXFFz7wgvS\niROK1Vq2cGEwO1vvRIlHll1vvPHrBRcIITp98cUFK1fqHaguUTgAAMJaVnZdbq6tpESYTK75\n8wO9eumdKFGZzRsmTy4491whRPelS9t99ZXegeoMhQMAEp3J673mpZdSjh0TkuR65RX/9dfr\nnSihBa3W9Q88UNq8uVCUS995p8W2bXonqhsUDgBIaHIweOVrrzU+dEgI8c8RI3zDhumdCMKX\nnLz2wQcr0tOlUOiKN97I2LtX70R1gMIBAIlLUpTLZ89utmuXEGLXTTftvuEGvRPhN+7U1LUP\nPeR1OAx+/9WzZhl37dI70dmicABA4rp44cLWW7YIIQ707r116FC94+B3ypo2Xf+nPwWtVrPH\n47j9dkN+vt6JzgqFAwASVPbHH5+3Zo0Q4nDXrt/ccw8/Ol8PFbZtu3HSpLDBIB896hg2TC4q\n0jvRmaNwAEAi6rBhQ9ePPhJCHG/ffuOkSQo/Ol9fHcnO/vbuu4UkGfbvd4wYIVVU6J3oDFE4\nACDhmD/9tOd77wkhSrKy1v/pTyF+BrZ+O3DZZRV/+YsQwvjDD44xY4Tfr3eiM0HhAIDEYvr2\n25R775XCYXda2roHHvDb7Xonwul5Jk3yTJokhDBt2JBy330iHNY7Ua1ROAAggRh++slx552S\nz/fbFy8bN9Y7EaJV8Ze/eG+/XQhhWb48+dFH9Y5TaxQOAEgUsvpTKSUlSlLS+vvvL23WTO9E\nqA1JKn/pJf811wghrAsWSM8/r3eg2qFwAEBCkIuKnLfeKh85Ikwm14IFBe3b650ItWcyuRYs\nCF50kRBCfvxxU4P6gTcKBwDEP6miwnH77Yb9+4UkuWbN8l97rd6JcIYUm61s4cJQ+/ZCUax/\n/KP588/1ThQtCgcAxDu/3zFmjHHbNiFExf/8j2/4cL0D4ayE09JKFy8WWVkiGEy55x7T5s16\nJ4oKhQMA4lo4nDJpkmnDBiGEZ+JEz3336R0IdSCclRVetUpJTZW8XseoUcbdu/VOdHoUDgCI\nZ/bp0y0rVgghfMOGqddyQHxQOnf2fPSRYrdLpaWOW281HDigd6LToHAAQNyyvfBC0pw5Qgj/\n9de7Xn1VyOzz40rooovK3n1XmM1yYaFj+HD5+HG9E9WEFx8AxCfrggW23FwhRKBnT9f8+cJo\n1DsR6l7gyitdL78sJMlw6JDj9tsll0vvRNWicABAHLJ8/LF6bajgeeeVffCBYrXqnQha8Q0b\nVvHkk0II444djjvukHw+vRNVjcIBAPHGvGFDysSJIhwOtWxZtnix4nTqnQja8owf75kyRQhh\n+vrrlHvuEcGg3omqQOEAgLhi+v77lDvvFH5/uEmTsiVLwpmZeidCLFRMm+a9804hhHn16pT7\n7xeKoneiU1E4ACB+GH/6yZGTI3k8isNRtmhRqG1bvRMhViSp/IUXfIMHCyEsf/97PfyxFQoH\nAMQJw8GDjqFD1Z9KKfvgg2B2tt6JEFuy7Hr9dfUystb589VThusPCgcAxAP5118dt94qHz8u\nTCbX228HevXSOxH0cNKzb3vhhaQ339Q70H9ROACgwVN/mM2Qny8MBtdbb6k/KIrEpFitZe+/\nHzz/fCGE/YknrIsW6Z3oNxQOAGjYpNJSx223GX7+WUhS+Ysv+m6+We9E0JnidJYtXhxq00aE\nw8n332/5+GO9EwlB4QCABk0qL3eOGGHcsUMIUfHEE95Ro/ROhHohnJFR+tFH4RYtRCiUMmGC\nefVqvRNROACg4XK7HaNGGf/5TyGE++GHPRMn6h0I9Ug4K6v0o4/CmZkiEHDcfbd53Tp981A4\nAKBh8vuNI0aYvvlGCOEZP949daregVDvhFq3Ll2xItykifD7U8aMUV8teqFwAEADFAhYR42S\nVq8WQnjuuafiqaf0DoR6KnTuuWVLlyqpqZLH4xg92rh1q15JKBwA0NAEgynjxhlWrRJCeO+4\no2LmTL0DoV4Ldu5c+uGHSnKyCIclj0evGPx4IAA0KMFgyoQJlpUrhRDhUaPKc3OFJOmdCfVd\n8KKLyhYuVIzGYI8eemWgcABAwxEMpowfr37LMXjrrcrcuaK8XO9MaBgCl16qbwA+UgGABiIU\nSrnvPrVt+AYO9M2fLwwGvTMB0YrzIxySBkcaV61aVXlg//7963xG0dNiMRuWxFwD6lJLkhQ3\ni1+rjSuy1HGz+KcRCiVPmmRZtkwI4b/llvLZs5NMJnEWi1/dhFE+YJVPVpQPWOWL9oxfybWa\nKjbbS5Vz+fnnnz/77LNTBlb58q4yYeVprVbrjTfeeMrIVT4vP//8c/v27aOZtabiuXCYTCab\nzVbnD5uUlFR5YOPGjet8RlEym81aLGYDkpycnJycrHcK3aSmpuodoc6c2cal49YXO6GQGD1a\nLFsmhBDDhpkXLmxs/G3vfcaLX+Xajv4Bq5s8GkajsfLkVQ48LYPBUKupzmwutRX9Ala5tqNP\nWHnvV+W00c/6LIVCoRrujefCEQwGyzX4dNPr9VYeeOLEiTqfUTSSk5ODwWCVkRKB+m+t2+32\n+Xx6Z9GBJEmNGjUqLS0Nh8N6Z6kbtdq4zGaz3W6vYYT4EQjY77nH/MknQgj/rbdWvPGGcLmE\nEFar1Wg0nvFerrr9RpTr82x2O1XutWq7KzObzbIsh0KhQCBwlrOuc9EvYJVrO8qEFouloqLC\n7/efdtroZ32WFEVJS0ur7t54LhyKotTcts5MlTt3LWYUDUVRNFrMBiQcDifmGpBlWQgRCoXi\npnDUauOKjBzfz77k9abcdZd57VohhO/WW12vvy6EEKGQ+M8aOOPFr+5lE+UDns2rTlGUypNX\nObDOk5zxXGol+gWscm1Hn7Dy3q/KaaOftabiuXAAQIMmlZc7Ro82ff21EMJ3222uV1/lLFE0\nXHxLBQDqI6m01HnbbWrb8N55p+u112gbaNAoHABQ78iFhc5bbjF+/70QwjN5cnlurpDZXaNh\n4yMVAKhf5GPHnEOHGvbsEUJ4/vjHiunT9U4E1AEKBwDUI4a8POfw4fLhw0KSKp55xjN2rN6J\ngLpB4QCA+sK0ZYtj1CjpxAlhMJT/7/96c3L0TgTUGQoHANQL5s8+Sxk3TvJ6FbO5/M03fTff\nrHcioC5ROABAf9YPPkieOlUEg0qjRmXvvx/o2VPvREAdo3AAgK4UxZaba8vNFUKEWrQo+/vf\nQ5V+9gKIAxQOANCN5PMl/+lPliVLhBDBCy4oW7Qo3LSp3qEATVA4AEAfckGB48471YttBK64\nouydd5SUFL1DAVrhSjIAoAPj7t2N+vVT24Z35MjSDz+kbSC+cYQDAGLN/MUXKePGSS6XMBgq\nHnvM88c/6p0I0ByFAwBiSFFsr7xie/ZZEQ4rDodrzhz/NdfonQmIBQoHAMSI5HIlT5li+eQT\nIUSodeuy998PdeyodyggRigcABALhp9+ctx1l2HfPiFE4LLLyhYsUNLS9A4FxA4njQKA5ixL\nlza64QbDvn1Ckjxjx5YuWULbQKLhCAcAaEjy+21PPJE0d64QQklOLn/lFa5ZjsRE4QAArRgO\nHEi5917jDz8IIYKdO7vefjvUtq3eoQB98JEKAGjC+v77ja6+Wm0bvuHDS1evpm0gkXGEAwDq\nmFRcnPLAA+ZPPxVCKHZ7xTPPeEeO1DsUoDMKBwDUJdNXX6Xcd5/8669CiGC3bq433wyde67e\noQD9UTgAoG5Ibrft6aeT5s0TiiIMBveUKe6pU4XJpHcuoF6gcABAHTBt2JD85z8b8vOFEKEW\nLcrffDPQs6feoYB6hJNGAeCsSMXFKZMnO2+7zZCfLyTJO2pUycaNtA3gFBzhAIAzZ/788+QH\nH1TP2Ai1bFn+v/8buPJKvUMB9RGFAwDOhOHnn+3Tppk3bBBCCKPRc++97ocfVpKS9M4F1FMU\nDgCoHamszPbii0nz5olAQAgRPP/88pdfDnbtqncuoF6jcABA1MJh64cf2p5+Wi4sFEIoTqf7\nwQc9d93FV1GA06JwAEBUTBs32p96yrh9uxBCyLJ35Ej3Y4+F09P1zgU0DBQOADgN4/ff22fO\nNH39tXozcMklFc8+G8zO1jcV0LBQOACgWsZdu2zPPmtes0a9GWrVyv3YY77Bg4Uk6RsMaHAo\nHABQBeOOHUkvv2xZuVIoihAifM457j//2ZuTw+kawJmhcADA75g2brS99ppp40b1ZrhxY8+U\nKd4xYxSrVd9gQING4QAAIYQQoZBl5cqkV1817tihDginp3vHjfOMHaskJ+sbDYgDFA4AiU4u\nKLB8+KH1nXfUX0IRQoRatPCOH+8dPZoLeQF1hcIBIFEpiumbb6zvvGNZtUq9hJcQInjhhZ7J\nk3033ywMBn3TAXGGwgEg4ciHD1uWLbP+/e+Gn3/+bZDJ5LvhBu+YMYE+fXSNBsQtCgeARCGV\nllo++cSyZIlp82YRDqsDw82be0eP9o4aFW7aVN94QHyjcACIc1JJiXntWsuqVaa1ayWf77eh\nZrP/6qu9OTn+66/n0xMgBigcAOKTfOSI+bPPLKtXm779NnKKhpCkwMUX+4YO9Q0apKSl6RoQ\nSCwUDgDxQ/J6jZs3mzduNH35pfHHH9VrdqmCF1zgv+km39ChoVatdEwIJCwKB4AGLhAwbt9u\n+u4788aNxs2b//uhiRDCYAj06uW/8UZ///6hFi30iwiAwgGgAZJOnDBu3y62bhXffNN4yxbJ\n6z353nCTJoErrvD37eu/7jo+NwHqCQoHgAZAKi427thh3L7duGOHcccOw6FD/71LCCGEkpQU\n6NUrcNVVgSuvDHbuzI+rAfUNhQNAvWPyeJy//NLo8GHnr7863n3XmJcnHz5cxXiZmaJ374qu\nXQM9egS7dOFn1YD6TIfCoSjKsmXL1q1b53K5srOzJ0yYkJKSEuU40UwLoAGRi4rk/HzDwYOG\nQ4cu27Qp5fjxlGPHkkpKqhxZSUkJXnhhMDs72KWL3Lu3PTtbCOEpLIxtZABnQofCsXz58kWL\nFo0dOzYtLe29996bMWNGbm6u9Pvjn9WNE820AOoVye+XCgrkX3+VCwvlo0fl48flw4cNv/wi\nHzkiHz588ukX5/5+QkWWXU2aWC++ONi+fej884PZ2aE2bSKflVgslhguBICzFevCEQ6HV65c\nOXTo0H79+gkhMjIyJk+enJeX17Fjx9OO0759+9NOCyA2JLdbqqiQXC6ptFQqKZHLyqSSEqm0\nVC4uloqL5eLi3/4oKpKqOVxxinB6elGjRq6mTcsyMsoyM8uaNStt1ixkNPbv31/rZQEQA7Eu\nHPn5+YWFhT169FBvtmzZMiMjY+vWrSeXhurGsVqtp50WgBBC+P2S263+KYXDksv123C3W/L7\nhRCS3y/cbiGEVFEhBYMiGJTKy4UQUmmpUBS5tFQIIZWUqMMlt1vy+aSyMsnrldxuyeWSysoi\nlwavFcVsVjIyQs2ahVu0CDdvHmrWLJyVFc7KCrVqpSQnf7ZqVV0sPID6KNaFo6SkRAiRnp6u\n3pQkKT09veT3b4CqG+e005aXlz/00EORmzfeeOMNN9xQ54tgtVrVP1p++22b9evVvxu/916d\nzyhKJiES9/ezJUkIYVcUu95Bqubzif/8q19rJ05Ue1co9N8CIcRvX/r0eoXHc4bzqisWi2jU\nSElNFY0bK40bi/R0kZGhpKWJjAwlM1NkZiqZmeI/X1KVhZAr7YAiG9fJnE5nlXOTZbnmEeKe\nLMuyLJ/x4le5tkXU67O6yaNhNBorT17lwBqoLwBZlms1VW3ncmaiX8Aq13aUCSVJstlsp4xc\n5bTRz/oshWt8HxLrwlFWViaESEr67z+RNptNHXjacU47bSAQ2LJlS+Rm165dTRqctR7ZzSUX\nFDTdubPOHx+1xSk8dSVgsymSFLDZhCz/9rfdHjaZin0+W9OmIaMxaLMFrVb1v4PFxU3btw9a\nrQG7PZCc7LfZQjWcVOFyCZdLRH6atRqRjSti9+7dH3/8ceWBnTt3PqNFrIUq56LjrOvcnj17\nqlzAyiu8SpWfrOhJklR58ioHRvNQtTqN78zmUlvRL2CVazv6hMuXLz9lSJVPa5Wz1uLfx1Ao\nVMO9sS4c6pdKPB6P2WxWh3g8nshBi5rHOe20ZrP52muvjdxs1aqV7+RrDtaRgQMHqn/IihLW\n4PFrRd3SlJOu35xQ1E1IUZRT1oBis4n/vEjqu5QUYTz9ZqhYraLSGxRJkgwOR/D3+xElJeW/\nP0VmMAiHIzK2EnlD06jRb6deOp2KJAmLRdhskUcwnvR/VWpVkS44bei6ENncKg80GAxGo1EI\nocVmXvOstRblXAwGgyzLgcjPxNTFXHRcwNrO2mQyybIcCoWCweBZzrrOxWbdms3mUCh0yr/x\n0c9aiw1HURRD9T+FGOvCkZqaKoQoLi6OHMwpKirKzs6OZpzTTmu325977rnITbfb7TrpyHPd\n69tX9O2r4eNHweFwBINB9xkft2/g1LpZUV7u/f2FJhOELMtpaWllxcU1H8Y8vVBIaLqlaMNi\nsahvQrTdzOuxpKQks9mcsIvvdDplWQ4Ggwm7BlJTUz0ej0aF+4zV8HmQ5keWTpGVlZWWlrZt\n2zb15rFjx44ePdqtW7doxolmWgAAUA/F+giHwWAYOHDg4sWL1fYwb968Dh06qF8zWbt2bUFB\nQU5OTnXjSJJU3bQAAKA+0+HCX0OGDAkGg/Pnz6+oqMjOzp44caJ6IsKWLVv27duXk5NTwzjV\nDQcAAPWZFMfnG7rd7rg/uYFzOIQQ5Yl9Dkfx2Z/D0TBFzuEoTNRLm6vncJSWluodRB9Op9Nk\nMvl8vkQ+h8Ptdte3czhO+RbIyWJ9DgcAAEhAFA4AAKA5CgcAANAchQMAAGiOwgEAADRH4QAA\nAJqjcAAAAM1ROAAAgOYoHAAAQHMUDgAAoDkKBwAA0ByFAwAAaE6HX4tFHfL7/aFQSO8Uupk/\nf76iKN27d2/ZsqXeWXSgKIrH44nj31+s2YEDB77//nshxC233JKYvxodDAYT9tkXQnz22WfH\njx9v1apVt27d9M6iD6/X27D2//FcOGw2m81m0zsFNDR37txgMDh9+vTu3bvrnUU3SUlJekfQ\nx5YtW9566y0hxF133SXLiXuwNjk5We8I+li9evWWLVsGDBhw3XXX6Z0FUUncrRQAAMQMhQMA\nAGiOwgEAADQnJfI5R2joysrKhBBWq9VsNuudBbEWCAQ8Ho8QwuFw6J0FOnC73cFg0GQyJexp\nTA0OhQMAAGiOj1QAAIDmKBwAAEBz8XwdDsQrt9v9t7/9bcuWLS6Xq3Xr1iNHjuzSpYsQYtWq\nVeqFGSJyc3M7duyoU0xoSFGUZcuWrVu3zuVyZWdnT5gwISUlRe9Q0BBbfRygcKDhmT179g8/\n/HDPPfc0btz4iy+++Mtf/vLCCy906NDh6NGj7dq1u/XWWyNjNmvWTMec0M7y5csXLVo0duzY\ntLS09957b8aMGbm5uYl5vdEEwVYfBygcaGC8Xu+GDRvuv//+Pn36CCHOO++8ffv2rVmzpkOH\nDseOHevYseNll12md0ZoKxwOr1y5cujQof369RNCZGRkTJ48OS8vj/e18YqtPj5wDgcamKKi\nojZt2lxwwQXqTUmS0tLSTpw4IYQ4evRoZmam2+0+fvw4X7+KY/n5+YWFhT169FBvtmzZMiMj\nY+vWrfqmgnbY6uMDRzjQwDRv3vyVV16J3MzPz9+5c+eoUaMURTl69OiGDRsWLFigKIrdbv/D\nH/6gvgNGnCkpKRFCpKenqzclSUpPT1cHIi6x1ccHCgcaKkVRNm/e/Ne//rVdu3YDBgxwuVw+\nn69169aPPfaY1Wr99NNPX3/99aZNm3bt2lXvpKhj6gXfTr7ck81mUwcivrHVN2gUDtR3mzdv\nnjlzpvr39OnT1QPphYWFf/3rX3fs2DFo0KARI0aYzWaz2bxixYrIVCNGjPj+++83btzIrif+\nqF9I8Xg8kSvMejyeyAEPxCu2+oaOwoH6rnv37u+++676t91uF0IcOHBg2rRpbdu2feONNzIz\nM6ucSpKkrKwsDrPHpdTUVCFEcXGx0+lUhxQVFWVnZ+saCtpiq48DnDSK+s5sNqf+h9lsDoVC\nM2fOvOSSS5588smT9ztbtmwZOXLkL7/8ot5UFOXgwYOtWrXSKTU0lJWVlZaWtm3bNvXmsWPH\njh492q1bN31TQTts9fGBIxxoYHbs2HH8+PFBgwZ9//33kYFpaWldu3a12+0vvvji4MGD09LS\n1qxZU1BQMHDgQB2jQiMGg2HgwIGLFy9Wm8e8efM6dOjAd2LjGFt9fODH29DArFy5cs6cOacM\n7N279yOPPHL06NH58+f/+OOPQohOnTqNGTOmRYsWemSE5hRFWbx48fr16ysqKrKzsydOnJic\nnKx3KGiFrT4+UDgAAIDmOIcDAABojsIBAAA0R+EAAACao3AAAADNUTgAAIDmKBwAAEBzFA4A\nAKA5CgcAANAchQMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROADUC9u2bTOZTGPGjIkMWblypSRJ\nL774oo6pANQVfi0WQH3x5JNP/uUvf1m9enW/fv1KSkrOP//8tm3bfvnllwaDQe9oAM4WhQNA\nfREIBHr27FlUVLRr164//elPixYt2rFjR9u2bfXOBaAOUDgA1CM7d+686KKLevfuvXHjxjlz\n5owdO1bvRADqBoUDQP3y9NNPT58+/dprr12zZo0kSXrHAVA3OGkUQP1y8OBBIUReXl55ebne\nWQDUGQoHgHpk5cqVCxYsmDx58uHDhx966CG94wCoM3ykAqC+KCws81JJ8wAAAKpJREFUvOCC\nCy644IK1a9c+/PDDubm569atu/rqq/XOBaAOUDgA1AuKogwfPnzVqlU7d+5s06aN2+3Ozs4O\nhUI7d+5MTk7WOx2As8VHKgDqhUWLFi1ZsuS5555r06aNEMJms82dO/fQoUOPPvqo3tEA1AGO\ncAAAAM1xhAMAAGiOwgEAADRH4QAAAJqjcAAAAM1ROAAAgOYoHAAAQHMUDgAAoDkKBwAA0Nz/\nBxc116/hEbdmAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAIAAAADp837AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nO3deZwU9Z3/8U9V9TUHM8zBgBzDIafCcChyKFH8aVAMigajQfShm/VAY8yBR9Z1\nE43xiMlvs4m34K7607AoQRMWXRQQiYpgOAZEGGBAB2WGuWCO7umzfn8UdJA56Bm6+jvd/Xo+\nePCYrq7jU9Xd1e+u+ta3NNM0BQAAwE666gIAAEDqI3AAAADbETgAAIDtCBwAAMB2BA4AAGA7\nAgcAALAdgQMAANiOwAEAAGznUF2AjXw+X0tLi+oq7JWZmRkOh/1+v+pC1MjJydE0zefzBQIB\n1bUooGlaTk5OY2NjJBJRXYsCTqczMzNTRI4cOaK6FjXcbrfD4WhublZdiBpZWVkOhyMQCPh8\nPtW1qJGdne33+4PBoOpCviEvL6+9p1I5cJimGQ6HVVdhL03TRCTlV7M9hmFIerzQbdJ1Xdf1\ncDicnoHD4XDoui5p/P43TVPTtLRdfU3TdF1P5y2g63py7f04pQIAAGxH4AAAALYjcAAAANsR\nOAAAgO0IHAAAwHYEDgAAYDsCBwAAsB2BAwAA2I7AAQAAbEfgAAAAtiNwAAAA2xE4AACA7Qgc\nAADAdgQOAABgOwIHAACwHYEDAADYjsABAABs51BdAAAACbJixYrWA2fOnJn4StIQRzgAAIDt\nCBwAAMB2qXxKxTCM7Oxs1VXYy+Fw6Lqu62kdHN1ut8ORyu/k9miaJiJZWVmmaaquRQHDMKw/\nUv5j3h7r45+2q2+9ARwOR6e2gMvlaj0wSbehrusej8fpdKou5B8ikUgHz6b1FxUAAEiMVP5d\nGA6HvV6v6irslZOTEwqFUn412+PxeETE7/e3tLSorkUBXdfdbndzc3PHvypSldvttn7bNTU1\nqa5FjYyMDJfLlbarn5ubq+t6KBTq1BYIBAKtBybpNnQ6nS0tLX6/X3Uh35CZmdneUxzhAAAA\ntiNwAAAA2xE4AACA7QgcAADAdgQOAABgOwIHAACwHYEDAADYjsABAABsR+AAAAC2I3AAAADb\nETgAAIDtCBwAAMB2BA4AAGA7AgcAALAdgQMAANiOwAEAAGxH4AAAALYjcAAAANsROAAAgO0I\nHAAAwHYEDgAAYDsCBwAAsB2BAwAA2I7AAQAAbEfgAAAAtiNwAAAA2xE4AACA7QgcAADAdgQO\nAABgOwIHAACwHYEDAADYjsABAABsR+AAAAC2I3AAAADbETgAAIDtCBwAAMB2BA4AAGA7AgcA\nALAdgQMAANiOwAEAAGxH4AAAALYjcAAAANsROAAAgO0IHAAAwHYEDgAAYDsCBwAAsJ0j8Ys0\nTXPp0qWrVq1qbGwsKSmZP39+jx49Yhynubn5pZde+vTTT4PB4BlnnDF//vyePXsmfhUAAECn\nKDjCsWzZssWLF8+ePfuuu+6qqKh48MEHTdOMZRzTNB9++OHt27ffdtttCxYsOHLkyM9//vNw\nOJz4VQAAAJ2S6CMckUhk+fLlc+bMmTFjhogUFRXdeeedZWVlI0aMOOk4oVDos88+++Mf/zhw\n4EARGTJkyA9+8IONGzdOnjw5wWsBAOj+VqxYccKQ3bt3Dxs2TEkxSPQRjoqKipqamokTJ1oP\ni4uLi4qKNm3aFMs4Bw4cMAyjuLjYGt6jR4/+/fvv2LEjkfUDAIAuSPQRjsOHD4tIYWGh9VDT\ntMLCQmvgSccZPnx4OByuqqrq06ePiLS0tBw8eLBv377RCYPB4ObNm6MPCwsLCwoKbF4hxXRd\nNwzD6XSqLkSltN0Cuq6LiNPpjEQiqmtRwDAM64/0fPVFxDAMTdPSdvU1TbP+72ALRN8kUdY+\n84SBSboNNU1Lrr1fogNHQ0ODiGRkZESHZGZmWgNPOs6YMWP69ev3xBNPzJs3zzCM119/vaWl\nJRAIREdramq6/fbbow9vueWWW265xb516SYcDofb7VZdhUoZGRnHv1vSTes21+kmNzdXdQkq\npfnqu1wul8vV3rOt942GYbQemLzbMDMzU3UJ39Bxq8pEBw5r5+jz+aJvEZ/PFz2Y0fE4Lpfr\nwQcffOGFF37zm99kZWXNmDEjEonk5+cndg0AAECnJTpw5OXliUhdXV00UdbW1paUlMQ4TlFR\n0f33328NNE1z5cqVEyZMiE6Ym5v71ltvRR+6XK76+nobV6YbyM7ODoVCLS0tqgtRw3qreL1e\nv9+vuhYFNE3r2bPn4cOHW1/nlQ5cLldWVpaIpPzHvD1ut9vlcjU2NqouRI3s7Gyn0xkIBJqb\nm9sbp/W+sc0dZpK+hXJyck44zK+caZodHAVIdODo379/fn7+5s2bBw8eLCJVVVWVlZXjx4+P\nZZzGxsaHH3543rx5Y8aMEZE9e/YcOnTo3HPPjU6o63q/fv2iD71er9frTdCKKWJdLZzm1wZH\nIpH03AJWG45IJJKebTiia52er77w8RcRkY63QOuPhmmarQcm7zZMrr1fogOHYRizZs1asmSJ\nlSoWLlw4fPhw65rYd999t7q6eu7cue2No2maw+F4+umn582bp+v6okWLpk+fbjUgBQAA3ZmC\nnkavuuqqUCi0aNGi5ubmkpKS22+/3WpsvGHDhj179sydO7eDcRYsWPDss8/+8Y9/7Nmz53nn\nnXf99dcnvn4AANBZWgqf/U2HUyo5OTmhUCjlV7M9VnPjpqam9GzFout6fn5+XV1dep5Scbvd\nVgPzmpoa1bWokZGR4XK5jhw5oroQNXJzc51Op9/v76AVS4wdf82cOTP+9dkvLy+vG7ZgO+Eq\nkONx8zYAAGA7AgcAALAdgQMAANiOwAEAAGxH4AAAALYjcAAAANsROAAAgO0IHAAAwHYEDgAA\nYDsCBwAAsB2BAwAA2I7AAQAAbEfgAAAAtiNwAAAA2xE4AACA7QgcAADAdgQOAABgOwIHAACw\nHYEDAADYjsABAABsR+AAAAC2I3AAAADbETgAAIDtCBwAAMB2BA4AAGA7AgcAALAdgQMAANiO\nwAEAAGxH4AAAALYjcAAAANsROAAAgO0IHAAAwHYEDgAAYDsCBwAAsB2BAwCQFjyNjTmNjVok\norqQNOVQXQAAALbrv3Xr+X/4gxEKmYbhzc1tLijw5uc3FxTsuvBC1aWlCwIHACDF5X711bRn\nnjFCIRHRwuGsurqsujrrqeK//z0wZ46ZlaW0wLRA4AAApDJ3c/OFv/+90+cLeTzLLrmkf35+\nZl1dVm1tVl3daTt29Kiqannggab/+39Vl5n6CBwAgJSlhcPfevLJHocOiaZ99IMflObl+YYN\niz47+aWXhq9e7XnlleD06f5ZsxTWmQ5oNAoASFnnvPbaaTt2iMiWq67af845Jzz76fe/33Da\naSKStWCBfuiQgvrSCYEDAJCahq5bN+K990Tky7PPLm3rAEbI5frgttvE6dTr6rJ/+EMxzYTX\nmEYIHACAFOT85JPJ//VfIlJXXPy3W24RTWtztLpBg7w/+5mIuNas8bz0UiIrTDcEDgBAqtGa\nm3vceKMeCvlyc9f85Ccht7uDkb133RWaOFFEsn7xC2PPnkTVmHYIHACAVON+4w29pkY0be2d\ndzbn559kbIej8emnzawszevtcfvtEgwmpMa0Q+AAAKQaz3/9l4hUjRhx6LhrUjoQHjSo+de/\nFhHH5s2cWLEJl8UCALqpFStWtPeUx+PRdT0cDvv9/hOe6rVnz6Xbt4vIrunTO7GUvLxvjxrV\n5/PPg08/vaJv35kzZ55KkbFPnj44wgEASCnDV68WkZYePSrOPrtTE5ZNny4ieRUV+fv321FY\nmkvlIxwOhyM3N1d1FfZyOByGYTidTtWFqJSRkeHusEVYasvJyTHT8lo+XT/6eynlP+bt0XVd\n1/XUXn2Px9PeU9YbQNf1E8ZxNTcP+vRTEdl30UXO7OwTdo4Oh6ODeR4699zAK6+4GhtHfvxx\n7s9/fipFJuB10XU9MzOzg9VJvEiHN8ZL5cARiUTC4bDqKuxlHVEMpmsTJytphUKhUCikuhYF\nNE1zOp2BQCA9A4eVtkUkEAiorkUN6/2f2qvfwT5c0zRN00zTPGGcgatWGX6/qWm7L7ig9eSt\nx//G4jTtiylThq1cWfy3vwUaGiS27/I2Z5iA18UwjO629zNNs4OffykeOHw+n+oq7OV0OkOh\nUMqvZnuysrJEJBgMtrS0qK5FAev3TUtLS8e/KlKV2+22dm1p+/4XEU3TUnv1O/g1ZRiGFTi+\nMY5pnr5qlYh8NXbs4Z49W19vctJfaGXnnjts5UpXU5P/zTf9V1zR5SIT8Lp4PJ5AINC6CYta\n2dnZ7T1FGw4AQIo47bPPciorRaTLN52vHTSovrhYRNyvvRbPykDgAACkjBGrV4tIc0HB12PG\ndHkme887T0Rc77+vf/VVvAqDEDgAAKkh4/Dh/lu2iMiuCy809a5/u+0999ywwyGRiOf11+NX\nHQgcAICUMHzNGj0cjjgce6ZNO5X5+LOzvxo7VkTcf/oTt3OLIwIHACDpaeHwsLVrReTLs89u\nOeVLUq3IYpSXOz/5JA7FQUQIHACAFDBg8+bM+no5heaix/uqpCTSu7fQdDSuCBwAgKQ37P33\nReRIv35VI0ac+txMw/B/73si4v7LX7Tm5lOfIYTAAQBIds6WltM+/1xEdp9a643jtVx7rYho\nzc3uv/wlXvNMcwQOAEBy6/PZZ3ooJCIHxo2L1zzDw4eHzj5bOKsSPwQOAEBy61daKiJNvXo1\nnHZaHGfb8v3vi4jzk0+ML76I42zTFoEDAJDcrMBhXcsaR/4rrhCHQ0zT+e678Z1zeiJwAACS\nWN6BA1l1dSLyVUlJfOds5uYGJ0wQEdfatfGdc3oicAAAkli/rVtFJOx0Vo4aFfeZB6dPFxHn\nBx9oKX1X3sQgcAAAkph1PqVy5MiQyxX3mQemTxcRzet1fPpp3GeebggcAIBk5fT5eu3eLSJf\nx7sBhyU0bpyZlycizjVr7Jh/WiFwAACSVe/SUj0cFhsacBxlGIFp00TEReA4ZQQOAECyOm3L\nFhFp7NWroXdvmxYRvPBCEXFs26bX1Ni0iDRB4AAAJCfTPG3rVolrf1+tWc04JBJxfvCBfUtJ\nBwQOAEBS6vnFFxl1dWJbAw5LpG/f8PDhQjOOU0bgAAAkpT6bNolI2OWqjMcN2zpgHeRwrV4t\npmnrglIbgQMAkJT6bN4sIgdHjQrbcEHs8azeOPRDhxw7d9q6oNRG4AAAJB9Xc3PB7t1i3/Up\nxwmee67p8YiIc/Vqu5eVwggcAIDk07u0VAuHReRr+wOH6fGEJk0SEdf779u9rBRG4AAAJB/r\ngtiGvn0bi4oSsLjABReIiOPjjzWfLwGLS0kEDgBAsjHNPlu3ishBOy+IPZ7VjEPz+53r1ydm\niamHwAEASDIFX3zhqa8Xkcrx4xOzxNAZZ0R69xaacZwCAgcAIMn03bZNREJu96GRIxO0SE0L\nXnCB0Mf5KSBwAACSTO9du0Sk5swzI05nwhZq9cZh7Nqlf/11whaaSggcAIBkokUihXv2iEhN\nwg5viIjVjEPXhWtVuorAAQBIJnlffuny+SThgSOSnx8aPVro47yrCBwAgGRStHu3iESczvqh\nQxO8aOvOsc4PPqCP8y4gcAAAkklRWZmI1J1+ejiBDTgsgalTRUSvqzN2707wolMAgQMAkEyK\nVDTgsITOPlsMQ0ScGzYkfunJjsABAEgaPaqrM+vqRKTG5jvEtsns0SM0cqSIOAgcnUfgAAAk\njaJdu0RENK1m+HAlBVg3VeEIRxcQOAAAScNqMXq4X79AdraSAoITJ4qIUV6u19QoKSB5ETgA\nAEnDajFapejwhhw7wiGm6di4UVUNSYrAAQBIDu7GxtyDB0WkWl3gCA8YEOnbV0ScBI5OInAA\nAJJD0e7dVgcYVcOGKSwjePbZIuL45BOFNSQjAgcAIDlY51O8eXnNhYUKy7DOqji2bNH8foVl\nJB0CBwAgORxtwKHigtjjWe1GtUDAUVqqtpLkQuAAACQBIxAo+OILETmkrgGHJTRmjJmVJZxV\n6SQCBwAgCfQqL9dDIekGgUMcjtC4cUK70U4icAAAkoB1PiWQkXG4Xz/VtUjwnHNExLF+PXdx\nix2BAwCQBKzAUT18uKmr/+YKnXOOWHdx27dPdS1JQ/3LBgBAx7RIpHDPHhE5pPSC2KjgxImi\n60If553hSPwiTdNcunTpqlWrGhsbS0pK5s+f36NHj9jH2bBhw9KlS/ft29e/f/+bbrppzJgx\nCV8DAEBC5VVUuHw+6Q4NOERExMzNDQ8fbuzc6diwQS66SHU5yUHBEY5ly5YtXrx49uzZd911\nV0VFxYMPPmi2OgfW3jiffvrpo48+OmHChPvuu69Xr16/+tWvDh06lPhVAAAkknU+Jexw1Awe\nrLqWo6xmHBzhiF2sgWPs2LG/+93vDh48eIrLi0Qiy5cvnzNnzowZMyZOnLhgwYKysrKysrIY\nx1myZMl3vvOda665ZsKECT/5yU+GDRt2wrQAgNRj3bOtdvDgsMulupajrMBhlJW5m5tV15Ic\nYj2lcvjw4QULFtxzzz3f/va3b7jhhiuuuCIzM7MLy6uoqKipqZk4caL1sLi4uKioaNOmTSOO\n68ilvXEKCgp27tx58803W8M9Hs+vf/3rLtQAAEguVuDoJudTLFa7UTHNXnv2HBg7No5zXrFi\nReuBM2fOjOMilIg1cOzbt+/DDz989dVXX3/99XfeeadHjx5XX331DTfcMG3aNL0zDYYPHz4s\nIoXHeqXVNK2wsNAaeNJxqqurRaSmpua555778ssv+/Xrd91115199tnRCQOBwPLly6MPhw0b\nNrjbHHyzia7rDofD4/GoLkQlp9OpugQ1NE0TEbfb3fqkZDpwOI7uvtL2/e9wOHRdT+3Vt17l\n7OrqzLo6EakdOTL6ulvvf03TokNiYe0zYxnz5Bt21Cizd2+tqqr33r2VZ53V6cnb12aFrWeo\naZrT6bS2QzfR8b4o1tdJ1/Vp06ZNmzbtD3/4wzvvvPPqq6++9tprL7744sCBA6+//vrrr79+\neGzBs6GhQUQyMjKiQzIzM62BJx2nrq5ORF544YXrrruuT58+H3zwwa9+9asnnngiuujm5uZH\nHnkkOtUtt9ySJk1KXd3mGKMSbrfb7XarrkKZrKws1SUolp2drboElVJ79a2dW5/ychERTTty\n5pkn7O50Xe/UDtAwjBjHj2nDTp0qy5YV7d7dep6n8rq0WWGbM+xucTMcDnfwbKevUnG5XJdf\nfvmsWbPWr1//gx/84PPPP3/44YcffvjhSZMm/fSnP7366qs7TlvWxSY+ny+6QX0+X+E3b8PT\n3jjWw9tuu+2cc84RkTPOOGPXrl0rV66MBg5N03JycqLzSYdffpqmpfw6dsB6s6X5Fkjz1Rfe\nAGmw+vl79ohIU58+gVaXNNonpg07daq2bFn+nj16KBT55mGJuL8urWfYDV/9+BzhiM5r69at\nb7zxxhtvvLFr1y4RmTRp0tVXX11XV/fiiy9ec801u3bteuCBBzqYQ15enojU1dXl5uZaQ2pr\na0tKSmIZxxo+aNAga6CmacXFxTU1NdEJe/bsuXr16uhDr9dbW1vbqRVMOjk5OaFQyOv1qi5E\nDSuqNjc3t7S0qK5FAV3X8/Pz6+vrI5GI6loUcLvd1o+TlP+YtycjI8Plch05ckR1ITaydm65\nu3aJyKHBg4/f13k8Hl3Xw+GwvzO3bA0GgzHuMGN5XznOPLOniBEIeHburBkypLOTt6fNClvP\nMC8vz+v1dmr1E6Cw/Rv5xtr8YsOGDffee+/QoUPHjx//61//Ojc397e//e3+/fvXr1//s5/9\n7Ne//vWePXsmT5787//+7x3Pp3///vn5+Zs3b7YeVlVVVVZWjh8/PpZxiouLs7KyopelmKZZ\nXl7erxv0cQsAsIkeDudXVIhI7Te/0buD0Nixpscjx9q0omOxHuGYNGmSiEycOPG22267+uqr\no4cZorKysiZMmHDSXjEMw5g1a9aSJUusVLFw4cLhw4dbl6i8++671dXVc+fObW8cTdNmzpz5\n3HPPBQKBPn36rFy5srKy8l//9V87vdIAgCSRV1FhBAIi0n164PgHlys0dqzzk0967dkjM2ao\nrqa7izVwPP7441dffXXHF3089dRTsczqqquuCoVCixYtam5uLikpuf32260TsRs2bNizZ8/c\nuXM7GGfevHmGYbz++ut1dXVDhw599NFH+/TpE+MqAACSTuHevSISMYy64mLVtbQhdPbZzk8+\nKbSataJDsQaOP//5z9OmTWsdON58883nnnvu7bffjn2RmqZdc80111xzzQnD77///pOOo2na\n3LlzrVACAEh5hfv2iUh9cXH36fLreKHx40Ukq6bGc+RIy7F2h2jTSQLHzp07rT8++eST7du3\nW802oyKRyF//+td169bZVR0AIL1ZRzhqul8DDktowgTrj8L9++Pb/VfqOUngGDVqVPTvW265\npc1xLr300nhWBACAiIg4W1pyDh6U7tmAQ0REwgMGtOTkeBoaCsrLCRwdO0ngeOaZZ6w/5s+f\n/8Mf/vDMM888YQS3233ZZZfZUhoAIL0Vlpdrpind+AiHiNQOHtxv61aacZzUSQLHbbfdZv2x\nePHi66+/3upxCwCABLC+xYMeT0PfvqpraVeNFTj27VNdSHd3ksBhdatVWFj4/vvvJ6IcAACO\nKSgvF5HaIUPM7nTHkBNYR1/cjY3Z1dVNvXqpLqf7Okng6NWrl9vtbmlpad3xxvH2798fx5oA\nAJBjRzi68/kUOa5HssJ9+wgcHThJ4Bg4cKB1W6xx48YlpB4AAERE9KqqzPp66cYtRi0tPXo0\nFRZm19QUlJfvp+FB+04SOKKHLt58803bawEA4BjHp59af3TzIxwiUjtkSHZNDe1GOxbrvVRE\nJBKJlB/bml9//fU999xz7733btu2zZ7CAABpzblli4j4evb05uerruUkrGMwBfv3ax3enz3N\nxdrT6IEDBy6//PKysrKmpqZgMHjxxRfv2LFDRJ566ql169adcPc1AABOkWPTJhGpOf101YWc\nnHUMxuH35x48eLh/f9XldFOxHuG4//77t23bdscdd4jImjVrduzY8cQTT+zduzc3N/fRRx+1\ns0IAQPoxTcfWrdLtG3BYagcNMnVdjrVyRZtiDRzvvffeZZdd9vjjj4vI//7v/2ZnZ//whz8c\nMmTIjBkzPvnkEzsrBACkHWP3bu3IEUmSIxwhj+fIaafJsTu/oE2xBo66urpoN6Pr1q2bMmWK\nx+MRkeHDh1dVVdlVHQAgLVnnU0TTajvslKH7sM6qFHCEo32xBo6BAweuX79eRPbu3btx48aL\nL77YGr5r1y5uEA8AiC+rxeiR004LZGaqriUmVm8ceRUVRiCgupZuKtbAMXfu3NWrV8+bN2/m\nzJmGYVx55ZWHDx++7777Xn755QsuuMDOCgEAaedoi9Fuf0FslNXWRA+H8ysqVNfSTcV6lcqC\nBQt27dr1pz/9yTTNRx99dOjQoVu2bHn88cdHjhz5y1/+0s4KAQDpRQsEjM8+kyRpMWqpLy4O\nO51GMFhQXl6dDO1OEi/WwJGZmfnqq68+//zzIpKVlSUixcXFa9eunThxYkZGho0FAgDSjLFt\nmxYIiEht8nxzRwyjvri4cO9e2o22J9bAISKmadbX1zc1NUWHFBUVffHFFyIyZMgQl8sV/+oA\nAOnHuXmziJguV/2AAapr6YSawYML9+6l3Wh7Yg0ce/funT179vbt29t8trKysnfv3vGrCgCQ\nvqwGHOExY8KOTvwqVs5qN5pbWenyelXX0h3F+lr+9Kc/raio+PnPfz5gwACt1W2CCwsL410Y\nACBNWYEjmGx9WB9tcWKaBdxBvS2xBo4PPvhg4cKFc+bMsbUaAECa0xoajPJyEQkl213KG047\nLZiR4fT5OKvSplgviw2Hw2PHjrW1FAAAHFu3immKSGjCBNW1dI6pabWDBwv9jbYj1sDx7W9/\ne+3atbaWAgCAY8sWETGzs8PJc4lKlHVWhTuqtCnWUyp/+MMfLr/8cqfTee2117rdbltrAgCk\nLStwhMaOFT3Wn8Tdh9VuNLOurqWyMkI33N8U68v5ve99LxgM3njjjZmZmf369Rv0TXZWCABI\nI9ZNYkPJeRI/2jWqFZtwvFiPcBQWFhYWFg5Onk7fAABJR6uvN778UpKwxailOT/fl5ubceSI\nY8uWwCWXqC6ne4k1cLz55pu21gEAgHPLlqMtRpMzcIhI7eDB/bds4QhHa53rU+XDDz9csWJF\nVVXVnXfeWVRUdOTIkZEjR9pUGQAg3RxtMdqzZzhpT9bXDhrUf8sWx+bNqgvpdmJtw2Ga5m23\n3Xbeeec98sgjixYtOnjw4K5du0aNGvWjH/0oHA7bWiIAIE38owFHqx4mk4V1ZaxeV6dz29hv\nijVwPP/8888999z8+fP3Hbu8+Kyzzrrrrrv++Mc/vvjii7aVBwBII0cvUUna8yly3B1unVu3\nqq2ku4k1cDzzzDNTpkx56qmnotek9OjR4/e///3UqVOfffZZu6oDAKQNvbZW/+orSdpLVCwt\nubne/Hw5drQGUbEGjrKysosuuqj1XVSmT5++a9eueFcFAEg71i1UJMmPcMixsyq0Gz1BrIGj\nb9++tbW1rYfX19f3oW8TAMAps76hI/n54aS6K31rtYMGibU6pqm6lm4k1sAxderUV1999Ysv\nvjh+YFlZ2csvvzx58mQbCgMApJejLUaT/PCGHDvCoR0+bHzzSzPNxRo4HnvsMcMwzjrrrAUL\nFojI0qVLb7nllnHjxjmdzscee8zOCgEAaSEFWoxaaoYMsa6y4azK8TpxSmX9+vWTJ0/+3e9+\nJyILFy5cuHDht7/97Y8//rh///52VggASH36wYN6VZWkRODwZ2WF+/cX2o1+Uyc6/ho2bNjy\n5cu9Xm9ZWZnL5RoyZIjH47GvMgBA+ogeDEiBwCEioXHjjIoKjnAcr6PA0QgvntsAACAASURB\nVHF35mVlZdYfRUVFU6dOjWdRAIA0Yx0MiBQVRU47TXUtcRAaN8791786tm6VSCQZb3trh44C\nx5VXXhnLLGbMmPHOO+/EqR4AQDo62oBj/HjVhcSHdZxGa2w0ysvDQ4eqLqdb6ChwrFmzJvp3\nOBy+4447qqurb7vttvHjxxuGsXXr1qeffnrMmDGvvfaa/XUCAFJZUt+VvrXQuHGiaWKaji1b\nCByWjgLHBRdcEP37X//1X2trazdt2jRw4EBryJVXXnnzzTdPmDDhN7/5DReqAAC6TK+o0Gtq\nJFUacIiImZMTHjzYKC93bN3qnzNHdTndQqwnlpYtW/a9730vmjYs/fr1u/baa//yl7/YUBgA\nIF1EbzuSMkc45Fh4ot1oVKyB48CBA4ZhtB6uadrXX38d15IAAOnlaIvRfv0iRUWqa4kbKzw5\ntm4V7qkuIrEHjpKSkj//+c/V1dXHD6ypqVm6dOn4VGnjAwBQImW6/Dre0XajPp+xe7fqWrqF\nWAPH3Xff/dVXX02ZMmXhwoWbN2/etGnTokWLpkyZcuDAgbvvvtvWEgEAqcw0HaWlklrnU8Ra\nHV0XzqocE2vHX5dffvmzzz5733333XzzzdGBBQUFL7zwwsyZM+2pDQCQ+owvvtDq6iTljnCY\nWVnhoUONsjLH1q3+a69VXY56nehp9NZbb7366qvXrVtXVlbmdDqHDh36rW99Kycnx77iAAAp\nL3oA4J1Dh1pWrFBbTNSKtirp7A/s0LhxRlmZkw7ORaRTgUNE8vPzr7jiCptKiTun01lQUKC6\nCntpmuZ0OjMyMlQXolJWVlZWVpbqKpTJy8tTXYJiKf8x74CmaSmw+lpZmYg0FxXpvXtndnJa\nwzAyMzsxkdPp7NT4J2hza7c5w6NjTpkiS5Y4tm0ryMkRpzPGpXQ0w+NompadnZ2dnR3jbBMg\n3GHz2M4FjuQSCoW8Xq/qKuyVlZUVCoX8fr/qQtTIzc0VkZaWlkAgoLoWBTRNy8nJaWpqikQi\nqmtRIPrN0dDQoLoWNdxut8PhaG5uVl3Iqcpav94hUjtwYKd2ZU6nU9f1cDgcCoVinyocDp/K\nDrPNN1ubM7TGNEaNyhaRlpbmjRvDo0fHuJQOZni87Oxsv98fDAZjnG1iWLvlNqVy4DBNs7u9\nEnEXiUQikUjKr2bHwuFwem4BXddFJBgMpmfg0I/dnyI9X30RcTgchmEk/epHIsaWLSJSPXhw\nx7+PT+A8dsCgU1NFIpFOjX+CNrd2mzO0xgydcUa2wyGhkHz6aXDEiBiX0sEMW4+ZRG8A7igD\nAFDG2LNHa2wUkdohQ1TXEn9mRkZo2DDhPvUiQuAAACjk2LxZRETT6r7Zk3XKoL/RKAIHAEAZ\n55YtIhIeOjRwCm05u7Oj/Y1+9pmWlk3NjkfgAAAok5J9jB7v6KoFAsaOHaprUYzAAQBQJBg0\ntm0TkdCECapLsUt4zBjT5RIRx6ZNqmtRjMABAFDDsWOH5veLSDB1j3CYLld41CiJtlZJYwQO\nAIAaR7+Dnc7Y+6hIRtbxG2fatxslcAAA1LACR2jkSNPjUV2LjULjx4uIUVZmXQCctggcAAA1\njgaO8eNVF2KvoyeMIhHrprhpi8ABAFBA8/kcu3dLGgSO8IgRZna2pH0zDgIHAEABR2mphEKS\nBoFDdD1UUiIEDtUFAADSkfXta7rdoeHDVddiOytUOQkcAAAk2NEGHCUlsd+3PXlZgUOvqNCr\nq1XXogyBAwCgQJq0GLVEezZL55uqEDgAAImmHT5s7N8vaRM4wgMGRAoLJb2bcRA4AACJ5tiy\nRUxT0iZwSPS2sQQOAAASxup208zJCQ8erLqWBLGiVTrfUYXAAQBItH804NDT5WvoaLvRujrj\nyy9V16JGurzSAIDuI61ajFr+0W40Xc+qEDgAAAmlHzqkHzwoKX2T2NYiBQXhAQOEwAEAQGJE\n2zGk1REOSftmHAQOAEBCWT/xI0VFkb59VdeSUEcDx9atVp/u6YbAAQBIqDRswGGxmnFoXq+x\ne7fqWhQgcAAAEsg0nVu3SnoGjrFjxTAkXW+qQuAAACSO8cUXWl2dpGXgMLOywsOGSbq2GyVw\nAAASJ/pdGxo7Vm0lSgStZhwEDgAAbGV914aLiyMFBaprUeBou9HPP9f8ftW1JBqBAwCQOM6N\nG0UkNHGi6kLUOHoiKRAwtm1TXUuiETgAAAmiBQJGaamIhM4+W3UtaoTOPNN0u+XY3WTSCoED\nAJAgRmmpFgiISDBdA4c4neHRoyUtm3EQOAAACeL8+99FxPR4QmecoboWZdK2v1ECBwAgQRxW\nA46xY8XlUl2LMsEJE0TE2LvXujw4fRA4AAAJ4vz0U0njFqOWo6tvmtbxnvRB4AAAJIJeWal/\n9ZWkcwMOEREJDxoUKSqSY8d70geBAwCQCM5j36+hs85SW4ly1kU6TgIHAABx5/j0UxGJDBgQ\n6dNHdS2KWcd4HJs2pdVtYwkcAIBEsM4gpPn5FEvonHNERPN6HZ9/rrqWxCFwAADsFww6tm2T\ntG8xaolep+PYsEF1LYlD4AAA2M5RWqq1tIhIMO0bcIjVE8no0XLssp00QeAAANjO+mY13W7r\nixbBiROFIxwAAMSX1WI0zbv8Op51asn48ku9qkp1LQlC4AAA2I4uv04QnDTJ+sORNmdVCBwA\nAHvpVVX6gQOSxjeJbS3Sp0+kXz9Jp2YcBA4AgL2iXWrSYvR4R3vjSJtmHAQOAIC9rB/xkf79\nI6edprqWbsQ6weTYskULBFTXkggEDgCAvejyq03WhSpaIGCUlqquJREciV+kaZpLly5dtWpV\nY2NjSUnJ/Pnze/ToEeM49fX1Cxcu3LZtWyAQGDly5E033TRw4MDErwIAIFbBoKO0VGjA0Upo\nzBgzI0Pz+ZyffpoOG0fBEY5ly5YtXrx49uzZd911V0VFxYMPPmiaZizjmKb5xBNPVFRU/PjH\nP77//vv9fv+DDz7Y0tKS+FUAAMTIsX370S6/0uA7tXOcztDYsZI2t41NdOCIRCLLly+fM2fO\njBkzJk6cuGDBgrKysrKysljGOXTo0Pbt22+99dYJEyaMGTPmzjvvrKmp2bt3b4JXAQAQu6Nd\nfrlc4TFjVNfS7VjNOJzp0W400YGjoqKipqZm4rFLsYuLi4uKijZt2hTLOIFAYNq0aYMHD7aG\ntz4RAwDobqx+JsJjx5p0+dWKddRHr6y0LhtObYluw3H48GERKSwstB5qmlZYWGgNPOk4AwYM\nuPvuu60RDh069NZbbw0YMGDEiBHRCb1e7+9///vow6lTp06ePNnmFVLM4XDouq7rad341+12\nOxwKWiMpp2maiGRlZbU+KZkODMOw/sjOzlZbiSrWx7/Lq//mm2+2OXz27NmnUFQbQuvWuUX2\nFhVtfu89a8jOnTtHjhx5wmjl5eWtB3bAev/ruu7qTI4xDKNT45/gvWOrcLzWM9y5c2ebY7be\nttr06dYfPbZvDx9b/TYrbP1C67ru8XicTmcMhSdIJBLp4NlE76YbGhpEJCMjIzokMzPTGhj7\nOC+88MK6des0TbvnnnuO/6bx+/1//vOfow8LCwsvuOCC+K9DN6Prenp+3UY5nc5u9ZFLMLfb\nrboExTwej+oSVOry6re334jz9qyslOpqEakfMSK6xDb3Wl3blWma1qmpErPDbG8pbWzbAQPk\n9NNl717nxo3OefOsYbFO2/32fuFwuINnE/1FZZ0H8fl80QTn8/miBzNiHOfuu+9esGDB559/\n/m//9m9Op/Occ86xhhuGMWrUqOhoBQUFoVDIzrVRzzAM0zQ7DpUpzPpYRiKRdN4CKf8mb4+m\nadZBjrTdArqua5rW8S6+A+19auK7PbW1a60jUdVDh0aX2OZeq7O7suiR3U5NlZgdZntLaXPb\nGpMna3v3mh99FD72bIzTGoYRiUS61QHOSCQSPfTYWqIDR15enojU1dXl5uZaQ2pra0tKSmIZ\nZ+fOnfv377/kkktERNO0M844Y9iwYevXr48GjpycnFdeeSU6H6/Xe8LJmtSTk5MTCoW8Xq/q\nQtSwYqjX603Pi5V0Xc/Pz29oaEjPvOV2u60fJyn/MW9PRkaGy+U6cuRI1yZv71MT3+2Z/e67\nhkhjr171WVlybImhUKj10tsc2AGPx6Prejgc9vv9sU/V2aV0TXtLaXPbekpKsl99Vdu69cjB\ng2ZGhrTz0rSeNi8vz+v1dmr1E+CEIwjHS/S5//79++fn52/evNl6WFVVVVlZOX78+FjGqa2t\nff7555ubm63h4XC4urq6oKAgkfUDAGLn/OgjEanqTOOMdBOyfjMHg44tW1TXYq9EH+EwDGPW\nrFlLliyxUsXChQuHDx9uNfx89913q6ur586d2944Pp8vNzf38ccfnzNnjmEYb7/9dkNDw4UX\nXpjgVQAAxEKrqzN27RICR4dCo0aZPXpojY2OjRuDU6aoLsdGChobXnXVVaFQaNGiRc3NzSUl\nJbfffrvV2HjDhg179uyZO3due+NkZmb+8pe//M///M/HHntMRIYOHfrII4+cRs/8ANAtOT/+\nWCIRIXB0zDBCEyY41651rl/v+9GPVFdjIwWBQ9O0a6655pprrjlh+P3333/ScQYOHPjLX/7S\n7goBAKfO+eGHItKcn9/U/nl9iEhw6lTn2rXOTz6RcFjab3SZ7NK6/wYAgH2sBhyVx108iDYF\nzz1XRLSGBkdK38WNwAEAiD+tvt7x+efC+ZQYBMePNzMzRcT5t7+prsVGBA4AQPw5168/2oCD\nIxwn5XJZ16pYJ6FSFYEDABB/1vmUSN++jb16qa4lCQTOPVeslBYMqq7FLgQOAED8WYHDap2A\nkzrajKO52bF1q+pa7ELgAADEmdbQ4PjsMxEJTp2qupbkEBo/3szOlpRuxkHgAADEmXP9egmH\nhcARO4cjeM45IuL66CPVpdiFwAEAiLOjDTh69w4PGaK6lqQRPO88EXGsX6+n6P0ICRwAgDiz\nrragAUenWIFD8/kK9+1TXYstCBwAgHjSmpoc27cL51M6KVRSYubmikifzz9XXYstCBwAgHhy\nrl8voZAQODrLMKxmHAQOAABO7mgDjsLC8NChqmtJMtZZlV67dxup2BsHgQMAEE//6IFD01TX\nkmSswGEEg4Xl5apriT8CBwAgbrTmZusOZJxP6YLQ6NFmz56SomdVCBwAgLhxbthgdc5N4OgK\nXQ9OniwEDgAAOna0AUdBQXjECNW1JCXrrErhnj1GIKC6ljgjcAAA4sZh9cAxZQoNOLrmaDOO\nUKjX3r2qa4kzAgcAID60xkbnli0iEqLLr64KjRrlz86WVDyrQuAAAMSHa+1aqwFH4MILVdeS\ntHS9auRIIXAAANAe53vviUh44EBuoXIqKkeOFJHC8nKH36+6lngicAAA4sE0XatXi0jg4otV\nl5LcKkeNEhE9FCravVt1LfFE4AAAxIFjxw794EERCV50kepaktvhfv18ubki0q+0VHUt8UTg\nAADEgfPdd0XE9HjogeNUadpX48aJSP9Nm1SXEk8EDgBAHLhWrRKR4HnnmRkZqmtJegfGjhWR\nHtXVOQcPqq4lbggcAIBTpTU0OP/+dxEJ/J//o7qWVPD1mWeGHQ4R6b9li+pa4obAAQA4Va41\na472aE4DjngIeTzWxbH9t25VXUvcEDgAAKfq6AWxQ4eGBw1SXUuKsJpx9C4rc3m9qmuJDwIH\nAODUmKZrzRoRCXB4I34qxo0TES0c7rt9u+pa4oPAAQA4JY7SUr2qSmjAEVdNvXod6dtXRPql\nSjMOAgcA4JRY16eYmZkhLoiNqwPWxbGlpVokorqWOCBwAABOidWAI/itb5kul+paUop1cay7\nsbGwvFx1LXFA4AAAdJ1WX+/ctEk4n2KDQ8OH+7OyJFWuVSFwAAC6zrVmjYTDIhIkcMSbqesH\nx4yRVOmNg8ABAOg6qwFHeOTI8IABqmtJQdZZlbwvv9QrKlTXcqoIHACAropEnNYdYjm8YY+v\nxo41dV2OBbukRuAAAHSRY8sWvaZGCBy28WdlVZ9+uoi43n1XdS2nisABAOiioxfEZmcHJ01S\nXUvKsrocda5bp7W0qK7llBA4AABd5Pqf/xGR4PnnCxfE2sbqjUPz+Zzr1qmu5ZQQOAAAXWHs\n3u347DMR8V9xhepaUll9//5NhYWS/GdVCBwAgK5wL10qImZmZmDGDNW1pLivSkrEChymqbqW\nriNwAAC6wr1smYgEZswwMzNV15LirLMq+oEDjr//XXUtXUfgAAB0mmPzZqO8XET83/2u6lpS\n38HRoyP5+XLsqFKSInAAADrNOrxh9uwZnD5ddS2pL2IYgSuuEGuzB4Oqy+kiAgcAoJMiEfdb\nb4mI/zvf4YZtieGfM0dE9Npa1/vvq66liwgcAIDOca5fr3/9tYj4r7xSdS3pIjhxYnjgQBFx\nv/GG6lq6iMABAOgc95//LCKRoqLgueeqriVtaJp1kMO1YoXW0KC6mq5wqC7AXpqmxX2eK1as\naD1w5syZcV9Q7OxYzeSSnlvAWmtN01Jm9Tv14YqudcqsfmdF3wCnMnnsw/8hFLL6+yobN27j\nypVdWFCbb9ouv5M7NVViPi9tLmX37t1vv/32CQPbfHu3WeHbb7/do3fv2SJaS8uuxx/fe955\nHo/n0ksvPWHkNj9Eu3fvHjZsWCyLtlUqBw6n05lpw8VaGRkZrQcWFBTEfUExcrlcdqxmEsnO\nzs7OzlZdhTJ5eXmqS4ibrn24FH76uoMur36bWzumGa5YITU1IvL1+ee3N5OOORyO1hO2OfCk\nDMPo1FRdW0pnxb6CbW7t9ioMDR5cP3Ro3p49p69f//XFF0tbe782p4190acoHA538GwqB45Q\nKNTU1BT32ba01Zt9fX193BcUi+zs7FAo1GZJ6cD6rvV6vX6/X3UtCmia1rNnzyNHjkQiEdW1\nxEenPlwulysrK6uDEVKex+NxOBxd3su1t9846fbMevlll0hzQcHXAwZIl3Y+be61Orsrc7lc\nuq6Hw+FgZ67aSMwOM/YVbHNrd1Dh3smTz96zp2jbNv3gwXCfPs3NzYFA4KTTxr7oU2SaZn5+\nfnvPpnLgME2z47TVNW3u3O1YUCxM07RpNZNIJBJJzy2g67qIhMPhlAkcnfpwRUdOz1dfjm2B\nLq9+e2+bjmeo+f3Ot98WkX1TpkRMs2sdX5qm2XrpbQ6MRaem6vJSOiX2FWxza3dQYfmkSWf9\n6U9aOFz80Uf7rrqq9d6vzWljX7StaDQKAIiVa+VKq8XivsmTVdeSjlpycr4+80wRGfLxx6pr\n6TQCBwAgVtb1KeFhw+oHDFBdS5raN3WqiOR/8UVuRYXqWjqHwAEAiInW1OR87z051gkVlPjy\nrLNCHo+IFP/tb6pr6RwCBwAgJu6//lVraRER/+zZqmtJXyGX68uzzhKR4nXrJKnabxE4AAAx\n8SxcKFaXl0OGqK4lrZVPmSIimTU1xkcfqa6lEwgcAICTc65f7ygtFZGWm29WXUu6O3jmmb7c\nXBFx/vd/q66lEwgcAICT8zz/vIhE+vb1f+c7qmtJd6au75syRUQcr7+uJU8/NAQOAMBJ6AcO\nuN9+W0R8N90kTqfqciA7L7rI1HXN68146SXVtcSKwAEAOImMRYskFDI9Hv8NN6iuBSIiTb16\nfTVxooh4nn9eS5KulgkcAICOaD6f57XXRMQ/Z06k/Y6rkWC7Zs8WEb262uocpfsjcAAAOuL+\n7//W6uqE5qLdTN3pp4cnTRKRjD/+sWt9zCcYgQMA0D7TzHjhBREJTpsWOuMM1dXgGwJ33iki\nxu7drtWrVddycgQOAEC7nO+/b5SViYjvlltU14IThb7znfDgwSKS8fTTqms5OQIHAKBdGc8/\nLyLhAQMCF1+suha0ouu+W28VEecHHzi2bVNdzUkQOAAAbTPKy61j9S233iqGoboctME/d67V\nkjfjmWdU13ISBA4AQNsyXnhBIhEzO7vl+99XXQvaZmZktNx4o4i433xTP3BAdTkdIXAAANqg\n1de7Fy8WEf+115o5OarLQbta/vmfTbdbgsGMhQtV19IRAgcAoA2Zv/2t1tQkhuHjatjuLdKr\nl3/OHBHxvPKK0+dTXU67CBwAgBMZe/dm/Od/ikjLvHncG7b7882fL5qmNTSMWLVKdS3tInAA\nAE6U9dBDEgyaPXp4771XdS04ufCIEYFLLhGRMcuXZxw+rLqcthE4AADf4PzwQ9eKFSLiveuu\nSK9eqstBTJoffNB0uZw+34TXX1ddS9sIHACA40QiWb/4hYhE+vZtobOv5BEePLjl1ltF5PQP\nPyzatUt1OW0gcAAA/sGzZIlj61YRaf7FL8yMDNXloBO8P/uZt2dPMc1zXntN6353VyFwAACO\nMgKBzMceE5HQhAn+K69UXQ46x8zK2nTNNSKSv3//0A8+UF3OiQgcAICjRq9YoX/1lYg0P/SQ\naJrqctBp5VOmVI0YISITlixxNzWpLucbCBwAABGRzMOHz1yxQkT8V1wRnDRJdTnoEk3beN11\npq67m5pK3npLdTXfQOAAAIiIjH/9dYffb7pc3gceUF0Luq5u4MDd558vIiNXrerZnTo7J3AA\nAGTQhg2n/+1vItJyyy3hgQNVl4NTsvm73/VnZWnh8Dmvvqq6ln8gcABAusupqpry4osicqRf\nP+8996guB6fK36PH1quuEpE+O3aMeO891eUcReAAgLRmBIPfeuopp88XcrnW3nEHl8Kmhl3T\np1cPHSoiE//0p+KKCtXliBA4ACDNTXzttfwvvhCRT2644XC/fqrLQXyYhvH+nXf6evbUQ6Hv\nv/FGZn296ooIHACQxgZt2DB89WoR2Tdlyt5p01SXg3jy9ez5/g9/GHE4spubz3/yST0UUlsP\ngQMA0lSPY003Dvfr9/E//ZPqchB/1cOGbfre90Sk1549E//0J7XFEDgAIB0ZodD5Tz/t9PlC\nbvfaO+4IuVyqK4ItdsyYsbmkRERGvPee2u5HCRwAkH4CgfOeeSZ//34R+eSGG47QdCOl/fXS\nS+sHDBCRSa+8Yr3oShA4ACC9aH5/zk03Dfz0UxHZff75e887T3VFsFfQ6Xz/Rz8KZGXp4bDV\nQFgJh6oFAwAST/P5cm64wfn++yKy99xz1994o+KCkBCNRUUf3H57xDAqR41SVQOBAwDSheb1\n5syb51y3TkR2X3DB+htvNLlDW9r4evRotQUQOAAgLWgNDbnXXuvYuFFEWm666ePzz+d+sEgk\n2nAAQOrTKypyr7zSShu+H/2o6Te/IW0gwQgcAJDSTNPz//5f3vnnO0pLRcR7zz3N3AwWKnBK\nBQBSln7wYPaPf+xavVpETI+n+aGHWm66SXVRSFMEDgBITe6//CV7wQKtvl5EQmef3fiHP4SH\nDVNdFNIXgQMAUo3zk08yfvc715o1ImK6XN577/XdcYcYhuq6kNYIHACQKiIR19tvZz71lNU4\nVERCY8c2PvlkeORItXUBQuAAgBSg+XzuN97IeOopY+9ea0jktNN8d9zh+8EPxMF+Ht2Cgjei\naZpLly5dtWpVY2NjSUnJ/Pnze/ToEeM4sUwLAGlCO3jQ88Ybrv/9X+cHH2gtLdbA8MiRvjvu\naLnqKuF+bOhOFFwWu2zZssWLF8+ePfuuu+6qqKh48MEHTdOMcZxYpgWAFKZXV7tWrcp84omM\nb33LMWhQ9s9+5lq50kobwSlTGl57rf6DD1quvZa0ge4m0Uc4IpHI8uXL58yZM2PGDBEpKiq6\n8847y8rKRowYcdJxhg0bdtJpASCV6IcO6QcOGAcOGDt2OEpLHdu26ZWV3xxDD551VmDGjMAl\nl4TZGaIbS3TgqKioqKmpmThxovWwuLi4qKho06ZNx4eG9sbxeDwnnRYAurtQSGtq0rxeLRDQ\njhzR/H6tqUmrr9fq63Xr/8OHrZyhHzig+f1tzsPMywtPm6ZdfvmR886LFBQkeA2ALkh04Dh8\n+LCIFBYWWg81TSssLLQGnnSck07b1NR0zz33RB9eeumll1xySdxXwePxWH8Uf/TR4NWrrb8L\nXn457guKkVMkQ9WyldM0EckyzSzVhSijaXkpdFZxxqFDrQd29OHSNBEpULUFwmFpaGj7qVBI\nGhujjzSvVwIBEZEjRyQS6eLi+vQxx483x407+m/wYF3XdV3vEQp1bX7RXdkJcnNzT2XyWDgc\njtaTtzmwA7quW/93aqrOLqVrYl/BNrd2jBVqmpaZmXnCyG1OG/uiT1Gkw7d3ogNHQ0ODiGRk\n/OMrMjMzs+GbH9r2xjnptMFgcMOGDdGH48aNczqdcV8F610uItnV1b23bYv7/NFZaX5DiFRa\n/d5dmipltkDI7Q706BHIzq7XNKNfP19hobew0FtY2FxU5C0sDB2365PSUiktPcXF7dy584wz\nzjhh4I4dO956661YJo/uCbtA07TWk7c5MJZZaZ25KUzXltJZsa9gm1s79gqXLVt2wpA2X9Y2\nF23H92M4HO7g2UQHDuuiEp/P5zrWoMnn80UPWnQ8zkmndblcF110UfThwIED/e0cjTwVs2bN\nsv7QTTNiw/w7xfqkpW3LWesjZJpmOm+Bjn9SpLDoN00Xt4BhmHG/xi0jQ775O9LMyhJrt24Y\nkpMjIuJ2mxkZ4nRKdrZkZ5sul+TmSmam2bOnuN2GSEbMxywNw9B1PRgMdq3Y6K7spAPjLi6L\ndjqduq6Hw+FQZ47xJNEKnpTL5QqHwyd8x8e+aDu+H03TNNrvXy7RgSMvL09E6urqogdzamtr\nS0pKYhnnpNNmZWU99thj0Yder7fxuKOa8Td9ukyfbuP8Y5CTkxMKhbxer9oyVLHiZnNTU8ux\nCwLTiq7r+fn5h+vq0jNzuN1u60dIXU2N6lriIRA4etolZhkZGS6Xy969XDeWm5ur63ooFErb\nLZCXl+fz+ezIDaeig/NBib4stn///vn5+Zs3b7YeVlVVVVZWjh8/UfoBwwAABxpJREFUPpZx\nYpkWAAB0Q4k+wmEYxqxZs5YsWWKlh4ULFw4fPty6zOTdd9+trq6eO3due+NomtbetAAAoDtT\n0NPoVVddFQqFFi1a1NzcXFJScvvtt1snYjds2LBnz565c+d2ME57wwEAQHempXBrO6/Xm/KN\nG2jDISJN6d2Goy7t23DUpEYbjs6z2nAcOXJEdSFq5ObmOp1Ov9+fzm04vF5vd2vDccJVIMdT\n0LU5AABINwQOAABgOwIHAACwHYEDAADYjsABAABsR+AAAAC2I3AAAADbETgAAIDtCBwAAMB2\nBA4AAGA7AgcAALAdgQMAANhOwd1iEUeBQCAcDquuQplFixaZpjlhwoTi4mLVtShgmqbP50vh\n+y92rLy8fOPGjSJyxRVXpOddo0OhUNq++iLy9ttvHzp0aODAgePHj1ddixotLS3Jtf9P5cCR\nmZmZmZmpugrY6IUXXgiFQg888MCECRNU16JMRkaG6hLU2LBhw7PPPisi//RP/6Tr6XuwNjs7\nW3UJarzzzjsbNmy47LLLLr74YtW1ICbp+ykFAAAJQ+AAAAC2I3AAAADbaenc5gjJrqGhQUQ8\nHo/L5VJdCxItGAz6fD4RycnJUV0LFPB6vaFQyOl0pm0zpqRD4AAAALbjlAoAALAdgQMAANgu\nlfvhQKryer2vvPLKhg0bGhsbBw0adN11140dO1ZEVqxYYXXMEPXEE0+MGDFCUZmwkWmaS5cu\nXbVqVWNjY0lJyfz583v06KG6KNiIT30KIHAg+Tz33HNbtmz553/+54KCgvfee+8Xv/jFb37z\nm+HDh1dWVg4dOvS73/1udMy+ffsqrBP2WbZs2eLFi2+++eb8/PyXX375wQcffOKJJ9Kzv9E0\nwac+BRA4kGRaWlrWrFnz4x//eNq0aSIyatSoPXv2rFy5cvjw4VVVVSNGjDj33HNV1wh7RSKR\n5cuXz5kzZ8aMGSJSVFR05513lpWV8bs2VfGpTw204UCSqa2tHTx48OjRo62Hmqbl5+fX19eL\nSGVlZZ8+fbxe76FDh7j8KoVVVFTU1NRMnDjRelhcXFxUVLRp0ya1VcE+fOpTA0c4kGT69ev3\nH//xH9GHFRUV27ZtmzdvnmmalZWVa9asefHFF03TzMrKuvHGG61fwEgxhw8fFpHCwkLroaZp\nhYWF1kCkJD71qYHAgWRlmub69euffPLJoUOHXnbZZY2NjX6/f9CgQf/yL//i8Xj+53/+56mn\nnurdu/e4ceNUV4o4szp8O767p8zMTGsgUhuf+qRG4EB3t379+kceecT6+4EHHrAOpNfU1Dz5\n5JOlpaWzZ8++9tprXS6Xy+V68803o1Nde+21GzduXLt2Lbue1GNdkOLz+aI9zPp8vugBD6Qq\nPvXJjsCB7m7ChAkvvfSS9XdWVpaIlJeX33///UOGDHn66af79OnT5lSapvXv35/D7CkpLy9P\nROrq6nJzc60htbW1JSUlSouCvfjUpwAajaK7c7lcece4XK5wOPzII4+cc845Dz300PH7nQ0b\nNlx33XVff/219dA0zX379g0cOFBR1bBR//798/PzN2/ebD2sqqqqrKwcP3682qpgHz71qYEj\nHEgypaWlhw4dmj179saNG6MD8/Pzx40bl5WV9dvf/vbKK6/Mz89fuXJldXX1rFmzFJYKmxiG\nMWvWrCVLlljJY+HChcOHD+ea2BTGpz41cPM2JJnly5c///zzJwycOnXqfffdV1lZuWjRos8+\n+0xERo4cedNNNw0YMEBFjbCdaZpLlixZvXp1c3NzSUnJ7bffnp2drboo2IVPfWogcAAAANvR\nhgMAANiOwAEAAGxH4AAAALYjcAAAANsROAAAgO0IHAAAwHYEDgAAYDsCBwAAsB2BAwAA2I7A\nAQAAbEfgAAAAtiNwAAAA2xE4AHQLmzdvdjqdN910U3TI8uXLNU377W9/q7AqAPHC3WIBdBcP\nPfTQL37xi3feeWfGjBmHDx8+88wzhwwZ8v777xuGobo0AKeKwAGguwgGg5MmTaqtrd2+fftP\nfvKTxYsXl5aWDhkyRHVdAOKAwAGgG9m2bdtZZ501derUtWvXPv/88zfffLPqigDEB4EDQPfy\n8MMPP/DAAxdddNHKlSs1TVNdDoD4oNEogO5l3759IlJWVtbU1KS6FgBxQ+AA0I0sX778xRdf\nvPPOOw8cOHDPPfeoLgdA3HBKBUB3UVNTM3r06NGjR7/77rv33nvvE088sWrVqgsvvFB1XQDi\ngMABoFswTfOaa65ZsWLFtm3bBg8e7PV6S0pKwuHwtm3bsrOzVVcH4FRxSgVAt7B48eLXX3/9\nscceGzx4sIhkZma+8MIL+/fv//nPf666NABxwBEOAABgO45wAAAA2xE4AACA7QgcAADAdgQO\nAABgOwIHAACwHYEDAADYjsABAABsR+AAAAC2+//bWhI3cQkOxAAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "options(repr.plot.width = 6, repr.plot.height = 4)\n", "data.ggplot_1<-ggplot(data=histogram.table) + geom_col(mapping = aes(x=x, y=density), alpha=.5) + stat_function(fun=dnorm, args=list(mean=mean(newcomb$x),sd=sd(newcomb$x)), color= \"red\")\n", "ggsave(\"data.ggplot_1.png\", plot = data.ggplot_1, device=\"png\", scale=1, width=5, height=4)\n", "data.ggplot_1\n", "\n", "\n", "\n", "options(repr.plot.width = 6, repr.plot.height = 4)\n", "data.ggplot_2<-ggplot(data=histogram.table) + geom_col(mapping = aes(x=x, y=density), alpha=.5) + stat_function(fun=dnorm, args=list(mean=mean(newcomb_1$x),sd=sd(newcomb_1$x)), color= \"red\")\n", "ggsave(\"data.ggplot_2.png\", plot = data.ggplot_2, device=\"png\", scale=1, width=5, height=4)\n", "data.ggplot_2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 7 ###\n", "The code below creates a cumulative distribution function generator for both the unfiltered and filtered\n", "datasets using the ecdf() function. Two tibbles are created, each with two\n", "columns. In each tibble the first column is t that contains values running from -45 to 45\n", "in increments of 0.1, and the second column is cdf containing values of the cdf generator\n", "evaluated at the same values of t." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "newcomb_1_range_vector <- seq(-45,45.1)\n", "newcomb_1_cdf_generator <- ecdf(newcomb_1$x)\n", "newcomb_1_cdf <- tibble(score = newcomb_1_range_vector, CDF = newcomb_1_cdf_generator(newcomb_1_range_vector))\n", "\n", "newcomb_range_vector <- seq(-45,45.1)\n", "newcomb_cdf_generator <- ecdf(newcomb$x)\n", "newcomb_cdf <- tibble(score = newcomb_range_vector, CDF = newcomb_cdf_generator(newcomb_range_vector))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 8 ###\n", "\n", "The code below creates the corresponding CDF for the normal distribution models (both unfiltered and\n", "filtered) using the qnorm() function. The two CDFs are evaluated in the range from 0 to 1 in\n", "increments of 0.01. The results are stored in two tibbles, each with two columns (this includes t,\n", "which is just the 0 to 1 range in increments of 0.01, and the CDF values)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "newcomb_1_percentiles <- seq(0, 1, 0.01)\n", "newcomb_1_cdf_model <- tibble(CDF = newcomb_1_percentiles,\n", " score = qnorm(p = newcomb_1_percentiles, mean = 27.75, sd = 5.08))\n", "\n", "\n", "newcomb_percentiles <- seq(0, 1, 0.01)\n", "newcomb_cdf_model <- tibble(CDF = newcomb_percentiles,\n", " score = qnorm(p = newcomb_percentiles, mean = 26.21, sd = 10.74))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 9###\n", "\n", "The code below visually compares the CDFs of models and datasets to estimate the quality of agreement. 2 plots are created that overlay the two model CDFs on top of the unfiltered and filtered datasets CDFs.\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAIAAAADp837AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzde3wU9b0//vfsZfaWbJJNCAHCLUDCNSFAuIogBfGGImJFsD3YglVPbW3P92ur\nbU8r9vCz4mnr+XkXPL/SG2IRbEFbEChWFAIECPcQEmIIJOSe3ex9Z35/DG5mN7tLApmZ3Z3X\n89FHzeczs8l72M3uKzOf+XwYnucJAAAAQEoapQsAAACA5IfAAQAAAJJD4AAAAADJIXAAAACA\n5BA4AAAAQHIIHAAAACA5BA4AAACQHAIHAAAASE6ndAF9yeVyud1upauQnE6nM5vNHR0dShci\nH4vFotPpvF6vy+VSuhb5pKWl2e12juOULkQmBoPBaDRyHGe325WuRT4pKSler9fr9SpdiEx0\nOp3FYiGijo4O9Uw7aTKZiEglb18ZGRnRNiVV4OB5PhAIKF2F5DQajUajUcORBjEMo9FoGIZR\nz1ELh8xxnHoOmYg0Go1KfouDGIZR1SFrtVqNRkNEHMepJ0wL1PMsR4NLKgAAACA5BA4AAACQ\nHAIHAAAASA6BAwAAACSHwAEAAACSQ+AAAAAAySFwAAAAgOQQOAAAAEByCBwAAAAgOQQOAAAA\nkBwCBwAAAEgOgQMAAAAkJ+vibT/4wQ++9a1vTZgwofsmnue3bNmye/duu91eWFj4xBNPpKam\nxugHAABIPidaWvZcutTh80n6U8ZkZCzNy5P0R3QnU+AIBAIff/zxhQsXou2wdevWTZs2rV69\n2mazbdy48fnnn1+3bh3DMNH65SkbAABAHk6//wf7939QXS3Dz7p32LDkDBy7du166623vF5v\ntB04jtu+ffvSpUsXLlxIRNnZ2U899VRFRcWoUaMi9hcUFMhQNgAAgDzaPJ4Vu3eXXr2qdCE3\nyOVydXR08DyflZUVbR85Ase0adPy8/MdDsezzz4bcYfa2tqmpqaSkhKhOWTIkOzs7LKyMqPR\nGLEfgQMAAJJGg8v19Z07T7e2Kl1IF7fb3dbW1tbW1t7eLv7C4/G4XK6wztbWVuGcwtSpUw8e\nPBjte8oROKxWq9Vq7ejoiLZDW1sbEQVjEcMwWVlZwsFE7A8+sLW1dcGCBcHmY4899thjj0lx\nCHEoRopMVgaDwWAwKF2FrDIyMpQuQW5arVZtr+2UlJSUlBSlq5CbzWZTugS5GY3GiP1V7e33\nbdt2QfTR1vd8PnK5yOUip1P44suKig0XLrhcrtZI3G73jf2czs7OGFtlHTQajZBFTCZTsMds\nNnd0dETrl79CAACAPne4vv6uDz5odDp78Zhu6YGcTvL7I/S7XNc6uzlGdKzPDqJL7A/ouAgc\nwo0nLpeLZVmhx+VyZWVlResPPtBisTz33HPB5qhRoxwOh3x1K0Sr1RqNxthBMsmYTCatVuv3\n+284dycchmEsFovT6eQ4TulaZMKyLMuyHMc5e/Xmm+DMZrPP5/NJfEtC/NBqtcLfkJ2dnTzP\nK12OTIRTsx6PJ6z/X5cvP/Txx/bgs9/YSDU15HZ3/c/l6vp/4X/x/VJpi3meJi4Ch3DeuKWl\nJS0tTehpbm4uLCyM1h98IMuyS5YsCTadTqca3qr0er3RaFTPRy8RGQwGrVYbCATUc9RC4PB4\nPIFAQOlaZKLRaFiW5XlePc8yERmNRp/Pp55DZllWCBwej0c9YVqn0xFR2LO8vabmO/v2eTmO\nOI5OnqT9+6mqSqECb1BqaqowZCI1NVX4OvhhHVFcBI7c3FybzXb06NHhw4cTUUNDQ319fXFx\ncbR+pesFAAC4cRsrKp754ouA3U6HDtEXX1AcDBc1GAzp6elGo9FoNKalpaWnp6enp4u/MJlM\nwj5CZ2Zmpl6v79WPUDJw7Nq1q7Gxcfny5VqtdtGiRZs3bxYSxvr16/Pz8wsKChiGidivYM0A\nAAA347cnTqz98EP+4EE6ckSiSySMXk96PaPTMWbztf+ZTF1fsGxhdvZ3p04NpgebzRYcuiAd\nJQNHaWlpZWXl8uXLiWjJkiV+v3/Dhg2dnZ2FhYVPPvmkMLtXtH4AAIDEwvH8N379651/+hN9\n+WXPH2U0Gq1fSU1NTUtLs4oI1zKE/09PTxe+EC7ixBsmmYbtqGcMh9VqbW5uVroQ+aSlpen1\neo/HY7fbla5FJgzDZGZmtra2qmcMh9lsNpvNgUCgNQ5OL8smPT3d7XaragyH1WolopaWFvWM\n4RBuez5x+vSiRx9tKC+Pup/JRFOn0tChWrP5B1OnPjRhgjA2QoZzD31I4Ym/AAAA1KPJ7d5S\nVXW+vV34k16v0539+98PvPNOIFqyHDCAZs6kyZNJrzdote/MmXPnkCGyViwLBA4AAIA+87ea\nmu9/9lnXza4dHfSXv9CZMxF2ZRgaPZpmz6aRI4lhiMjKsr+fN29mTo6M9coHgQMAAKBvbDhz\n5rnSUi44VuHQIfrrX6n7iQ2LhaZPpxkzSHQfaT+j8b3bb5+QvHOwInAAAAD0gf85ceKFI0eu\nNXiePv6Y9u6NsF9hIT3wAJnN4r7BKSl/uf32PKtV+jIVg8ABAABwU3ii/ywtffP06Wttv582\nbaLjx8P3s1pp6VIaMyasuyA9ffOCBQMtFukrVRICBwAAwI3zBgLf/eyzrdXV19ouF/3ud3Th\nQvh+kU5sENG07Ow/fO1r6SpYmRKBAwAA4AY5/f5H9+7dU1d3rd3RQevX05UrITsZjbRsGY0b\n1/3hC3JzN8yda4rLaTP6nCoOEgAAoM/Zfb4Hd+480th4re1yRUgbVit961s0aFD3h399xIjf\nzpql12ikrzQuIHAAAADciO999llX2vB6acOG8LTRvz+tWkXp6d0f+9SECT+bPFlVM2cjcAAA\nAPTayZaW7TU11xqBAP3+9xRsCoYOpUcfTbfZMgwGIhJmVjXr9QXp6f+Wn3/LgAFyV6w0BA4A\nAIBe+3tt7bWveJ42b6azZ0M2jxhBq1aN6ddv84IFI7OzicjhcMheY3xB4AAAAOi1fZcvf/XV\nPiorC9k2YAD927/Nys3dOG+eNaFWQpEUAgcAAEDv2H2+a6M3Llygjz8O2ZaVRatX31VQ8Pac\nOQatVpHy4hMCBwAAQO/sr6/3cRy1t9Mf/0jiZW9TU2nVqkXjx78zd66WUdWQ0OtTy904AAAA\nfeWfly8Tx9Ef/kB2e1evVkvf+AZlZq4aMwZpozsEDgAAgN7ZW1dHu3fTxYshvXffTcOHm3W6\nKdnZypQV3xA4AAAAeqHW4ag6c4Z27w7pLSqi2bOJ6JYBA1jVzOXVK/hHAQAA6IVdNTX05z9T\nINDV1a8fPfig8OXcgQOVKSvuIXAAAAD0wju/+Q01NHS1NRp6+GH6avU1BI5oEDgAAAB66uTp\n05V/+1tI17x5NHiw8OVAi2VUWpoCZSUCBA4AAIAe4Xn+e//n/4TcBztwIM2fH2zdhtMb0SFw\nAAAA9MimTZtOHDrU1dZo6KGHSDS7F66nxIDAAQAAcH1tbW2/+MUvQrpmzSJRwtAwzGz1LcnW\ncwgcAAAA1/eb3/ympaWlq2210u23i3cozMzMNBrlLitxIHAAAABcR01Nzfr160O67r2XQuPF\nXJzeiAmBAwAA4DpeeOEFr9fb1R46lAoLw/aZO2iQrDUlGgQOAACAWMrKyv761792tRmG7ruP\nQldLMet0JZjRPCYEDgAAgFhefPFFnue72hMnBifeCJqVk4MZzWPDvw4AAEBUBw4c2Lt3b1db\np6M77+y+G66nXBcCBwAAQFQvvvhiSHvaNMrI6L4bRoxel07pAgAAAOJOp9+//vTpDz755PT+\n/V29ej3Nm9d954EWS356unzFJSYEDgAAgBBVHR3Ldu2qtttpy5aQDTNmkNXaff85OL3RAwgc\nAAAAXcqbmx/atavJ7abaWqqo6Nqg19Ntt0V8yG0YwNEDCBwAAADXfHblyjf37LH7fEREe/aE\nbJs+nVJSuj9EwzC34gxHDyBwAAAAEBHtqKn5zqefegIBIqLGRjp1qmubVku33hrxUeNtNsxo\n3hMIHAAAAPTH8+f/4/PPA8H5Nv71LxLPvTFpEkUZForrKT2EwAEAAGr3Snn5f5WVdeULp5MO\nH+7azDA0d260x97RbRIwiAiBAwAAVO3l48d/dfRoSNfnn5MwjEMwejRFmbZ8QW7ulH79pKwu\neWDiLwAAUK+9ly+vO3YspCsQoC++COmZPTviY28dMOD1KJugO5zhAAAAlfJz3E8OHuTEYzWI\n6ORJ6ujoag4caBg9+vbcXOar1dq0DNPfZJo7aNC8QYNCFnCDmJIqcOh0urS0NKWrkBzDMAzD\nqOFIg3Q6HRHp9XpVHTURpaam8mFvhclLq9USkUajUdWzrNVqTSaTwWBQuhCZBD+zU1NTla1E\n8M6JE+fb28N7xVOLEpnmzPnwvvvm3sRADeG1rYYXNsdxMbYmVeDgOC4g3M6U1LRarVar9Xq9\nShciH41Go9VqOY5T1VHr9Xqfzxf7FziZsCyr0Wh4nlfVs6zVav1+v9/vV7oQmWi1WuHvB5/P\np3iY7vT7XzhwILz3yhWqrg62GLN5609+MrN//5t5WbIsyzCMGl7YPM/HSM/JFjhcLpfSVUhO\nr9cbDAY1HGkQy7JarTYQCKjnqBmGsVgsbrdbDRlawDCMXq/neV49zzIRGQwGn8/ndruVLkQm\nLMsajUYicrvdiofp/z52rN7pDO8NjSAPL18+uX//m3xNCmc4VPLCTok0N5oAg0YBAEB1mtzu\n18Xzegl8PiorC7Y0Gs0PvvMdWctKaggcAACgOi8fP+4Q3/gqOHaMRGeb5syZM2zYMDmrSm4I\nHAAAoC4XOjo2njsXYcPBg+LWN7/5TZkKUgcEDgAAUJdfHjni6z6CpKGBamqCrX79+i1cuFDW\nspIdAgcAAKhIWWPjDlGw6CKey5zo4Ycf1uv1MtWkDggcAACgIi+I10wJ4jjxcFEiWrZsmVwV\nqQUCBwAAqMXHX3752ZUrETacOyeeXbSkpGTUqFHylaUOCBwAAKAKHM+vDVukLejIEXHr4Ycf\nlqMglUHgAAAAVTjU2Hi2tTXCBrebRHNyGI3GxYsXy1eWaiBwAACAKnzR0BB5w/HjJJpd/s47\n74yTpV6SDAIHAACowpGrVyNvCL3O8uCDD8pRjfogcAAAgCocbmyM0NveTlVVwVZWVtbcuXNl\nK0lVEDgAACD51TgcTREXyTt2jETr1i5evBjTb0gEgQMAAJLf4WjXU44dE7eWLFkiRzWqhMAB\nAADJ70jE6ynNzXTpUrA1ePDgKVOmyFeTyiBwAABA8jvS1BSh9/hxcWvJkiUMw8hUkPogcAAA\nQJLzctzJ5uYIG0IDx/333y9TQaqEwAEAAEnueFOTt/vysI2NdPlysDVixIhx48bJWpbKIHAA\nAECSi3w9pbxc3Lr33ntlqkatEDgAACDJRR4xevKkuHXffffJVI1aIXAAAECSixA4Wlupri7Y\nysvLw/UUqSFwAABAMmtyu2sdjvDeEyfE833dc889stakSggcAACQzEojTvl14oS4hcAhAwQO\nAABIZmXdR4za7VRTE2wNGjRo4sSJstakSggcAACQzCJMan7qlPh6yl133YX5vmSAwAEAAEkr\nwPPHup/hOH1a3LrjjjvkK0jFEDgAACBpnW1r6/T7Q7o8Hjp/PtjKyMiYOXOm3GWpEgIHAAAk\nrQjXUyoqSBRB5s+fr9PpZK1JrRA4AAAgaUWYgQPXUxSCwAEAAEkrfFJzjqMzZ4ItlmVvu+02\nuWtSKwQOAABITh1eb2V7e0hXbS11dgZbs2bNSk1NlbsstULgAACA5HSksZET3f5KROLTG0R0\n++23y1qQuiFwAABAcoqwSGzoAA4EDjkhcAAAQHIKHzHa1kb19cFWQUHBkCFD5K5JxRA4AAAg\nCfFEZWGB4+xZ8QSjOL0hMwQOAABIQtUdHS0eT0jXuXPi1oIFC2QtSPUQOAAAIAkdDju9EQiI\nJxg1WSxTpkyRuyZ1Q+AAAIAkFL5IbFUViU54zLr1Vr1eL3dN6obAAQAAyabN49lSVRXSVVEh\nbi3CBKOyQ+AAAIBk89sTJ9rCBnCcPdv1NcPMmzdP5pJAjhVreJ7fsmXL7t277XZ7YWHhE088\nETaz24EDB9auXRv2qOzs7PXr13/00UdvvvmmuH/dunUFBQWSFw0AAImp1uFYHzrBF7W3U0ND\nsNU/Ly8nJ0fuslRPjsCxdevWTZs2rV692mazbdy48fnnn1+3bh3DMMEdRo0a9aMf/Uj8kPfe\ne2/UqFFEVF9fP3LkyAceeCC4aeDAgTLUDAAACerFo0c9gUBIV0WF+IbYhfPny10TyBA4OI7b\nvn370qVLFy5cSETZ2dlPPfVURUWF+CxFZmbmrFmzgs3Dhw+73e5Vq1YRUUNDQ0FBgXgrAABA\nNCdbWv4SNnqDwm+IXbxwoXwFwVckH8NRW1vb1NRUUlIiNIcMGZKdnV1WVhZtf5fL9eqrr373\nu981mUxEVF9fn5OT43Q6r169yodNiQ8AABBqzZEj4eun8DxVVgZbJrN52rRpcpcFMpzhaGtr\nI6KsrCyhyTBMVlaW0BnRhx9+OHTo0MLCQiLieb6+vn7v3r3vvvsuz/MWi2XlypULRcm0s7Pz\nhRdeCDZvu+22uXPnSnQg8UOj0TAMo6oVDrVaLRHpdDr1HLVwzdFisagnZ+t0OiLSaDTqeZaJ\nSKvVGo1G9dyfqdFc+ys3JSVFitf2vkuX9tbVhfdeuiReIXbunDmZmZl9/qNjEF7banhhx35O\nJQ8cHR0dRCScrhCYzWahszu73b5t27Y1a9YEmx6PZ9iwYc8995zRaNyxY8drr73Wv3//iRMn\nCjt4vd5PPvkk+PC8vDyDwSDVkcQZ9RxpkFarFZKHerAsq3QJcmMYRm2vbZ1OJ3wgqYoUr22O\n55/7/PMIG0JviL3jjjsUeY2p4e0rEDZ0JpTkr3Ih07lcruDLy+VyBU94hNm5c+fAgQPz8/OF\nptVq3bZtW3DrsmXLDh06tG/fvmDgYFl2vmjsz9ChQz1h90ElI41Go9fr1XCkQXq9XqPRBAIB\nv9+vdC0yYRiGZVmv16uqMxxarZbnea/Xq3Qt8mFZNhAIxH6bTibC2xcRSfHa/vO5c0dEt6J0\nEU0wSkRz5syR+f1TCJRqePvieT5GrpI8cGRkZBBRS0tLWlqa0NPc3CxcMQnD8/zOnTvvueee\naN+KYZjc3Fzx5RiLxfLiiy8Gm06n026391np8Uqv11utVjUcaVBaWppGo/H7/eo5aoZhMjMz\nOzs71fNRZDabzWYzx3HqeZaJKD093e12u91upQuRCcuyQuBwOBwcx/Xhd/YGAr+IeHrD66Wa\nmmBrwIABgwYNkvk1lpKSQkQOh0POH6oUo9EYbZPkg0Zzc3NtNtvRo0eFZkNDQ319fXFxcfc9\nz549e+XKlVtuuSXYU1paumLFisuXLwtNnuerq6uHDh0qdc0AAJBY1p89WxPxE72qikSnFubM\nmSNfTRBK8jMcWq120aJFmzdvFpLH+vXr8/PzhXtid+3a1djYuHz5cmHPsrKynJwc4YyIYOLE\niRaL5eWXX77//vttNtvOnTsbGxsXLVokdc0AAJBAXH7/K+XlkbeFXk9Rw40FcUuOkUpLlizx\n+/0bNmzo7OwsLCx88sknhRH4paWllZWVwcBx9OjRsWPHih/IsuyaNWs2bNjwxhtvENHo0aPX\nrVsn8+hiAACIczu+/DJ8JfogUeBgGGb27Nky1QTdMMk0JM3pdDqdTqWrkJwwhqO5uVnpQuST\nlpYmjJNVz9V9YQxHa2ur2sZwBAKB1tZWpWuRjwrHcFitViJqaWnpwzEcD+3ataf73bBE5HDQ\nmjXBOUbHjh27b9++vvqhPaeqMRzRbgohLN4GAAAJrdHt/vTKlcjbKivFM5rj9IayEDgAACCB\n/eXCBX+0kyWiCUYJI0aVhsABAAAJbPOFC1G3iQZw6HS66dOny1EQRIHAAQAAiepcW9vJlpbI\n21pbSbSpuLhYDZOLxzMEDgAASFTvxTi9EXo9RTzJEygCgQMAABISx/MfdF+JPig0i9x6662S\nFwQxIXAAAEBC+qy+vk60DGwYfXV18GuDwTBlyhRZioKoEDgAACAhvR/jekpTk080gKOkpCTG\nGh8gDwQOAABIPO5A4KMvv4y2lQnNIrNmzZK+IrgOBA4AAEg8O2pqOrzeaFv7hU48ihGj8QCB\nAwAAEk+s6TeIPKIZOIxG46RJk6SvCK4DgQMAABJMU4zpzImMLS3tTU3B5tSpU1mWlaUuiAWB\nAwAAEsxfqqqiTmdONDZ0/T8M4IgTCBwAAJBgYt2fQmSuqRE3ETjiBAIHAAAkkoq2tvLm5mhb\ns4zGymPHgk2j0VhcXCxLXXAdCBwAAJBI3o8xuyjRfKOxXjS8o6SkBAM44gQCBwAAJJKdtbUx\ntuZevSpuzpw5U+JyoKcQOAAAIGE4fL5zbW3Rthakp9eWl4t7ZsyYIX1R0CMIHAAAkDCONjUF\neD7a1qUjRnz++efBJsuymIEjfiBwAABAwjjc2Bhjaz5RreiCS3Fxsclkkr4o6BEEDgAASBhH\nogcOvUbTcfasuAfXU+IKAgcAACSMsuiBY0Jm5uGDB8U9GDEaVxA4AAAgMdQ4HI1ud7Stk7Ky\nvvjii2BTq9VOnjxZlrqgRxA4AAAgMRwOveU1TIFOd160Ztv48eOtVqv0RUFPIXAAAEBiiDGA\ng4ioupoX3cAyffp0yQuC3kDgAACAxFAmWgM2jM1guHD8uLgHgSPeIHAAAEAC8HLciehLqJRk\nZx84cCDYZBgGgSPeIHAAAEACON7U5I2+JH1haurJkyeDzREjRmRlZclSF/QUAgcAACSAGNdT\niMhcV+f3+4NNnN6IQwgcAACQAGKMGNUwTGvolF/Tpk2TviLoHQQOAABIADEmNS9ITz9+5Ii4\nB2c44hACBwAAxLsmt7vW4Yi2tdhmOyIKHNnZ2cOGDZOjLOgNBA4AAIh3pTGn/Mppa3OI4giu\np8QnBA4AAIh3sUeM+qurxU1cT4lPCBwAABDvYowYTdHra06cEPeUlJRIXxH0GgIHAADEtQDP\nH49+hqM4K+vwoUPBptlsHj9+vCx1Qe8gcAAAQFw729Zm9/mibR3FcXV1dcHm5MmT9Xq9LHVB\n7yBwAABAXIu9ZpuhtlbcnDp1qsTlwA1C4AAAgLgWO3C0V1SImwgccQuBAwAA4lqMwDEkJaVc\nNAOHRqOZMmWKLEVBr+mULqAvaTQao9GodBWS02q1RKSGIw3SaDREpNVqVXXURGQwGLjoq1Ul\nGZ1OR0QMw6jqWdZoNKoacCC8fRGRwWDgeb4nD+nwes+3t0fbOjkt7a9nzgSbY8aMyc7Ovski\n+5x63rRjP6fJFjgMBoPSVUiOYRiGYdRwpEFC4FDJ8yvGsmwP35STgPCmrLbXNsMwOp1OeIWr\nAcMwwhcsy/bwIccbGrjovwXZzc2BQCDYnDVrVhy+foTXdhwW1udi/4GUVIHD7/c7nU6lq5Cc\nXq+3Wq3t0SN/8klLS9Pr9T6fz263K12LTBiGyczMtNvt4jfT5GY2m81mM8dxqnptp6enu91u\nt9utdCEyYVnWarUSkd1u7+HZu08vXoyx1XnunLg5YcKEOHz9pKSkEJEj+tTsySRGrlJLrAYA\ngEQUYwAHq9FcOn1a3IMRo/EMgQMAAOIUHzNwFNpsRw4fDjazsrLy8vJkqQtuBAIHAADEqYt2\ne4vHE23rcKezo6Mj2MTpjTiHwAEAAHEqxozmRGQQTTBKRLghNs4hcAAAQJyqiDkCtOP8eXET\nZzjiHAIHAADEqcrogSNVrz9VVhZs6vX6oqIiWYqCG4TAAQAAcSrGlF/Ddbqqqqpgs7CwUA0z\nayU0BA4AAIhHHM9fEI0JDZNWXy+eFm/y5MmyFAU3DoEDAADiUV1np8vvj7aVC50QDAM44h8C\nBwAAxKMY11OIqOXsWXGzpKRE4nLgZiFwAABAPKqMfj2FOO6iaI7RnJycgQMHylET3AQEDgAA\niEcxblHRNDS4RCtn4XpKQkDgAACAeBTjkortyhVxE1N+JQQEDgAAiEfn29qibWIvXRI3ETgS\nAgIHAADEHbvP1+ByRdvaeeFC8GuWZQsLC2UpCm4KAgcAAMSdiuinN8jp7BBdUiksLDQYDHLU\nBDcHgQMAAOJOjBGjVFODKb8SEQIHAADEndiBQ9zCDByJAoEDAADiToxJOPShI0YnTZokfTnQ\nBxA4AAAg7kS9J5bjuC+/DLZycnIGDx4sU01wcxA4AAAgvvg5rjraGY6GhoDo7hXcEJtAEDgA\nACC+1DgcXo6Lsi1kAAdGjCYQBA4AAIgvsUaMiq6nEM5wJBQEDgAAiC+x1okVBQ69Xl9UVCRH\nQdAXEDgAACC+RD3D4XLR1avB1tixY00mk0w1wU1D4AAAgPgS9QzHl1+SaMovzMCRWBA4AAAg\nvkSdhKO2VtwqLi6WoxroI7ECR25u7gsvvCBbKQAAAM1ud4vbHXlb6C0qGDGaWGIFjrq6uvbQ\n81o6ne6ZZ56RuCQAAFCvqKc3eF58hsNmsw0fPlymmqAv9O6SSiAQ4KLdGw0AAHDTog7gaGqi\nzs5ga8qUKQzDyFQT9AWM4QAAgDgS9RaV0Bk4sIRKwkHgAACAOBLrFhURzDGacBA4AAAgjpxv\na4u8QRQ4GIbBLSoJB4EDAADihTcQqBUN1Oji89GVK8FWfn5+WlqafGVBX9DF3nzkyJHf/va3\nsXuI6Omnn+7jugAAQH2qOjr8EW9NuHSJAoFgC9dTEtF1Asc///nPf/7zn7F7CIEDAAD6QtR7\nYjGAI/HFChxbt26VrQ4AAIAejhjFlF+JKFbgWLx4sWx1AAAA9OSeWLPZnJ+fL1NB0HcwaBQA\nAOJF5DMcHR0kunVl0qRJOt11xgNAHOrRc+bz+Y4cOVJdXV1VVUVEeXl5w4cPnzx5sl6vl7g8\nAABQkchnOEKXUMEAjgR1ncDh9/v/8Ic/vPDCC0LUEMvLy/vZz372yCOPXEZzHisAACAASURB\nVDdp8jy/ZcuW3bt32+32wsLCJ554IjU1NWyfjz766M033xT3rFu3rqCgoCePBQCAJFDvdNp9\nvggbMMdoUoiVFTiOe+ihhz744AOr1fr0008XFRXl5uYyDFNbW1teXr5hw4ZHH310x44d7733\nnkYT69LM1q1bN23atHr1apvNtnHjxueff37dunVhc+DX19ePHDnygQceCPYMHDiwh48FAIAk\ngDlGk1uswPHuu+9+8MEHCxYseP/997tPsfKLX/ziwQcf/Mtf/vK73/3u0UcfjfZNOI7bvn37\n0qVLFy5cSETZ2dlPPfVURUVFQUGBeLeGhoaCgoJZs2bdwGMBACAJRA4cHEd1dcFWbm5u//79\n5asJ+k6sMxPr16+32WybNm2KOKGb1Wr985//nJmZuX79+hjfpLa2tqmpqaSkRGgOGTIkOzu7\nrKwsbLf6+vqcnByn03n16lWe53v1WAAASAKRB3DU15PHE2zh9EbiinWG49SpU7Nnz7bZbNF2\nsNls06dP/9e//hXjm7S1tRFRVlaW0GQYJisrqy10qnye5+vr6/fu3fvuu+/yPG+xWFauXLlw\n4cLrPtbr9X766afBZm5u7qBBg2IUkxy0Wi0RGQwGpQuRj3ARTaPRqOqoiYhlWS7irIvJSBgN\nxjCMqp5lhmF0Op16Djk45o9l2eDflkEX7PYIjwm9njJt2rSE++dSz5t29+dULFbgcDgc1714\nMXr06B07dsTYoaOjg4hMJlOwx2w2d4TOJWe32z0ez7Bhw5577jmj0bhjx47XXnutf//+drs9\n9mM7Ozt//OMfB5uPPfbYY489FrvgpKHCwbN6vV5tN0ZZLBalS5CbRqNR22tbq9UajUalq5Bb\nSkpK986KiGc4QgPHrbfemqCvEDW8fQVE0893d50bTIRcFuvx17tFRXhluFwulmWFHpfLFTxp\nIbBardu2bQs2ly1bdujQoX379s2ZM+e6jwUAgCTQ4nZfut4ZDr1ej1tUEpfkc6dkZGQQUUtL\nS3AgSHNzc2FhYYyHMAyTm5vb1tZ23cdmZGQcPnw42HQ6nU1NTX1+CPFGr9dbrdbm5malC5FP\nWlqaXq/3eDz2iO9HyYhhmMzMzNbW1th/MSQTs9lsNpsDgUBra6vStcgnPT3d7Xa73W6lC5EJ\ny7JWq5WIWlpawi4XfiZaDLaL201XrwZb48aN6+zs7Iy4nGwcE07nOBwOpQuRQ4yTAtcJHEeP\nHn311Vdj7HDkyJHY3yE3N9dmsx09enT48OFE1NDQUF9fX1xcLN6ntLT0lVdeWbdunXArLM/z\n1dXVkydP7sljAQAgCZyKGDS//JJEwwKwhEpCu07g2LNnz549e27mB2i12kWLFm3evFlID+vX\nr8/PzxeGhuzatauxsXH58uUTJ060WCwvv/zy/fffb7PZdu7c2djYuGjRohiPBQCAZHI6WuAQ\nwR+cCS1W4Hj//ff75GcsWbLE7/dv2LChs7OzsLDwySefFG46KC0traysXL58Ocuya9as2bBh\nwxtvvEFEo0ePXrduXWZmZozHAgBAMjnV0hKhF1N+JREm9k0sicXpdDqdTqWrkBzGcKgBxnCo\nBMZwCAI8P+wPf3B3f7U//zx9NfQhIyPj3Llzifg3J8ZwCLBaLAAAKOxCe3uEtNHcTKIP6UmT\nJiVi2oCgHgWOixcvHjt2LNg8f/78f/zHf+zYscMjmv0NAADgxkQdMSqC6ymJ7jqBo76+fuHC\nhcOHDxfPk9He3v7rX//6nnvuKSkpKS8vl7hCAABIcpFHjIauSo9bVBJdrMDR3t4+ZcqUnTt3\n3nvvvXfddVewv6io6JNPPlm9evXJkyfnzZvXEnGkDwAAQM9cd8QowzATJ06UryCQQKzA8atf\n/aquru7tt9/+8MMPp06dGuzX6/Vf+9rX3n777c2bNzc3N69du1b6OgEAIGlFuKTi95NoKrAR\nI0YIU0FC4ooVOD7++OOioqJVq1ZF22Hp0qXTp0/ft2+fBIUBAIAqtHo8l7tPHlpXR35/sIUB\nHEkgVuA4f/785MmTY48KLioqOn/+fF9XBQAAatGTARwIHEkgVuDQ6XQulyv249va2pJpJg8A\nAJBZT25RwYjRJBArcIwePfqLL76IkSc4jistLR05cqQEhQEAgCpcd8SoyWQaM2aMfAWBNGIF\njuXLl1+8ePGXv/xltB1eeuml6urqBx54QILCAABAFSJcUrHbSdRZVFSk00m+tjlILVbgePzx\nxydOnPif//mfjz/++MWLF8WbmpqafvjDH/70pz8dOnTo9773PWlrBACAJBXg+XNtbeG9oQM4\nSkpK5CsIJBMrM7Is+49//OORRx5566231q9fn5eXN3z4cIPBUFVVdf78ea/XW1xc/N577wmz\nxAMAAPTWhfZ2l+hulGtCB3BMmjRJvoJAMteZaTQ7O3vnzp179+694447vF7vrl27/va3v129\nenXq1KkbN248fPjwqFGj5CkUAACST09WpcctKsmhR1fF5s6dO3fuXCJyu90ejyctLU3aogAA\nQB0ijBjlOLp0KdgaOHDggAEDZK0JpNG7YThGo9FoNEpUCgAAqM3p7gM46utJtDIobohNGlie\nHgAAFBPhDAem/EpSCBwAAKCMdq83wqTmmPIrSSFwAACAMk61tESYWVJ0hkOv1xcWFspYEUgI\ngQMAAJQRYVJzl4uamoKtCRMmYOBg0kDgAAAAZUQewCFaTwMDOJIJAgcAACgjwiQcmPIreSFw\nAACAAgI8fxaTmqsJAgcAACigqqMjfFJznqfa2mArKytr6NChcpcFkkHgAAAABUS4nnL1Krlc\nwRZObyQZBA4AAFBAhBGjocuSY8RokkHgAAAABUS4JzZ0xCjOcCQZBA4AAFBAhEsqohGjOp2u\nqKhI1oJAYggcAAAgt3avt87hCOlyu+nq1WBrzJgxFotF7rJASggcAAAgtwiTmn/5pXjKLyyh\nknwQOAAAQG5ljY3hXaEzcEydOlW+akAWCBwAACC3w9cLHBgxmnwQOAAAQG6HRcM1iIh4XnyL\nCqb8SkoIHAAAIKtau/2K0xnShSm/VACBAwAAZHXwypXwrtApvxA4khICBwAAyCpC4MAADhVA\n4AAAAFkduHw5vEsUOPR6Pab8SkoIHAAAIB8fx5WFjRh1Okl008q4ceNMJpPcZYH0EDgAAEA+\nx69edfp8IV01NeIpvzADR7JC4AAAAPlgAIdqIXAAAIB8rnuLCiY1T1Y6pQvoSwzDaLVapauQ\nnEajISI1HGkYlTy/Yqo6XuGFrbZnmWEYVR2yRqM5EBY4OI5qa4OtgQMHJt+UXwzDkDp+nXk+\nfIUcsaQKHDqdLiMjQ+kqZKKeIw1iWZZlWaWrkJXValW6BLlpNBq1vbYtFot6lkVtdrkqw1al\nr6sjrzfYmj17drK+AAwGg9IlSC4QCMTYmlSBw+fzdXR0KF2F5PR6fWpqaktLi9KFyMdqter1\neo/H4whbzzp5MQxjs9na2tpi/wInE7PZbDKZAoFAW1ub0rXIJy0tze12ezwepQuRyT/r68P/\nBA4dwFFYWNjc3CxjRXIQAmVnZ6fShcghMzMz2qakChx0vfM5yUE4RjUcaXdqO2qe59VzyMEj\nVc8hB6nnkA81NIR3dRsxmqz/Gsl6XD2HQaMAACCTQ2EzcBBRdXXwS7PZPGHCBFkLAhkhcAAA\ngBx4orKwVelbW6m9PdiaPHmyTpds590hCIEDAADkcL6trS1stArWbFMTBA4AAJDDkaam8K7Q\nwDFt2jTZigH5IXAAAIAcjoRdT6GQARwajQZTfiU3BA4AAJDD4bARo243iW5aGTNmjAonnlEV\nBA4AAJCc0+8/JxofSkRUU0McF2xhzbakh8ABAACSO9rU5BfFC6LwARwIHEkPgQMAACQXfj2F\niKqqxC2MGE16CBwAACC5srBbVAIB8ZptOTk5gwcPlrsmkBcCBwAASC48cFy6RD5fsDVz5ky5\nCwLZIXAAAIC0ah2OeqczpEt0QyxhAIc6IHAAAIC0IszAETpidMaMGbIVA0pB4AAAAGmFBw6e\nF5/hSElNLSgokLsmkB0CBwAASCt8UvOrV0l0hWX6tGlarVbumkB2CBwAACAhH8edaG4O6Qq9\nIXb69OmyFgQKQeAAAAAJnWhudgcCIV2hI0Zxi4pKIHAAAICEIiwSKzrDwRoMRUVFshYECkHg\nAAAACYWPGG1uJtGiKpMmT2ZZVu6aQAkIHAAAIKHwSc1Dr6fMnjVL1mpAOQgcAAAglWa3u8bh\nCOnCiFG1QuAAAACpHO4+5ZcocGh1upKSElkLAuUgcAAAgFTCB3C0t5PoFtnREyaYTCa5awKF\nIHAAAIBUwgNH6PWUebNny1oNKAqBAwAAJMHx/LGYU37dghGjaoLAAQAAkjjX1tbh9YZ0XbgQ\n/FKj1WKRWFVB4AAAAEmET/nV0UGiKyzDRo9OSUmRuyZQDgIHAABI4kjYDByi0xtENBcDOFQG\ngQMAACQRfoYjNHAsmDNH1mpAaQgcAADQ9xw+X0VbW0iXaMQoo9VOmzZN7ppAUQgcAADQ98qa\nmgI839VubxcP4BhUUJCamqpAWaAcBA4AAOh74TNwhF5PmYkbYtUHgQMAAPpeeOCorBS3Fi9Y\nIGs1EAcQOAAAoO+VRT/Dweh0s2fMkLsgUBoCBwAA9LEah6PR7e5qt7RQS0uwlTN6tNlsVqAs\nUBQCBwAA9LHDYTNwnD8vbk3HDByqhMABAAB9LPaI0aV33SVrNRAfEDgAAKCPlYmn/OJ58YhR\nRq9fghGjqoTAAQAAfcnLcSfEi8TW15PdHmxljRljNBgUKAuUhsABAAB96XhTk5fjutqhAziK\nb7lF7oIgPuhk+Bk8z2/ZsmX37t12u72wsPCJJ57oPsGc0+n8/e9/X1paarfbhw0btmLFiqKi\nIiL66KOP3nzzTfGe69atKygokKFsAAC4AeFLqITOwHHfHXfIWg3EDTkCx9atWzdt2rR69Wqb\nzbZx48bnn39+3bp1DMOI93nrrbeOHTu2atWqzMzMTz755Oc///lLL72Un59fX18/cuTIBx54\nILjnwIEDZagZAABuTMiI0UBAvIQKmc0Pz58vf0kQDyQPHBzHbd++fenSpQsXLiSi7Ozsp556\nqqKiQnyWwu1279279+mnn549ezYRjRkzprKycufOnfn5+Q0NDQUFBbMwCS4AQIIICRw1NeTx\nBFvWsWMzTCYFaoI4IHngqK2tbWpqKikpEZpDhgzJzs4uKysTB47m5ubhw4ePHz9eaDIMY7PZ\nWltbiai+vn7s2LFOp9PhcPTr1y/svAjP83bRWCSO48J2SErCMarhSLtTz1EHn2W1HTKp6VkW\nJNmz3OR21zocXe3QARzjpk8Pfp1MRx2bmt+0xSQPHG1tbUSUlZUlNBmGycrKagtds3jQoEGv\nvPJKsFlbW3vixIlHHnmE5/n6+vq9e/e+++67PM9bLJaVK1cKZ0qC33yB6Paqxx577LHHHpP2\neOJGZmam0iXIzWAwGFQ2uD09PV3pEuSm1WrV9trW6XQWi0XpKvrM/tApN8ICx6KvZuCw2Wyy\nlRQn1PD2FQgEYmyVPHB0dHQQkUl0Ds1sNgud3fE8f+DAgVdffXXkyJF333233W73eDzDhg17\n7rnnjEbjjh07Xnvttf79+0+cOFHqsgEA4AYcuHy5q+FyUW1tVzMz8+4pU+QvCeKE5IFDuCHF\n5XKxLCv0uFyu4AkPsaampldffbW8vHzx4sXLli1jWZZl2W3btgV3WLZs2aFDh/bt2xcMHBaL\n5cUXXwzukJubK77Ckqy0Wq3JZHKIT1omO5PJpNPpfD6fW7w6Q7JLTU3t7OzkxLcXJjWDwcCy\nLMdxnZ2dStciH7PZ7PP5fD6f0oX0mc8vXepqnD9PohewfsyYvK/O5TgcDp7nZa5NKUajkYjU\n8PbF87zVao22VfLAkZGRQUQtLS1paWlCT3Nzc2FhYdhuVVVVP/nJT/Ly8l5//fWcnJyI34ph\nmNzcXPHlGJZl54sGPDudTqfT2ccHEH/0er3JZPKIxmElPeHXleM49Ry1cLnX6/XGPkWZTLRa\nLcuyPM+r51kmIpPJ5Pf7k+aQAzxfJl5FpaJCvHVUSQnn9wtfe71e9YRpvV5PREnzLN8wySf+\nys3NtdlsR48eFZoNDQ319fXFxcXifQKBwNq1a6dOnbpmzRpx2igtLV2xYsXlr07Q8TxfXV09\ndOhQqWsGAIAbcLatzS4+WyMOHBrNXKzZpm6Sn+HQarWLFi3avHmzkDzWr1+fn58v3KKya9eu\nxsbG5cuXl5eXX716dfHixYcOHQo+0GazTZw40WKxvPzyy/fff7/NZtu5c2djY+OiRYukrhkA\nAG5AyA2xV69Sa2tXc+jQGcOGyV4RxBE5Jv5asmSJ3+/fsGFDZ2dnYWHhk08+KZwuLi0trays\nXL58eV1dHRG9/fbb4kfNnDnzxz/+8Zo1azZs2PDGG28Q0ejRo9etW6e2EewAAIkiJHCcPRuy\nraBgcr9+MtcDcYVJpmE76hnDYbVam8VrIyW7tLQ0vV7v8XjUMChYwDBMZmZma2uresZwmM1m\ns9kcCARaxX8WJ7v09HS32500wwlv2bbtXHCY3TvviC+p5Dz77Ikf/pBlWWFQYUtLi3rGcKSk\npBCRSkb6R7wpRIDF2wAAoA90eL3n29uvNXy+kBnNU1JmTJqkSFUQPxA4AACgD5Q1NXHBU+aV\nlfTVDSlERPn5U/r3V6QqiB8IHAAA0AdiDeAYPXpy9DPtoBIIHAAA0AeiBg6Nhh09egLG+6se\nAgcAANwsXhw4GhqopaVr25AhhUOGsBp83KgdXgEAAHCzLtrtLcGZNM+cCdmGG2KBiBA4AADg\n5h0Wz2h++nTItrFjETiAEDgAAODmlTU1XfvK5aKamq4NaWk0YMAUBA5A4AAAgJt3ODiA48wZ\n8QqxNGZMlsk0OCVFkaogriBwAADATfEEAqeD88N2u55Skp0tf0kQhxA4AADgphxvbvYKc/AH\nAiErxOr1NHLkJMzAAUSEwAEAADep63rKhQvkcnVtyM8nvR4DOECAwAEAADelawaOU6dCNowb\np2GYIpzhACJC4AAAgJt0LXDwfEjg0Gho7NjR6emper1ShUFcQeAAAIAb1+By1XV2EhFdukTB\n1WKJaNgwslhwPQWCEDgAAODGHQpO+dXtegoRYcovCELgAACAG9c15Vd5ecgGBA4IhcABAAA3\n7tqk5vX1JF4tdtAgysxM1etHpaUpVRjEGwQOAAC4QQGeP97cTER04kTIhgkTiGhyv34ahlGi\nLohHCBwAAHCDTre2Ov1+om6BY/x4wvUUCIXAAQAAN+ja9ZSrV+nKla7e7Gzq358QOCAUAgcA\nANyga3OMHjsW0ltUJPwXk5qDGAIHAADcCE8g8PfaWqJu96cUFRHRsNTUTKNRibogTiFwAADA\njfh7bW2H10tXrlBDQ1dv//7C9RRM+QVhEDgAAOBGbL5wgSjq9ZQ5AwfKXhHENQQOAADotWa3\ne29dHfF8eOCYOJGIDFrtnUOGKFMZxCsEDgAA6LWt1dU+jqMvv6SWlq7e3Fzq14+I7hg8OI1l\nFSsO4hICBwAA9Nq16yllZSG9EycK//36iBGyVwTxDoEDAAB6p6qj42hTEwUCIddTGEYIHJlG\n422DBilWHMQrBA4AAOidTZWVRERnz5LT2dU7ciSlpRHR/cOH6zX4cIFweE0AAEAv8ERbqqqI\niI4cCdkwaZLwX1xPgYgQOAAAoBcONDR86XBQZyedPt3Vq9cLC7blWa3FmGAUIkHgAACAXtgs\nXE85epQCga7eCRPIYCCiZSNHKlQXxDsEDgAA6ClPIPC3mhoiokOHQjZMmUJEDNEDeXlK1AUJ\nAIEDAAB66h+1te1eL9XV0eXLXb0ZGTRyJBFN799/SEqKYsVBfEPgAACAnro2/cbBgyG9U6YQ\nwxDR13E9BaJD4AAAgB5pcbv3Xr5MXi8dPdrVyzBUUkJEBq120dChihUHcQ+BAwAAeuSD6mpv\nIEBHj5Lb3dVbUEAZGUS0ENOZQ0wIHAAA0CPvC9NvHDgQ0jttmvDfBzH9BsSEwAEAANe37/Ll\nssZGqqmhS5e6eq1WGjOGiGwGw9cwnTnEpFO6gL6k0+nS09OVrkJyDMMwDKOGIw3SarVExLKs\nqo6aiKxWK8/zSlchE41GI/y/qp5lrVZrNpuNRqPShVwHx/O/3LGDiOjzz0M2TJtGWi0RPTR6\ndD+b7brfh2EY4Qur1drnRcYt4bWthhc2x3ExtiZV4OA4zuv1Kl2F5LRardFodIuvoSY7k8mk\n1WoDgYCqjjolJcXj8cT+BU4mLMuyLMvzvKqeZbPZ7PP5fD6f0oVcx6aKimONjeRwUHl5V69W\nG7ye8tCIET154rRarclkIiKPx6OeMG0wGIjI4/EoXYjkeJ5no4/jSbbAoYa3Kr1er7bAYTAY\n1BY4GIYRAkdAPJljUtNoNCoMHEaj0efzxfkhezluTWkpEdEXX5Df37Vh3DhhtbaC9PRxVmtP\njoJl2WDgUE+Y1ul0RBTnz3JfSU1NjbYJYzgAACCWDWfO1Doc5PfTF1+EbJg1S/jvD4uKFCgL\nEg0CBwAARNXu9f72xAkioiNHyG7v2pCbS3l5RDTeZls8bJgyxUFCQeAAAICoXjlxosXtJp6n\nf/0rZMPs2cJ/fzFliuaroaAAMSBwAABAZFeczvVnzhARnT5NDQ1dG9LSqKiIiOYNGjRn4ECF\nqoMEg8ABAACRrS0rcwmjRPfsCdkwezZptRqG+enkyYoUBokIgQMAACI409Z2bam28+fpyy+7\nNhiNwt2wXx8xYkIP5t4AECBwAABABL84dIgTpsrYvTtkwy23kNFo0Gp/NHGiIoVBgkLgAACA\ncPvr6/fU1RERXbhAwnkOgV5Pt9xCRI+NHZubkqJQdZCQEDgAACAET/TzQ4euNf7+95BtM2aQ\nxZJuMDw1frz8hUFCQ+AAAIAQH1RVHW9uJiI6d44uXuzawLI0dy4R/aCwMMNgUKQ2SFwIHAAA\n0MUbCLx49CgREc/Txx+HbJs1i1JTB6ekrBozRpHaIKEhcAAAQJd3z527KMwoWlZGwjAOgdEo\nnN54triY1eCzA3oNLxoAALimw+v9jbAerM8XPnrj1lvJbB6XkfFAXp4itUGiQ+AAAIBr/ufk\nyRZhUdNPP6W2tq4NVivNmUNEvygpwUTmcGMQOAAAgIjoitP59unTREStreFzb9xxB7HsbYMG\nzcVE5nCjEDgAAICI6P8JTmT+4Yfk83VtGDCAJk/WMMxPJ01SqjZIAggcAABAFW1t71dVERGd\nOkWnToVsu/de0miW5uUVZmYqUhskBwQOAACgnx8+7Oc48njoww9DNkyaRCNHslrtM8XFCpUG\nSQKBAwBA7fZevvzJpUtERNu3U2tr1wajke65h4i+PXr0UExkDjcHgQMAQNV219X9m7D6fEUF\nHTwYsu3OOyk1Nd1g+EFhoSK1QTLRKV0AAAAoZktV1VOffebjOHK5aPNmEpaHFQwfTjNmENH3\nJ0zAROZw8xA4AABU6p0zZ35aWsrxPPE8vf8+tbd3bWNZeughYphBFstqTGQOfQGBAwBAjf7n\nxIkXjhy51vj0UzpxImTzPfdQZiYRPVtcbNBqZa8OkhACBwCAugR4/scHDvx/585da1+4QB99\nFLJHfj5Nn05EYzMyHhwxQvYCITkhcAAAqIiX45749NO/Bhedb2+nP/6ROK5rD6uVli0jhmE1\nml/PnImJzKGvIHAAAKhFp9//b3v27Lt8+Vrb7ab//V8S1oYVaDS0YgWlppp1uv+97bbJ/fop\nUickJQQOAABVaPV4Vuzefejq1Wttn4/efTdkAXoiuuceystLNxj++LWvTc3Olr9ISGIIHAAA\nya/e6fz6zp1nggvAchz98Y9UXR2yU3ExzZ7d32TafPvtYzMy5C8SkhsCBwBAAmvxeOo6Oznx\n/BndtHk839+/v66z81qb42jz5vAFU4YNowcfHGG1vn/77YMxqShIAIEDACAhnW9vf/bgwU8v\nX46VNbrzeukPf6AzZ0I6c3Lo0UeLcnLeW7Ag02jsyyoBvoLAAQCQeKo6Ou7csaPd6+3dwzo7\nacMGqq0N6czIoNWrZ48YsXHevBS9vg+LBBBD4AAASDA80b//61+9ThvNzbR+PTU1hXSmpNBj\nj90zYcJbc+awGqyuBRJC4AAASDAfVlcfbmzs3WOOH6etWyk4jEOQmUnf/vay6dN/M3OmDmkD\nJIbAAQCQSLyBwNqysl48wOGgrVupvDy8PzeXvvWtp2fOfG7yZMztBTJA4AAASCS/q6ioFk/V\nFVt5OX3wQfiJDSIaNYr55jf/85Zbvjt+fN+WBxANAgcAQMKw+3z/ffx4j3Zta6Pt2yniziUl\n+gcf/O2tt34d66SAjBA4AAASxv974kSz232dnS5dos8+o2PHKBAI32Qy0V13mW65ZcPcuQty\ncyUqEiAiBA4AgMRQ73S+efp01M0+H5WV0f79dOVK5B3GjqUHHpiYl/ffM2YUZmZKVCRANAgc\nAACJ4aVjx1x+f4QNzc108CAdPEhOZ8QHmlNSvvGDH9z+4IODU1KGp6ZKWyVAFAgcAJCcXC6X\nx+MJ6+Q4zh5pxKXD4fB3+yz3er3OSB/hdrudE6/nTkREbrfb3e1iB8/z7e3t3b+D0+n0+XxE\nZDAY/H5/IBAgIr/f73A4otXm8Pn2Xr5MwSnMAwES5uHw+aimhqJPbX7nnXe+9NJLOTk50XYA\nkIccgYPn+S1btuzevdtutxcWFj7xxBOp3SJ2tH168lipNbndp1paZP6hMeh0OnNra0dHh9KF\nyMfS3q7T6Xw+X8R3/6Tk83qNdXWOzk4u9DK8x+PxdfsQ9UbqFPq9Pds54p6xdo405ZTX7fZ1\n6/e63d13jrinRqPxeb1etzsQ+lkecedo39njcvl9vu47qxDLsnfc0p4kCgAADhdJREFUccd3\nvvOdqVOnKl0LABERw8dc8qdPfPDBB3/6059Wr15ts9k2btxoMBjWrVvHMExP9unJY4OcTqcU\nH0g7ampW7t3b5982SQT/zArjdlO3PwHJ76eIHwYuV4ROrzfCkDeOo4gj5jyeCD8uWm0Rf5zP\n1we1RfrM7t0/BcBNGzhw4MqVK7/xjW9kZWUpXUs4lmWtVisRtbS0dD9LlKxSUlKIKOLpq+QT\n41Un+RkOjuO2b9++dOnShQsXElF2dvZTTz1VUVFRUFBw3X1GjRp13cfepIhnQd1ut/hMbGNd\nHTU3R/2E8Pmo+1XViJ0U5VOtt98h4s59UlsPv3O07wAAiioqKlq9evWSJUv0WBIF4o/kgaO2\ntrapqamkpERoDhkyJDs7u6ysTBwaou1jNBqv+1ixl1566ZVXXgk2OY5T1XUHAFAnY0rKg/ff\nv2rVqrFjxypdC0BUkgeOtrY2Ep1jYRgmKytL6LzuPtd9rMPheOaZZ4JNl8sV9p0BIMHodNT9\nr3O9PkJntJ0jdvbqO/fqO0Tb+ea/s15Pum5v0d2+bY7ZfODhh/vbbFqtNsJ3jjPBC+Lyj8ZT\nkPDUpKWlKV2I5GJfJpM8cAjnGEwmU7DHbDaHnXiIts91H+vz+UpLS4PNUaNG9f0BAETEstT9\n/V2jIaMxws4GA3VfGUurJZaNsLPoBd8l4qcXw0T+cdFqMxgi7Gw09kFt3T8Xo/1TRKwNbsLa\nhQuHDhyodBW9psKLPhoVLI8X6D64TUTywCHEWJfLxX71/uVyucIGlUTb57qPZVl2/vz5wWZT\n2LLLEM3N/012839ESvedb/6PyGjfGR+WEGfGZ2Y+NHJk97t/45ZGoxGihtfrleGWhTih0+mI\nqPt918mH5/kYZ9okDxwZGRlE1NLSEjyb1NzcXFhY2JN9rvtYi8Xy4osvBpuvvvpqUVGR+Dsz\nDBPxLJbZbO6er3U6nTCWOEwjz3986VJ4b7RPNYn+PI32F2fEP0+j1QYAyeUnxcXOhLr3gWVZ\n4b3X4XDgLpWkZIz4uUZEMgSO3Nxcm8129OjR4cOHE1FDQ0N9fX1xcXFP9unJY8W+9a1vLVu2\nrM8PYUdNzce4LRYA4sw38/PnYz0USBySBw6tVrto0aLNmzcL6WH9+vX5+fnCbSa7du1qbGxc\nvnx5tH0Yhon2WAAA1co0Gr83YcIT48YpXQhAL8gx0+iSJUv8fv+GDRs6OzsLCwuffPJJYaBy\naWlpZWXl8uXLY+wTrV9OtwwY8MmiRTL/0Bh0Op3FYok4X3KySklJ0el00eaZTkrC1cCOjg71\nnHY2Go1Go1Ftd7OnpqZ6oszcGk2KXj8sNVUr+zshwE2SY6ZR2Ug002i80ev1Vqu1ublZ6ULk\nk5aWptfrPR5PxFUwkhLDMJmZma2trbFHfScTs9lsNpsDgUBra6vStcgnPT094vSDyQozjSa9\nGDONJv9dOgAAAKA4BA4AAACQHAIHAAAASA6BAwAAACSHwAEAAACSQ+AAAAAAySFwAAAAgOQQ\nOAAAAEByCBwAAAAgOQQOAAAAkBwCBwAAAEgOgQMAAAAkJ8dqsdC3OI5zuVxKVyGrv//97w0N\nDUOGDJk0aZLStciE53mXy5VMayte19GjR8+cOWOxWBYsWKB0LfLxeDx+v1/pKuRz6dKlzz//\nnIjuvvtuvV6vdDky6dVqwEksqQKHsNqk0lXIRD1HSkT/+Mc/Dhw4cNddd91+++1K1yIrk8mk\ndAny2bJlyzvvvDN48OCHH35Y6VpAKufOnXvzzTeJaOnSpenp6UqXA7LCJRUAAACQHAIHAAAA\nSA6BAwAAACTHqGpUGiQop9Pp9/v1er2qxjSojcfj8Xg8Go0mJSVF6VpAKn6/3+l0ElFqairD\nMEqXA7JC4AAAAADJ4ZIKAAAASA6BAwAAACSXVPNwQJJxOp2///3vS0tL7Xb7sGHDVqxYUVRU\nREQfffSRcCt/0Lp16woKChQqE/oAz/NbtmzZvXu33W4vLCx84oknUlNTlS4K+gB+iyEIgQPi\n11tvvXXs2LFVq1ZlZmZ+8sknP//5z1966aX8/Pz6+vqRI0c+8MADwT0HDhyoYJ1w87Zu3bpp\n06bVq1fbbLaNGzc+//zz69atw6DCJIDfYghC4IA45Xa79+7d+/TTT8+ePZuIxowZU1lZuXPn\nzvz8/IaGhoKCglmzZildI/QNjuO2b9++dOnShQsXElF2dvZTTz1VUVGBv3cTHX6LQQxjOCBO\nNTc3Dx8+fPz48UKTYRibzdba2kpE9fX1OTk5Tqfz6tWruM0qCdTW1jY1NZWUlAjNIUOGZGdn\nl5WVKVsV3Dz8FoMYznBAnBo0aNArr7wSbNbW1p44ceKRRx7heb6+vn7v3r3vvvsuz/MWi2Xl\nypXCX8aQoNra2ogoKytLaDIMk5WVJXRCQsNvMYghcEC843n+wIEDr7766siRI++++2673e7x\neIYNG/bcc88ZjcYdO3a89tpr/fv3nzhxotKVwg3q6Oig0JXqzGaz0AnJAb/FQAgcED8OHDiw\ndu1a4euf/exnwgn2pqamV199tby8fPHixcuWLWNZlmXZbdu2BR+1bNmyQ4cO7du3D29ViUu4\nIcXlcrEsK/S4XK7gCQ9IdPgtBgECB8SLSZMm/e53vxO+tlgsRFRVVfWTn/wkLy/v9ddfz8nJ\nifgohmFyc3Nx+j2hZWRkEFFLS0taWprQ09zcXFhYqGhR0DfwWwxBGDQK8YJl2YyvsCwbCATW\nrl07derUNWvWiN+nSktLV6xYcfnyZaHJ83x1dfXQoUMVqhr6QG5urs1mO3r0qNBsaGior68v\nLi5Wtiq4efgtBjGc4YA4VV5efvXq1cWLFx86dCjYabPZJk6caLFYXn755fvvv99ms+3cubOx\nsXHRokUKlgo3SavVLlq0aPPmzULyWL9+fX5+Pu6JTQL4LQYxLN4GcWr79u1vv/12WOfMmTN/\n/OMf19fXb9iw4dSpU0Q0evToRx99dPDgwUrUCH2G5/nNmzfv2bOns7OzsLDwySefxJqxSQC/\nxSCGwAEAAACSwxgOAAAAkBwCBwAAAEgOgQMAAAAkh8ABAAAAkkPgAAAAAMkhcAAAAIDkEDgA\nAABAcggcAAAAIDkEDgAAAJAcAgcAAABIDoEDAAAAJIfAAQAJw+v17t+/n+M4pQsBgF5D4ACA\nvuR0On/5y1+OGTPGZDINHjz40UcfraurC24tLy+/9957c3JysrKy7rjjDvGq5adPn168ePHg\nwYMzMzNvu+22bdu2BTctXrx4/vz5X3zxRU5Ozi233OL1eonoypUrK1euHDVqlMVimTRp0ttv\nv42lKAHiGVaLBYC+tGLFij/96U/z5s2bNm3aqVOnduzYUVRUdOjQIY1Gs2fPnrvuuqt///4P\nPvggEW3cuNHhcBw6dGjcuHH79++fP3++2Wx+6KGHUlNT//a3v505c+all176v//3/xLR4sWL\nKysrm5qaJk2aNH369Oeee+7ixYvTp0/3+XwrVqzIzMz85JNPDhw48Pjjj7/xxhtK/wMAQBQ8\nAEAfcTgcGo1m+fLlwZ5nnnnGYrFcuHDB7/ePHz9+yJAhTU1NwqbKykqWZb/97W9zHDdlypTU\n1NTq6mphk9PpnDlzptlsvnz5Ms/z9913HxGtXbs2+G3vuecem80W3J/juMcff5yI9u/fL8uB\nAkCv4ZIKAPQlnucPHz584cIFofmrX/3K4XDk5eWVl5efPHny3//93zMzM4VNI0aMeP3112fM\nmHHp0qXDhw+vWrVq2LBhwiaTyfTss886nc5du3YJPQzDfP/73xe+djqd27dvX7lyZXB/hmF+\n9KMfEdGOHTtkOk4A6CUEDgDoMxaL5b/+678qKytHjhw5bdr/3779g7QORXEcP8FnbSuIghWk\naquLIGqb6TkJghUdrEIjiGCXOjo4iMXFTeiiiDoUnARdLW6CiiAUO1gQahH/gNJ20UEUhyAq\nviEQisIbfA0+5PuZkpybe3O2HzfJ7+np6b29vZeXFxG5vLwUkfb29uLxkUgkEokYpY6OjuKS\ncWqURMTlcjmdTuP44uJCRBYXF5Uizc3NInJ7e2t1jwC+5td3PwCAH2V2dlbTtK2trf39/Xg8\nvrCw0NbWtru7+/z8LCLl5eWfb3l/fxcRRVGKL5aVlYmIEVZExOFwmCWbzSYiExMToVDow1T1\n9fWlbAZA6RA4AJTM/f19Lpfzer3RaDQajeq6vrq6OjMzs7S0ZISDs7OzQCBgjl9fXy8UCuPj\n4yKSzWaLp8pkMiLS2tr6eZWWlhZjV6O/v9+8+PT0lE6n6+rqLGoNwD/ilQqAkjk9PVVVNRaL\nGacOh0PTNBFRFMXn8zU1NS0vLz8+PhrVu7u7qampVCrV0NCgqura2lo+nzdKuq7Pz8/b7fbe\n3t7Pq9jt9sHBwY2NDfOFi4jMzc319PSYkwP43/BbLICS0XXd7/dfXV0Fg0Gfz5fP53d2dh4e\nHo6Ojjo7OxOJhKZpHo9nZGSkoqJic3OzUCikUilVVQ8PD/v6+qqqqsbGxiorK7e3t7PZbCwW\nMz4FHR4ePjk5ubm5MRc6Pz/v6up6e3sLh8M1NTUHBwfJZHJycnJlZeXbmgfwd9/8lwyAn+X6\n+jocDjc2NtpsNrfbHQqF0um0WU0mk4FAoLa21uVyDQwMHB8fm6VMJhMMBt1ud3V1dXd3dyKR\nMEtDQ0Mej+fDQrlcbnR01Ov1Op1Ov98fj8dfX18tbg7A17HDAQAALMc3HAAAwHIEDgAAYDkC\nBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5f4AsJcpN9yVQ/YAAAAASUVORK5C\nYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAIAAAADp837AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeWDUZN4H8OdJ5upNpwdXKVcLiAJFLi9ceeVQl1vW5fCABcohKILXsiCCLLpW\nQeTGcruKKAIKuIAK6K5iC1QQEApaoBR6353OTCfJ+8es2dh20nZmkpmm389fPE8yyW/oNP1O\n8uQJFQSBAAAAACiJ8XUBAAAAoH0IHAAAAKA4BA4AAABQHAIHAAAAKA6BAwAAABSHwAEAAACK\nQ+AAAAAAxSFwAAAAgOJ0vi7AmyorK61Wq6+rUIrBYDAYDOXl5b4uRCmU0tDQUEJIRUWFw+Hw\ndTlKCQgIIIRUVlb6uhCl6PX6wMBAQkhpaamG5xUMDg622WxVVVW+LkQpJpPJaDRyHKf5Y05Z\nWRnP876uRSlBQUE6nc5ut6t2zAkPD3e1SFOBQxAEjuN8XYVSBEGglGr4DTIMwzAM0frP0UnD\nb5BlWefPkeM4DQcOhmE0/0HV/HuklDIMw3GchgOH8z0S/zjm4JIKAAAAKA6BAwAAABSHwAEA\nAACKQ+AAAAAAxSFwAAAAgOIQOAAAAEBxCBwAAACgOAQOAAAAUBwCBwAAACgOgQMAAAAUh8AB\nAAAAikPgAAAAAMWp+vC255577i9/+Uu3bt1qLhIEYffu3V999VVZWVn37t1nzJgREhIi0w8A\nAKASu53++istLqaKPY+Q79tXYFmFNu4nVAocHMd98cUXv/zyi6sV9uzZs3PnzqlTp5rN5u3b\nty9evDgpKYlS6qpfnbIBAKCJY65dY778klqtiu6F69WLIHB47siRIxs2bLDb7a5W4Hl+//79\nY8aMGTJkCCEkOjp69uzZ6enp8fHxtfZ37txZhbIBAKCJYy5fZr/8kmj3+fVeZLfbLRZLZGSk\nqxXUCBz9+vXr1KlTeXn5X//611pXyMzMzM/P79Onj7MZGxsbHR19+vRpk8lUaz8CBwAAKI05\nf549fpwodhml8SouLr527dq1a9euXr0q/uPGjRujRo36+OOPXb1KjcARGhoaGhpaWlrqaoXi\n4mJCiBiLKKWRkZHFxcWu+sUXFhUVDRo0SGwmJiYmJiYq8Rb8h0x41IzQ0FBfl6A4k8nk6xIU\nFxER4esSlBUSEqL5IWUsy2r+mGM2m2vtt6ekVB47ploZERER1GhUaOMmk8m9Y47Var158+av\nv3fp0qXy8vJa18/KypLZmqqDRl1xZpGAgACxJzAwsLS01FW/+hUCAEDTYTt+3Kpi2vC5qqqq\nzMxMMVLcvHnz1q1bzn83aDsZGRkyS/0icDi/JVRWVhoMBmdPZWVlZGSkq37xhUFBQfPnzxeb\n8fHxrmKXBuj1er1eb7FYfF2IUiilQUFBhJDKykqO43xdjlKMRiMhxGaz+boQpeh0Oud3qYqK\nCkG756IDAwPtdrvD4fB1IUoxGAwGg4Hnec0fc2p+UIVvvuFTU1UupqKiglRVeX2zAQEBLMtW\nVVWJxxye59PT08+cOZORkeG8IHL16tWbN2/y3hinkpOTU1FR4TyS1+QXgSM8PJwQUlhYGBYW\n5uwpKCjo3r27q37xhQaDYfTo0WLTYrFo+HeDEMKyrFXhkdI+xDCM82NaVVUlM8S4sdPpdIQQ\nDf8cDQaDM3BYrVYNB46AgADpQVx7WJYlhAiCoOHPqjNw2Gy2//2tFQT2m2+Yc+fUL8ZqtSox\nNNVoNLIse/PmzW+//fb06dOnTp1KS0srKyvz7l4opc2bN2/btm3btm2tVqtfB46YmBiz2ZyW\nlta+fXtCSE5OTnZ2ds+ePV31+7peAADQHEHQff01vXjR13V4QVVV1YULF3744YcLFy6kpaX9\n/PPP3kr/RqOxRYsW7dq1c8YL5z/i4uLEkCEzeMuXgePIkSN5eXnjx49nWXbYsGG7du1yJozk\n5OROnTp17tyZUlprvw9rBgAADeI49vBhWo8hCwLDUL1ehYoahOf5K1eunD59+vTp0ydPnvz5\n5589vN5nMBhiYmKcqSI2Nlb8h/PKg3t8GThSUlKuXLkyfvx4Qsjo0aMdDsemTZsqKiq6d+8+\nc+ZM5+xervoBAAC8gvI8e+gQlR3w+F8hIdyIEcJvV/l97vTp04cOHXJeKHH7jooWLVqIkUKM\nFy1btmQYLz/8hGrpIqu2x3A472uS3hWsMQzDOO9PKy0t1fAYjuDgYEKIhkc3GwwG543NBQUF\nWjq8VBMeHm6xWDQ8hiMoKCggIIDjuKKiIl/XohRKaURERGFODvP551T2fk4noVkzx4gRJDhY\nhdrknT17dt++fXv37r1+/XpDX9uyZcs777zzzjvv7Nq1qzNbGL16O66PJ/4CAADwPbudPX2a\nXr5My8udIzRLCKnndOJCRAQ3YgSRTNOgvgsXLuzZs2ffvn3yd59WExQUdOedd/bo0aNXr153\n3nlnq1atlKtQHgIHAAA0AWVlus8+o26dJBaaN3cMHUp8NF/fxYsXP/vss3379qWnp9dnfZZl\n4+LievTo0aNHj3vuueeee+7hed4fzqoicAAAgMbRkhLdvn3ErdtBhVatHEOHEtUHipaUlGzf\nvn3Xrl0X63HjTIsWLZwXSnr16pWQkBD823WfsLAwvV7vJ/c2I3AAAICW0aIi3b59pKLCjdfy\nsbHcI4+o/BzX69evr1+//oMPPqioq+aePXuOGDFi2LBhsbGx6tTmCQQOAADQLJqbq/v8c+LW\nV3yhY0du0CA108bJkyfXrVt34MAB+dmWu3XrNmLEiJEjR7Zt21a12jyHwAEAANpEb93S7d9P\n3Lrrje/UiXvwQeLtW0Nr3xfPHzly5L333jt+/LjMap07dx4+fPioUaPi4+NVqMrrEDgAAECD\naFaW7sAB9x5Qwt9+O/eHPxDlp33ieX737t1vvvnm1atXXa0TFxc3evToESNGdOrUSel6FIXA\nAQAAWkOzs9nPPyduPQaST0jg7r3X6yXVlJqaumjRolTXD4rr27fvM888M3jwYG3MeInAAQAA\nWsMePUrdSBs6HXf33bzkEaEKuXTp0pIlSw4fPlzrUoPBMHLkyBkzZtxxxx1KV6ImBA4AANAU\nmptLCwvrWonyPXoERkZaLBbnlLhCYCBp21ZQeGqvwsLCt956a8uWLbU+6yQkJGTs2LFPP/10\n69atFS3DJxA4AABAU2hmZh1rMAw3cKDQqZMxIqKisJBX4LnwNXEcl5yc/Prrr9d6s2t0dPSc\nOXPGjx/v6tnuGoDAAQAAmsLcuCGzVGAY7qGHhPbt1RwWcfHixeeee+7kyZM1FwUEBEydOnXO\nnDkhISEqVuQDCBwAAKAdlOPorVsuF+t03MMPCypOk2W32999990VK1bUfCYly7Ljxo176aWX\nWrRooVo9PoTAAQAAGnLrlszNKXy3bmqmjXPnzj377LNnz56tuegPf/jD4sWLb7/9dtWK8TkE\nDgAA0I46rqe0aaNOGRzHvf3228uXL685Z2jbtm2TkpIGDBigTiX+A4EDAAC0g8oEDpblW7ZU\noYa8vLyZM2ceO3asWj/DMI8//viSJUs0PDJUBgIHAABohc1Gc3NdLRSaNyc6xf/qffXVV08/\n/XRBQUG1/i5duqxYsaJ3795KF+C3EDgAAEAjaFYWEQRXS5W+nlJVVbVs2bI1a9YIv69Br9c/\n++yzzz33nMFgULQAP4fAAQAAGsFkZcksFWJilNt1QUHBpEmTvv/++2r97dq1S05O7tGjh3K7\nbizUeA4eAACACuSm/NLr+ehohfb7888/Dx48uGbaGDVq1Ndff4204YTAAQAAmlBRQYuKXC3k\nW7dW6FnzX3311dChQ69fvy7tNBqNf//73zdu3Kj56bzqD5dUAABAC+q4IVaZ6ykrV65ctmxZ\ntcnR4+PjN23adNtttymxx8YLgQMAALRA5Rk4OI57+eWXt27dWq1/wIAB7733XlhYmHd3pwG4\npAIAAFogMwOHEBAgmM1e3JfNZpsyZUrNtDFz5swPP/wQaaNWOMMBAACNHi0uJuXlrpZ693pK\nRUXFxIkTq83rZTAY3nrrrXHjxnlxRxqDwAEAAI2e/CPpvXg9JTc3989//vO5c+eknWazeceO\nHX379vXWXjQJgQMAABo9dWbgyM3NHT169KVLl6SdLVq02LVrF4aI1gljOAAAoJETBOo6cAih\noYI37k29efPmsGHDqqWNLl26HDp0CGmjPnCGAwAAGieOIxYLFQRaVESsVldreeX0RlZW1qhR\nozIyMqSdvXr1+uCDD8xeHY6qYQgcAADQyNC8PPa77+SfnCLyfABHVlbWiBEjrl27Ju184IEH\ntm/fHhAQ4OHGmw4EDgAAaEyYX35hDh+mv59rS4aHZzgKCgoee+yxamljwIAB27dvN5lMnmy5\nqUHgAACARoNJT2e/+orUP21ERgoexIKSkpIxY8akp6dLOwcOHLh161aj0ej2ZpsmBA4AAGgc\nmHPn2G++qc9lFJEnpzcsFsu4ceOq3QE7ePDgLVu2NPEHzbsHgQMAABoBJi2N/e67hr7K7QEc\ndrv9qaeeSk1NlXYOGDAAacNtCBwAAODvmJQU9vd/++tDYBi+ZUs3dicIwty5c6vNJdq7d2+k\nDU8gcAAAgF9j//Mf5scf3Xllu3ZEr3fjdcuWLfvoo4+kPd26ddu5c2dQUJA7ZQAhBBN/AQCA\nP2NPnnQzbRgM3N13u/G6rVu3vvPOO9KeuLi4Xbt24ZFsHsIZDgAA8FO0uJhp+JUUQgiJiHAM\nHCg0a9bQ1x05cuTll1+W9kRHR3/00UeRkZHulAESCBwAAOCnmBMn6r4DNjiY69WLUPrfpk4n\nhIcLUVH/66m3ixcvTps2jeM4sScoKOiDDz6IjY1t6KagJgQOAADwRzQvj/nlF/l1hNBQbuRI\nrzwqpbCw8MknnywrKxN7WJZdv359jx49PN84EEKo0JAbmv2c3W6nDY+0jQXDMAzDOBwOXxei\nIL1eTwhxOBxa+lhWw7IsIUT6FUpjGIZxvseqqipf16IgnU7H8zxf7+mnGh2WZRmGEQTBh8cc\n286d3K+/yqxAIyJM48dTD9KGXq93HnDsdvvDDz/87bffSpeuW7du8uTJbm/cH+h0Okopz/Pq\nHHN4npeZD01TZzhU+z/1CZ1Op9fr7Xa7rwtRCqVUDBwa/jkajUbn0c3XhSiFZVkxcGg7ODoc\nDg1/ATAYDM7A4avPqnDjRh1pIzqa/dOfqoxG4m6FzmOO3W4XBOGZZ56pljZmzZr1xBNPNPZf\nVecXAJ7n1XkjgiA0ocBRWVnp6yqUYjKZWJbV8BtkGCYwMJAQYrfbG/svuQznH2MN/xwNBoPz\nAROVlZUaDhwmk8lut9tsNl8XohSGYfR6vSAIvvqssseOydxFKQQGVg0fTgghHpRHKQ0MDLRa\nrTt27Ni8ebN00YMPPrhgwQIN/J4aDAZnOFbtvQQHB7tahNtiAQDAvzBXrzLZ2TIr8L17Ey89\nyuTs2bPVbkuJj4/fsGGD87sBeBECBwAA+Bfmhx9klgohIXzXrl7ZUV5e3hNPPGG1WsWesLCw\nf/7zn5hyQwkIHAAA4EeYy5dpfr7MCny/fsQbpx94np8wYcKNGzf+t2uGWbt2bfv27T3fONSE\nwAEAAH5DEJiUFLkVzGa+Uyev7GrFihVHjhyR9sybN2/w4MFe2TjUhMABAAD+grlwgRYXy6zg\nuOsuN2b0qum777578803pT2DBg16/vnnPd8yuILAAQAAfoHyPHvypMwKQvPmgjeud+Tn51eb\nUbRNmzZr165lGPxNVBD+cwEAwC/QjAxSXi6zAnfXXZ7vRRCEZ599NltyF4xer9+wYUOzhj94\nBRoEgQMAAPwCvXZNZqnQpo0QE+P5Xt57773Dhw9Le1555ZU+ffp4vmWQh8ABAAB+gebkyCzl\n+vXzfBfnz59fvHixtOfhhx+eNm2a51uGOiFwAACAH3A4aFGRq4V8bKzQvLmHe6isrJw2bZp0\nIuOYmJh3331Xww/h8isIHAAA4Hs0N5e4ngtfaNPG810sWbLk0qVLYpNhmK1bt5rNZs+3DPWB\nwAEAAL4nfz3F89Mbx44d27Rpk7Rn9uzZDz74oIebhfpD4AAAAN+TCxyUClFRnmy8pKTk2Wef\nlT5NMCEhodojVEBpCBwAAOB7TG6uq0WC2Ux0Hj3b/K9//evNmzfFpslkWrt2rV6v92Sb0FAI\nHAAA4GPUaiVlZa6Weng95dChQx9//LG0Z9GiRfHx8Z5sE9yAwAEAAD5GZR9G70ngKCkpeeGF\nF6Q9999//+TJk93eILgNgQMAAHzN9fUU4lngmD9//q1bt8RmaGgo7oP1FQQOAADwMbkRozqd\nEB7u3maPHDmya9cuac/ixYtbt27t3tbAQwgcAADgY3IjRqOiiFvPVCsrK6t2MWXAgAETJkxw\nY1PgFQgcAADgS7S0lFitrpa6fT1l6dKlWVlZYjMkJGT58uW4mOJDCBwAAOBLdUz5FR3txjZT\nUlK2bt0q7Vm4cGGMN579Bm5D4AAAAF/y+hyjdrt97ty5PM+LPf369XvqqafcKQ68B4EDAAB8\nSiZwmExCaGhDt7dmzRrpM1MMBsOKFSsYtwaCgBfhBwAAAL7D80x+vsuFDb+ecvXq1eXLl0t7\n5s6di2m+/AECBwAA+AwtLCQOh6ulblxPmT9/vlUyBDUuLm727NluFgdehcABAAA+Iz+AgzQw\ncHz22WdHjhz538YpXb58ucFgcK828C4EDgAA8BkqP8doQy6pVFRULFy4UNozduzYu+++283K\nwNsQOAAAwGdkznAIISFCQED9N/XWW29JHwlrNptfffVVT2oD70LgAAAAH3E4aFGRq4UNGsBx\n6dKlDRs2SHsWLlxoNpvdrw28DYEDAAB8g+blEclsGdU06HrK/Pnzq6qqxGavXr3Gjx/vUXHg\nbQgcAADgG96a8mv//v3ffPON2GRZ9h//+Acm3vA3+HkAAIBvyAUOSoWoqPpsxGq1vvLKK9Ke\nJ598skePHh7WBl6HwAEAAL4hN2LUbCZ6fX02snr16szMTLEZHh7+8ssve6E48DYEDgAA8AFq\ntdKyMldL6zmA49atW6tWrZL2vPzyyxgr6p8QOAAAwAfqmIGjfgM4XnvtNYvFIja7du2Kh7T5\nLQQOAADwAZqRIbO0Pmc4Tp069cknn0h7li1bxrKsp5WBMhA4AABAbbS0lLlwweVilhUiIuS3\nIAjCwoULBUEQe4YOHXrvvfd6q0LwOgQOAABQG5OSIjMDBx8VReq6qfWzzz5LTU0VmwaDYdGi\nRV6rDxSAwAEAAOoqKGDS0+VWaNtWfgN2u33p0qXSnunTp7dr187jykBBCBwAAKAqXUoKkVwK\nqU6v5++4Q34LycnJV69eFZuRkZFz5szxUnWgFJ0K+xAEYffu3V999VVZWVn37t1nzJgREhIi\nXeHEiRPLli2r9qro6Ojk5OSDBw+uX79e2p+UlNS5c2fFiwYAAAXQ3Fz6668yK3AJCYLJJLNC\nUVHRihUrpD0vvPBCtT8r4IfUCBx79uzZuXPn1KlTzWbz9u3bFy9enJSURCkVV4iPj3/ppZek\nL/noo4/i4+MJIdnZ2XFxcY8++qi4qFWrVirUDAAASmC//15uscnEJyTIb2HFihXFxcViMz4+\n/sknn/RKbaAoxQMHz/P79+8fM2bMkCFDCCHR0dGzZ89OT0+XnqWIiIiQDi0+efKk1WqdMmUK\nISQnJ6dz584YeAwAoAE0M5PeuCGzAterFzEYZFbIzMzctGmTtGfRokU6nRpfnsFDio/hyMzM\nzM/P79Onj7MZGxsbHR19+vRpV+tXVlauXr161qxZAQEBhJDs7OwWLVpYLJbc3FxB5pofAAD4\nPTYlRW5xUFCdozeWLVtmt9vF5t133+38Ngv+T/FU6DzxFRkZ6WxSSiMjI6Vnw6rZt29f27Zt\nu3fvTggRBCE7O/vo0aObN28WBCEoKGjixInSz1ZFRcVrr70mNgcMGPDAAw8o9EZ8jmVZlmU1\nfJ1SvMoWEBBgNBp9W4xynF/FNPxzFB/RGRwc7NtKFMUwTEBAgEH2u3ij5vygMgzjxc8ql55e\nlZ0ts4K+f39TeLjMCj/++OOnn34qNimlb775ptsVOo85wcHBGv4265wGTa/Xq3PMkf+fVDxw\nlJaWEkKcpyucAgMDnZ01lZWV7d27d8mSJWLTZrO1a9du/vz5JpPpwIEDa9asad68ecJvV/js\ndvuXX34pvrxDhw4a/kPlpPk3SAjR1++JTY1aU5gMUfOfVZ1Op/kz+ZRSr/0cBaH8P/+RWc40\naxbYuzeR/dV49dVXecnsHWPGjLnvvvs8rEvDqVHk/L6qwo44jpNZqvhvizNVVVZWij/UyspK\n8YRHNYcPH27VqlWnTp2czdDQ0L1794pLx44dm5qaevz4cTFwGAyGgQMHiiu0bdvWZrMp8S78\ngfMTIz2XqDGUUueHpKqqinc9I1Bj5/wT5XA4fF2IUhiGcUZGDf8yEkIMBgPHcfKH10ZNp9Ox\nLCsIgreOOdzFi5zMw+gJYfv3tzkcxPWvxjfffPOvf/1LbOr1+kWLFnnyMXMec+x2u4bPcOj1\neoZhOI5T55gjCIJMslE8cISHhxNCCgsLw8LCnD0FBQXOKybVCIJw+PDhoUOHutoUpTQmJkZ6\nOSYoKOiNN94QmxaLpcz1swcbO5PJZDKZNPwGGYZxPuOxsrJSw7nKeaGhvLzc14UoxWAwOANH\neXm5ho/j4eHhlZWVGg5VQUFBAQEBPM9765jDnj4tM2ZQMJstbdoQ2X397W9/kzafeOKJ5s2b\ne1IepTQiIqK8vFzD33DCwsIYhqmqqlLtmGNyfUuz4oNGY2JizGZzWlqas5mTk5Odnd2zZ8+a\na168ePHWrVvS82MpKSkTJky4efOmsykIQkZGRtu6ZqADAAC/Qq1WRv7mlLvvJpK5Emr64osv\npBOZBwQEzJ0712v1gSoUP8PBsuywYcN27drlTB7JycmdOnVy3hN75MiRvLy88ePHO9c8ffp0\nixYtwiUjhhISEoKCgt56661Ro0aZzebDhw/n5eUNGzZM6ZoBAMCL6OXLMk9OEVq0EGRnJed5\n/vXXX5f2TJs2rXn9nl8P/kONEU+jR492OBybNm2qqKjo3r37zJkznWODU1JSrly5IgaOtLS0\nrl27Sl9oMBiWLFmyadOmdevWEUK6dOmSlJQUUdcjBAEAwK8wly/LLOV795Z/+Z49e37++Wex\n2axZs1mzZnmnMlAR1dJFVovFYrFYfF2FUpxjOGTuKG7sxDEcpaWlGMPReBkMhtDQUEJIQUGB\nlg4v1YSHh1ssFs2P4eA4rqioyNNtlZXpt293tVAwmRyTJsk8G5bjuPvuu+/KlStiz4IFC559\n9llPq/ptDEdhYaG2x3Do9Xqr1araMcfVTSEED28DAABFyT8YVoiPl38S/YcffihNG1FRUVOn\nTvVacaAiBA4AAFCQ/PUU4bd5EGplt9uXL18u7XnuuecCAwO9UxmoC4EDAACUQouKaEGBy8Uh\nIXyLFjIv37FjR2ZmptiMiYl56qmnvFgeqAmBAwAAlEIvXZJZysue3rBare+88460Z+7cuU1h\nYlCtQuAAAAClMJLhFzXx8fEyS7dt25YtefZKu3btxo4d67XKQHUIHAAAoAianU1LSlwtFcLD\nBdfTHFit1nfffVfa8/zzzzeFBy1pGAIHAAAogsrfn9K5s8zSLVu25Obmis0OHTo8+uijXqsM\nfAGBAwAAFCAIzC+/yCzn4+JcLaqsrFy1apW054UXXtD8s3k1D4EDAAC8j2ZmUtczMQotWgi/\nPdGzpq1bt+bl5YnN+Pj4UaNGebk+UB0CBwAAeJ/b029YrdbVq1dLe+bNmyfz0HNoLBA4AADA\nyyjHMRkZrhdTvmNHVwu3bt1abfTGyJEjvVse+AQCBwAAeBm9do24ftCM0KaN4GK2UJvNVu30\nxvPPP4/TG9qAwAEAAF5G5YeLup5+Y8eOHTk5OWKzY8eOo0eP9mZl4DsIHAAA4GX01i1XiwSW\n5du3r3WR3W6vdnrjueeew+kNzUDgAAAAb6JWKy0rc7m4XTtiNNa6ZOfOnVlZWZIV22HuDS1B\n4AAAAG+ikmsiNfFt2tTa73A4Vq5cKe2ZM2cO5t7QEgQOAADwKtnAIbh4POzu3buvX78uNtu0\nafPYY495uTDwKQQOAADwJrkzHDqdEB5es5vn+WpPTpk9ezaenKIxCBwAAOBNVDKLRjVCVBRh\navm7c+DAgXTJg1eio6PHjRunSHHgOwgcAADgNbS0lFqtrpYKzZvX0ikIK1askPY8/fTTJpPJ\n+8WBTyFwAACA18iPGBWio2t2Hj169KeffhKbZrP5qaee8n5l4GsIHAAA4DV1BI7aznBUO72R\nmJgYFBTk5bLADyBwAACA98gEDpNJCA2t1nfy5MkTJ06IzcDAwEmTJilUGvgWAgcAAHiJIDD5\n+a4W8rVdT1m+fLm0OXnyZLPZ7P3CwA8gcAAAgHfQggLicLhaWvN6yoULF7788kuxaTQap02b\nplRx4GsIHAAA4B3yAzhIjcCxatUqQRDE5vjx45vXNsgDtAGBAwAAvENmBg5S4xaV69ev7927\nV2yyLPv0008rVRn4AQQOAADwDpkzHEJIiBAQIO1Zs2aNQ3L9ZcSIEW3btlWwOPA1BA4AAPAG\nh4MWFblaWG0AR35+/gcffCA2KaWzZ89WsDbwAwgcAADgBTQvj/C8q6XVrqe89957VsmEpAMG\nDLjjjjsULA78AAIHAAB4Qf2n/LJYLFu2bJEunTVrllJlgd9A4AAAAC+QCxyUClFRYuuf//xn\nkeTiS8+ePfv3769obeAPEDgAAMAL5EaMhoeT354173A41q1bJ12K0RtNBAIHAAB4ilqttKzM\n1VLp9ZS9e/dmZmaKzbZt2z7yyCPKFgf+AYEDAAA8Vf8BHGvWrJEumj17NsuySpUF/gSBAwAA\nPFa/wHHs2LFz586J/VFRUWPHjlW2MPAbCBwAAOApmTlGBZYVfnse29q1a30JPW8AACAASURB\nVKWLpkyZYjQala0M/AYCBwAAeEoucERFEYYhhPz888/Hjh0T+wMCAiZOnKh8aeAvEDgAAMAj\ntKyMVla6XPzb9ZQ1a9ZIH9U2YcIEPIm+SUHgAAAAj9QxYjQ6mhBy69atPXv2iJ0sy06fPl3x\nysCf6HxdgDcxDGMymXxdhVL0er223yCl1PkP5zv1bTHKcQ7I1/DPUaf771HFZDJJv85qDKVU\nr9eLH1rtcX5QKaX1+awKBQUupzQnxBAbS0ymLVu22O12sXP48OGdO3f2QqEecP74jEajhj+o\nzmMpy7LqHHPk/ye1Fjg0PP6IYRhKqYbfoEiv14t/tLTHeRzX8M9RDIsGg8G3lSjKGTg0fD+n\nGDjq81m1uR7AQQMCjM2bV1RUbNu2Tdo/d+5cP/ktaCKBQ53/bd71w3SIxgKHw+GwWCy+rkIp\nJpPJZDKVlJT4uhClMAzjvKBrsVik34Q0Jjg4mBBSXl7u60KUYjAYQkNDCSGlpaUaPo6Hh4db\nLBabzebrQpQSFBQUEBDA83x9jjl614GDj4oqKSnZuHFjYWGh2NmvX78uXbr4/GhGKY2IiCgt\nLZX/M9mohYWF6fV6u92u2jFHJtlo9sQ1AACowWolkue+ViNERXEct2HDBmnnzJkzlS8L/A4C\nBwAAuI8pLpZZyjdrdvDgwevXr4s9HTp0eOihh5SvC/wOAgcAAHhANnCQ8PBqj2pLTEzU8Khw\nkIGfOgAAuI/KBo6UK1dSU1PFZnh4+Lhx45QvCvwRAgcAALhPJnAIJtP6zZulPU899VRgYKDy\nRYE/QuAAAAD3yQSOTJ4/ePCg2NTr9ZMmTVKlKPBHCBwAAOAuQRBcB471333ncDjE5qhRo1q1\naqVKWeCPEDgAAMBNtLycclyti8pttvePHpX2YC7zJg6BAwAA3CRzPeX9tLTSigqxed9993Xr\n1k2VosBPIXAAAICbXAUOjuc3pKRIe2bMmKFKReC/EDgAAMBdLgLHwUuXMiRzmXfo0GHgwIFq\n1QR+CoEDAADcRIuKau1fe+KEtInJvoAgcAAAgNtqvaTy482b31+7JjbDwsIw2RcQBA4AAHAT\nx5HankG67venN5588klM9gUEgQMAANxDi4uJIFTrzC4r23P+vNjU6XR/+ctf1K0L/BQCBwAA\nuKPW6ymbT560S2bmeOSRR2JiYlQsCvwXAgcAALijZuCwOhybT56U9mCyLxAhcAAAgDtqBo6P\nz57Nl0z2lZCQ0KdPH3WLAv+FwAEAAG6pETjW//CDtInTGyCFwAEAAO6odobj24yM8zk5YrNl\ny5bDhw9XvSjwXwgcAADQYNRqJVartGfd709vTJo0Sa/Xq1sU+DUEDgAAaLBqpzeuFRUdSk8X\nm0a9/oknnlC9KPBrCBwAANBwvw8cG1JSOJ4Xm2OGDo2MjFS9JvBrCBwAANBg0jMc5Tbb+2lp\n0qWJeDYs1IDAAQAADSYNHP/88cdSyXiO+zt27Nqzpy+KAr+GwAEAAA0mPidWEIT3UlKki6YN\nGeKLisDfIXAAAEADCYJQUuL855dXrlwpKBCXtAsPH9y/v4/KAr8mFzhiYmJee+011UoBAIBG\ngZaX098emLLh93fDJvbty5jNvigK/J1c4MjKyir5LcM66XS6F198UeGSAADAr4nXU64UFHz9\nyy9if7DR+HjPnkKzZj6qC/xawy6pcBzHS258AgCAJkgcMbr+xAle8oT6cT16hJpMBIEDaoMx\nHAAA0EDFxYSQEqv1wzNnxD5KaWLfvoRSEhbmu8rAfyFwAABAwzjPcLyfllZht4udD3bsGB8Z\nKYSECCzru9LAfyFwAABAw9DiYr7m3bD9+hFCMIADXEHgAACAhuA4Ul5+KD396m9DRwkhHSMi\nHoyLI4SQ8HCfFQb+TSe/+NSpU++88458DyFkzpw5Xq4LAAD8Ei0uJoJQy92wlBKc4QDX6ggc\nx44dO3bsmHwPQeAAAGgyaHHxxdzc4xkZYk+I0TghIcH5bwQOcEUucOzZs0e1OgAAoFGgxcUb\nUlIEyd2wj/fsGWw0Ov+NwAGuyAWOkSNHqlYHAAA0CqVZWR+dPSs2KaWT+/T5b0OnI8HBvikL\n/B4GjQIAQANsO3DAIrkbdnB8fFxEhPPfOL0BMuoYw+FUVVV16tSpjIyMX3/9lRDSoUOH9u3b\n9+rVS6/XK1weAAD4EY7jNh89Ku1J7NtX/DcCB8ioI3A4HI7333//tddec0YNqQ4dOixcuPDx\nxx/X6erYiCAIu3fv/uqrr8rKyrp37z5jxoyQkJBq6xw8eHD9+vXSnqSkpM6dO9fntQAAoI5D\n+/Zd+/3dsAM6dhSbCBwgQy4r8Dz/5z//+dNPPw0NDZ0zZ06PHj1iYmIopZmZmWfPnt20adOk\nSZMOHDjw0UcfMYzcpZk9e/bs3Llz6tSpZrN5+/btixcvTkpKopRK18nOzo6Li3v00UfFnlat\nWtXztQAAoI5NmzZJm9P79WOkB2Q8JxZckwscmzdv/vTTTwcNGvTxxx+H1Zgb/9VXX/3Tn/70\nySefbNu2bdKkSa42wvP8/v37x4wZM2TIEEJIdHT07Nmz09PTO3fuLF0tJyenc+fO9957rxuv\nBQAAFVy8ePHb1FSxGWoyjevRQ7oC/9tgDoCa5M5MJCcnm83mnTt31kwbhJDQ0NAPP/wwIiIi\nOTlZZiOZmZn5+fl9fhvDHBsbGx0dffr06WqrZWdnt2jRwmKx5Obmindb1fO1AACggvfee8/V\n3bCEEMKyeGwbyJA7w3H+/Pn+/fubXZ8iM5vNd91117fffiuzkeLiYkJIZGSks0kpjYyMLP7t\n0cZOgiBkZ2cfPXp08+bNgiAEBQVNnDhxyJAhdb7Wbrd/8803YjMmJqZ169YyxTRqOp2OUmqU\n/npri3ilTK/Xa/iqGcuyhBAN/xzFQV1Go1H6x0ljKKV1Dl9r1JwfVOkxp6Sk5JNPPhFXoJT+\npXdv6Uuo2WwMDFSzSK8wGAwa/qA6BzywLKvOMUf+f1LuF6a8vLzOixddunQ5cOCAzAqlpaWE\nkICAALEnMDDQ2SkqKyuz2Wzt2rWbP3++yWQ6cODAmjVrmjdvXlZWJv/aioqKl19+WWwmJiYm\nJibKF9zYNYUxs9KfuFY1hTu8grU+H0NT+KAyDCMec9avX2+xWMRFQyR3wzrpWrQIbIQHKM1/\nUAkher1enWMOx3EyS+tI6GxdTxmuM+M7P6yVlZUGg8HZU1lZKZ60cAoNDd27d6/YHDt2bGpq\n6vHjx//whz/U+VoAAFAaz/Pr1q2T9iT261dtHbZ5cxUrgsZH8VOC4eHhhJDCwkJxIEhBQUH3\n7t1lXkIpjYmJKS4urvO14eHhJ0+eFJsWiyU/P9/rb8FPmEwmk8lU7WqUljAM47x+V1paapdM\nK6Qxzq9T5eXlvi5EKQaDITQ0lBBSUFCg4TPV4eHhFovFZrP5uhClBAUFBQQEcBxXVFRECDl4\n8GCG5OEpHSMiBnToUO0lFSZTWaM6AlNKIyIiCgsLeZ73dS1KCQsL0+v1VqtVtWOOzEmBOgJH\nWlra6tWrZVY4deqU/BZiYmLMZnNaWlr79u0JITk5OdnZ2T179pSuk5KSsnLlyqSkJOetsIIg\nZGRk9OrVqz6vBQAApVW7G3Zav341B1rxuCcWZNUROL7++uuvv/7akx2wLDts2LBdu3Y500Ny\ncnKnTp2cQ0OOHDmSl5c3fvz4hISEoKCgt956a9SoUWaz+fDhw3l5ecOGDZN5LQAAqOPixYvS\nmwNCTabxv78blhBCDAbSCAdwgJrkAsfHH3/slX2MHj3a4XBs2rSpoqKie/fuM2fOdEbjlJSU\nK1eujB8/3mAwLFmyZNOmTc5rhF26dElKSoqIiJB5LQAAqCM5OVl6dWx8QkJwjVsecHoD6kS1\ndJHVYrFIB1FrDMZwaAPGcGhD0xnDcfXq1e7du4uHVkpp6qxZcTUm+OLvuIP7wx9UL9MjGMOh\nBJkxHHhaLAAAuLRjxw75u2GdBJzhgLrUK3BcvXr1xx9/FJuXL1+eN2/egQMHNJzuAQCA47gt\nW7ZIe2reDeskYFJzqEsdgSM7O3vIkCHt27eXzpNRUlKyfPnyoUOH9unT5+zZswpXCAAAvvH5\n559fv35dbMbVdjesE85wQJ3kAkdJSUnv3r0PHz48fPjwRx55ROzv0aPHl19+OXXq1HPnzv3f\n//1fYWGh8nUCAIDaqk2LMP2uu2ofth8UREwmlWqCRksucPzjH//IysrauHHjvn37+vbtK/br\n9foHH3xw48aNu3btKigoWLZsmfJ1AgCAqn766adjx46JzZrPhhXhIbFQH3KB44svvujRo8eU\nKVNcrTBmzJi77rrr+PHjChQGAAC+tGrVKmlzQkJC0G9PmagOgQPqQS5wXL58uVevXvLzXvTo\n0ePy5cvergoAAHypqKjon//8p9hkGGaq5Dx3NRgxCvUhFzh0Ol1lZaX864uLizV8qz0AQNO0\nadMm6d2wg/v16+B6WCgCB9SHXODo0qXL999/L5MneJ5PSUmJi4tToDAAAPANjuOSk5OlPYn/\n938u16ZUCA9XvCZo/OQCx/jx469evbp06VJXK7z55psZGRmPPvqoAoUBAIBvfPHFF9K7YTt1\n6vRA69auVhaaNSMsq0pd0LjJBY7p06cnJCS88sor06dPv3r1qnRRfn7+3LlzFyxY0LZt22ee\neUbZGgEAQEUbN26UNhOnTmWKilytjBk4oJ7kHt5mMBgOHTr0+OOPb9iwITk5uUOHDu3btzca\njb/++uvly5ftdnvPnj0/+ugj57MhAABAA86fP//999+LzWbNmj320ENk926XL3D97AwAqTpm\nGo2Ojj58+PDRo0cfeughu91+5MiRzz//PDc3t2/fvtu3bz958mR8fLw6hQIAgAo2bNggbU6Y\nMCFQ9qGYeE4s1JPcGQ7RAw888MADDxBCrFarzWYLCwtTtigAAPCFgoKCTz/9VGyyLDt58mQm\nJ0fuNTjDAfXTsKfFmkwmpA0AAK3aunWr9Kmcw4cPb9OmDcnPd/kCnU4ICVGjMmj88Hh6AAAg\nhBC73b5161Zpz+zZswkh1PUDswSzmchODgkgQuAAAABCCPnss8+ys7PFZo8ePe6//37K87Sk\nxNVLMOUX1B8CBwAAEELIe++9J20+++yzhBBSWEh43tVLEDig/hA4AACApKamnj59WmxGRkaO\nGzeOEEILCmRehcAB9YfAAQAA1Sf7mjJlislkInUFDjwnFuoPgQMAoKm7efPmgQMHxKbBYJg6\ndep/G64Dh2AyCQEBStcGmoHAAQDQ1G3evLmqqkpsDh8+vGXLls5/M65vUcEMHNAgCBwAAE1a\nZWXljh07pD3i6Q2hooKUl7t6IZ6iAg2CwAEA0KTt2rWrUHIao2/fvnfeeafz3/zNmzIvFHCG\nAxoCgQMAoOkSBKHacNFp06aJ/+bkA0d0tFJlgRYhcAAANF1Hjx5NT08XmzExMY888ojY5LKy\nXL5SpxPCwxWtDTQGgQMAoOlav369tDl58mSd7n8P9eRv3XL1QiEqijD4CwINgI8LAEATlZ6e\nfuzYMbEZGBj4+OOPi02+sFCorHT1WqF5c0VrA+1B4AAAaKI2bNggCILYHDt2bLNmzcSm3PUU\nBA5oOAQOAICmqLCwcNeuXWKTYZjExETpCnWMGEXggAZC4AAAaIq2bt1qtVrF5qBBgzp27Chd\nweH6DIdgMgkhIQoWB1qEwAEA0OTY7fbNmzdLe6R3wxJCCM/LjRjF6Q1oOAQOAIAmZ8+ePTk5\nOWLz9ttv79+/v3QFIT9fcDhcvRwzcIAbEDgAAJqcanfDTp8+vdoKguvTG4QQgjMc0HAIHAAA\nTcu333577tw5sRkdHT169Ohq68gHDpzhADcgcAAANC01J/syGAzV1pF5iooQGoqn0oMbEDgA\nAJqQy5cvHzlyRGyaTKaJEydWX8nhEFw/lR6nN8A9CBwAAE3IunXrqk32Za7xlHmam0t43tUW\ncIsKuAeBAwCgqSgoKPj444/FZs3Jvpyo5AaWmhA4wD0IHAAATcWWLVukk30NHDgwPj6+5mo0\nN9flJigVoqKUqA00T1f3Ko0HpZRlWV9XoRRKqebfoPMfDMNo/m1q+A0yvz1BlGVZ6al77Wl0\nH1SbzVZtsq9Zs2bV+hYYmcAREcEajV6vzSfEX0bx4KM9zrem2t8O+V95TQUOnU4XHh7u6yqU\npfk3SAgJDg72dQmKM2rlkC1D+hgwTQoKCgoKCvJ1FQ2wcePGvLw8sdmrV69hw4bVXE2wWEpL\nS11txBAbG6Cto1BYWJivS1Cc0WhU55jDcZzMUk0FjqqqKpnfk8bOaDSaTKaSkhJfF6IUhmGc\ncaq0tLSqqsrX5SglODhYEISKigpfF6IUg8EQEhJCCCksLNTwGY5mzZpVVlbabDZfF1JfPM+/\n9dZb0p5p06YVFBTUXJO5dk3mWrs1LMxS26saI0qp2WwuKiriXY+QbezCwsJ0Op3ValXtmBMR\nEeFqkaYCB6nrfI4GaPgNSt+a5t+m5t+g8x8afpuksb3BQ4cOXb58WWzGxMQMGzas1vqF7GyZ\n7fDR0Y3oXddH4/o5NpT099G3lRAMGgUAaArWrFkjbU6bNk2nq/0Lp9wtKjqdUOMeWoB6QuAA\nANC4tLS0EydOiM2QkJDx48e7WlnmFhUhKoow+KsBbsJHBwBA41atWiVtPvXUU6GhobWuSUtL\nqeS+2WowAwd4AoEDAEDLMjIyDh48KDYNBsPUqVNdrVzHlF+Y1Bw8gMABAKBl69atk96sOHr0\n6FatWrlaWW7KL5zhAM8gcAAAaFZ+fv6HH34oNimlM2fOlFlf7gyHySS4uBADUB8IHAAAmrVx\n40bpXOaDBg267bbbXK7N81QyM1j1hbieAp5B4AAA0CaLxbJt2zZpz6xZs2TWp0VFxOFwtRQD\nOMBDCBwAANq0bdu2wsJCsdmzZ8+7775bZn35EaMEAzjAMwgcAAAaVFVVtWHDBmnPM888I/8S\nPJUeFIXAAQCgQbt3787KyhKbHTt2fOSRR+RfIhM4hJAQISDAa8VBk4TAAQCgNYIgrF69Wtrz\n9NNPM/KThDoctKjI5QZxegM8hsABAKA1X3zxxaVLl8RmdHT0Y489Jv8SmpdHXD80FSNGwXMI\nHAAAWlNtLvMZM2YYjUb5l2AABygNgQMAQFP+/e9/nzx5Umw2a9Zs4sSJdb5KLnBQKkRFeaM0\naNIQOAAANGXlypXS5qRJk4KDg+t8ldyI0fBwotd7oTJo2hA4AAC0Iy0t7dixY2IzICAgMTGx\nzldRq5WWlblaiusp4BUIHAAA2lHt9Mbjjz8eGRlZ56swgANUgMABAKARFy9e/OKLL8SmwWB4\n+umn6/VKBA5QHgIHAIBGrFy5kpfc2jpmzJjWrVvX54UyT6UXWFYwm71QHDR5CBwAAFpw7dq1\nvXv3ik2WZeucy1wkFziiooj8jGEA9YOPEQCAFrzzzjsOybNehw8f3rFjx/q8kJaV0cpKl4tx\nPQW8BIEDAKDRu3Hjxq5du8QmpXTOnDn1fG0dI0Yxxyh4CQIHAECjt2rVKrvdLjaHDBnStWvX\ner4Wt6iAOhA4AAAat5ycnA8++EDaM3fu3Pq/XCZw0IAAISzM/coAJBA4AAAat5UrV1qtVrH5\n4IMP9uzZs74vFgSal+dqIdOqlYe1AYgQOAAAGrGcnJwdO3ZIe+bNm1f/l9PCQiIZaloNi8AB\n3oPAAQDQiK1evVp6euP+++/v06dP/V8uP4ADZzjAixA4AAAaq7y8vG3btkl7nn/++QZtQWYG\nDoIzHOBVCBwAAI3VqlWrKiVTaNx333133313g7Ygc4aDCQujQUHuFwfwewgcAACNUm5u7tat\nW6U9DT29QRwOWljoaiFbv2nRAeoJgQMAoFF69913q53euPfeexu0BZqXRyTPXqkGgQO8C4ED\nAKDxycnJqTZ644UXXmjoRuRHjCJwgHchcAAAND7vvPOO9OaU/v3733PPPQ3diNyIUUrZFi3c\nqw2gVggcAACNTFZW1vbt26U9L774ohvbkZtjNCKCGo1ubBPAFQQOAIBG5u2335Y+OWXAgAF3\n3XVXg7ditdLSUlcLmZYt3asNwBUEDgCAxuTq1as7d+6U9rz00ktubIeRnYGDInCAtyFwAAA0\nJklJSVVVVWJz8ODBvXr1cmM78lN+IXCA1yFwAAA0GhcvXty9e7fYpJS+/PLLbm4rO9vVEoFl\naVSUm5sFcAGBAwCg0XjjjTc4jhObw4YN69atm3ubkjvDERVFGPx1AC/TqbAPQRB279791Vdf\nlZWVde/efcaMGSEhIdXWsVgsO3bsSElJKSsra9eu3YQJE3r06EEIOXjw4Pr166VrJiUlde7c\nWYWyAQD8Slpa2sGDB8Umy7Lujd4ghNCyMiqZNKwaITravc0CyFAjcOzZs2fnzp1Tp041m83b\nt29fvHhxUlISpVS6zoYNG3788ccpU6ZERER8+eWXixYtevPNNzt16pSdnR0XF/foo4+Ka7bC\nw4QAoElaunSpIAhi809/+lOnTp3c25T8lF9C8+bubRZAhuKBg+f5/fv3jxkzZsiQIYSQ6Ojo\n2bNnp6enS89SWK3Wo0ePzpkzp3///oSQ22677cqVK4cPH+7UqVNOTk7nzp0bOl8vAIDGHDt2\n7JtvvhGbBoPBvbk3nORHjCJwgBIUDxyZmZn5+fl9+vRxNmNjY6Ojo0+fPi0NHAUFBe3bt7/j\njjucTUqp2WwuKioihGRnZ3ft2tVisZSXl0dFRVU7LyIIQllZmdjkeb7aClrifGuaf4M1/60x\nTefnqOH36EQpVe09CoKwdOlSac+kSZNiY2Pd3qDcGQ6jkTRr9r81tftzFH8ZNf8eiX/8HBUP\nHMXFxYSQyMhIZ5NSGhkZ6ewUtW7deuXKlWIzMzPzp59+evzxxwVByM7OPnr06ObNmwVBCAoK\nmjhxovNMibjxQYMGic3ExMTExERl34+vRURE+LoExYWGhvq6BMUZm8Acjmaz2dclKCs4ODg4\nOFidfe3cufPMmTPSXS9evNj9o4EglObnCy4W6mJiwn7bMsuymj/mhIeH+7oExZlMJpPJpMKO\npCOaa1I8cJSWlhJCAgICxJ7AwMBSF9PbCYJw4sSJ1atXx8XF/fGPfywrK7PZbO3atZs/f77J\nZDpw4MCaNWuaN2+ekJCgdNkAAH7CbrcvWLBA2jN37tzmHlz14PLyBMlEpdXgmW2gEMUDh/OG\nlMrKSoPB4OyprKwUT3hI5efnr169+uzZsyNHjhw7dqzBYDAYDHv37hVXGDt2bGpq6vHjx8XA\nERQU9MYbb4grxMTESK+waIxer9fr9RaLxdeFKIVS6vy+WFlZ6XA4fF2OUpzfM6SP3dIYnU7n\n/IJRXl4uHeGoMUFBQTabTZ0P6oYNG3755RexGRUVNX36dE+OdYJkazXZw8OrysqMRqPBYOB5\nvqKiwu0d+b+QkBBtf1ADAwNZlq2qqlLnmCMIgswpasUDh/NsVWFhYVhYmLOnoKCge/fu1Vb7\n9ddf//a3v3Xo0GHt2rUtXDyikFIaExMjvRxjMBgGDhwoNi0Wi7b/Hut0OpvN5utClML8dt9/\nVVWV3fXXr8ZOr9cTQjT8cxQEwRk4bDabto/jDodDhZ9jWVmZ9GsVIWTu3Ll6vd6TXbNZWTKT\nbFSZzYLNptPpCCGCIGj4s+oc1mC323me93UtSjGZTCzLchznDz9Hxad2iYmJMZvNaWlpzmZO\nTk52dnbPnj2l63Act2zZsr59+y5ZskSaNlJSUiZMmHDz5k1nUxCEjIyMtm3bKl0zAICfePfd\ndwsKCsRm+/btn3zySQ+3KTdiNDhYCAz0cPsAtVL8DAfLssOGDdu1a5czeSQnJ3fq1Ml5i8qR\nI0fy8vLGjx9/9uzZ3NzckSNHpqamii80m80JCQlBQUFvvfXWqFGjzGbz4cOH8/Lyhg0bpnTN\nAAD+4NatWxs2bJD2LFiwQLw87R7KcbSw0NVSHlN+gWLUmPhr9OjRDodj06ZNFRUV3bt3nzlz\npvNEVkpKypUrV8aPH5+VlUUI2bhxo/RV99xzz8svv7xkyZJNmzatW7eOENKlS5ekpCTND5kG\nAHBaunRppWQ+0F69enn+jYvm5RHXVxAwAwcoh2rpIqu2x3A472uqdkexljAM47yRsrS0VMNj\nOJwDY8vLy31diFIMBoNz1FhBQYGWDi/VhIeHWywWRa+LnzlzZvDgwdLhBfv37+/Xr5+Hm2XO\nnGH//W9XSx0jRwqtWxNCgoKCAgICOI5zTomkSZTSiIiIwsJCDY/hCAsL0+v1VqtVtWNOrTeF\nOOHxPAAA/mjBggXSP4RDhw71PG0Q+TlGKRXwkFhQDAIHAIDf+eyzz06cOCE2DQbDK6+84pUt\ny4wYFcLDiWcDRABkIHAAAPgXm8326quvSnumTJnSvn17L2zaaqUlJa4W4iGxoCgEDgAA/7Ju\n3brMzEyxaTab586d65UtM3l5MksROEBRCBwAAH7k1q1b77zzjrTnpZdeEidO9BCeSg8+hMAB\nAOBHFi9eLJ1NvEuXLp7P9CWSG8DBMMT1/QUAnkPgAADwF6mpqZ9++qm0Z8mSJc5Zxr1D5haV\n6GiBwV8EUBA+XgAAfoHjuJdeekk6ecnQoUMHDBjgtR2UlVHXMxXxuCEWFIbAAQDgF7Zs2fLT\nTz+JTZPJtHjxYi9un5E5vUEIwQAOUBgCBwCA7+Xl5VV7KuysWbNiY2O9uAu5Kb8wYhSUh8AB\nAOB7S5YsKZHMkBEbG/vss896dxdyt6gYDIKXboQBcAWBAwDAx06cOPHRRx9Je5YtW2Yymby5\nD0GQOcMhREcTSr25O4AaEDgAAHzJbrfPmzdPOlZ08ODBQ4YM8e5emJwcUlXlaimup4AKEDgA\nAHxpzZo16enpYtNkMi1btszre6GXL8ss5THHKCgPgQMAwGeuXr264ynEWQAAHbhJREFUfPly\nac+8efPatm3r5d3wvFzgoJS0bOnlPQLUgMABAOAzL7zwgtVqFZtxcXEzZ870+l6YrCxaWelq\nKd+8uRAQ4PWdAlSDwAEA4BsffvjhsWPHxCalNCkpyaDAA+IZySWbmoROnby+R4CaEDgAAHwg\nLy9v0aJF0p5x48bdd999Xt8R5Tj6668uFzOMEBfn9Z0C1ITAAQDgA3/961+LiorEZnR0tHfn\nFRXRq1eJ3e5qKR8Tg+spoA4EDgAAte3fv3/fvn3Sntdff71Zs2ZK7Ev+egofH6/ETgFqQuAA\nAFBVYWHhiy++KO0ZNGjQ8OHDFdmZ3U6vXXO1UGBZoUMHRfYLUAMCBwCAqubPn5+Xlyc2w8LC\n3n77bYX2xfzyC+E4V0uFdu2IAmNUAWqFwAEAoJ4DBw7s3r1b2rN06dKWik2DwcjP94X7U0BF\nCBwAACrJy8ubN2+etOfBBx8cO3asQrujlZU0K8vlYoNB8PoMYwCuIXAAAKjkueeeKygoEJuh\noaHVphn1Lnr5MuF5V0v5jh0Jyyq3d4BqEDgAANTw/vvvHzp0SNrz97//vVWrVsrtEfengF9B\n4AAAUNzVq1cXLlwo7XnkkUeUu5hCCKGlpTQnx9VSISBAaN1aub0D1ITAAQCgrKqqqunTp5eX\nl4s9kZGRyt2Z4iQ/XFSIjycMjv+gKnzgAACU9eabb546dUras3z58sjISEV3iusp4G8QOAAA\nFPSf//zn3XfflfY89dRTDz/8sKI7pRkZpLDQ1VIhNFRo0ULRAgBqQuAAAFBKQUHBjBkzeMmt\nIp06dXrttdeU3asgsCdOyCzH6Q3wCQQOAABF8Dw/Y8aMW7duiT0Gg2HDhg0BCj8sjbl8mbo+\nvUEw3xf4CAIHAIAiVq5cefToUWnPwoUL77jjDmX3yvPMDz/ILBeio4nZrGwNALVB4AAA8L7v\nvvvuzTfflPY89NBD06ZNU3q/zIULtLRUZgWud2+lawCoFQIHAICX5ebmJiYmOhwOsad169Yr\nV66klCq6X8px7O9vh6lGiI4W2rdXtAYAVxA4AAC8yW63T5w4MUcy6ZZer09OTjYrfyGDnjlD\nJLN91MTdfbfSNQC4gsABAOBNCxYsSE1NlfYsXLiwtwoXMux2Ni1NZrnQpo0QE6N4GQAuIHAA\nAHjNBx98sGXLFmnPiBEjpk+frsKumbQ0YrXKrMD17atCGQCuIHAAAHjHDz/88MILL0h7brvt\nNhWGbhBCqNXKnjkjs4LQoQMm+wLfQuAAAPCCzMzMiRMn2u12sSc4ODg5OTkoKEiFvTMnT5Kq\nKpeLKXX066dCGQAyqCAIvq7Ba+x2O6PdxxExDEMp5TjO14UoSKfTEUI4jtPSx7Ia50dUOvWk\nxlBKWZYlhEjv0dAelmV5nhc/qGVlZffff/+5c+fEFRiG+fTTT//4xz+qUAxfVmZdu1Zw/R+u\n797dMGxYg7bJMAzDMIIgaP6Yo/kPKqWU53l1jjk8zxsMBldLdSpUoBqe56VfLzRGr9fr9Xqr\n7DXaRo1S6gwcdrtdw8c4o9FICLHZbL4uRCk6nc4ZOGw2m4aDY2BgYFVVlfNvlcPhGDdunDRt\nEEIWL1784IMPqvMLy3/9tUzaIAzD9+3b0EoMBoPBYBAEQfPHHG1/UAMCAliW5ThOnWOOIAhN\nKHBo+HeDEMKyrIbfIMMwzpPPVVVVGg6OzlCl4Z+jwWAwmUyEEKvVqu3jeFVVlfMgPm/evEOH\nDkmX/vnPf54+fbo6P2VaXKy7cEFmBf7226uMRvnxpDU5U6PmA0dQUJDNZtPwGUej0egMHKr9\nHENCQlwt0uwFCAAAFSxfvnz79u3Snj59+ixfvly1ApgffiAyfy9ZluvVS7ViAGQgcAAAuGnX\nrl1vvPGGtKdt27bvv/++zFll76L5+cyVKzIr8AkJRJVRqwB1QuAAAHDH119//dxzz0kvG5nN\n5p07d6owo6iI+f57ucVGI5eQoFYtAHVA4AAAaLBjx46NHTtWOtjIZDK9//77cXFxqtVAb91i\nrl+XWYHv2ZOYTKrVAyAPgQMAoGFOnz49atQo6Sg8hmHWrVvXp08fNctgT5yQWSqYTFz37qoV\nA1AnBA4AgAa4cOHC2LFjy8rKxB5K6T/+8Y+hQ4eqWQZz7Rq9eVNmBaFvX6LXq1YPQJ0QOAAA\n6uv8+fOjRo0qKiqSdi5YsGDixIkqV8LInt4gISH87berVQtAvSBwAADUy08//TR69OjCwkJp\n55w5c5555hmVK2GuXKH5+TIrcH37CtqddhkaKXwiAQDqdubMmZppY/LkyX/7299UroTeusUe\nPSqzghAeznfurFo9APWEwAEAUIfU1NRHH320uLhY2jlp0qRly5apXAnNytJ9/jmRnYqXv+su\novzzaQEaCoEDAEDO8ePHH3vssZKSEmnnlClTVqxYofLTImlGBvvZZ3JPhSVEiI7mO3RQrSSA\n+kPgAABw6aOPPho3blx5ebm0c/LkyevWrVM5bTCXL+v+9S9a11M/ODyGHvwVAgcAQO3WrFkz\ne/bsqt+fUUhMTHz99deputcsmAsX2CNH5J6ZQgghRGjdWoiNVackgIbS1NNiAQC8wuFwLFy4\nMDk5uVr/iy+++MILL6hcDHP2LPvtt3Wvx7Jc//7KlwPgJgQOAIDfKS4unjJlyvHjx6WdLMu+\n8cYb6s+3wZ46VceUG4QQQgSW5R96SIiIUKEkAPcgcAAA/E9GRsaECRMuX74s7TQYDGvXrh0x\nYoTKxTApKUxqat3r6XTcI48IbdooXxGA+xA4AAD+6+jRo1OnTq12Q0poaOi2bdvuu+8+lYth\n//1v5syZutczGLhhw4QWLZSvCMAjCBwAAITjuLfffnv58uUcx0n727Vr9/7773f26jxatKyM\nZmfLz6VBs7KY359lqZVgMnHDhwtRUd6rDkApCBwA0NTdunVr+vTp3333XbX++++/Pzk5OTw8\n3Gt7qqpijx1j0tO9sjEhMNAxYgQxm72yNQCl4bZYAGjSjh8/PnDgwJpp48knn9y5c6c304Yg\n6A4e9FbaICEh3OjRSBvQiOAMBwA0UTabbdmyZevWrRMEQdpvMBj+/ve/e/2GFObiRXrjhlc2\nJTRr5hgxggQHe2VrAOpA4ACApig1NXXOnDnpNc43tGnTZuPGjb179/by/jiuXveb1INgNjuG\nDydBQV7ZGoBqEDgAoGmpqKhYunTp5s2b+RoTd44aNertt98OCQnx+k6Z8+dpWZnn2xGiox3D\nhhGTyfNNAagMgQMAmpCjR4/OmzcvMzOzWr/RaHzllVcSExMV2WtVFXPypOebEVq2dAwdSgwG\nzzcFoD4EDgBoErKyspYuXfrJJ5/UXHTHHXesXbv2tttuU2jX7JkztLLSw40IsbGOhx8mOhy0\nobHCZxcANK6iomLNmjWrVq2yWq3VFun1+hkzZrz00ksG5U4bWK1MWpqH2xA6duQGDybqPp8W\nwLsQOABAs6qqqrZv356UlFRQUFBzad++fd955534+HhFa2DT0uTn+JInhITwCQl8t25E3efT\nAngdAgcAaNPx48cXLlz4888/11wUEBDw/PPPP/300yzLKltERQVz9qzMcj4ujnvgAZeLGYbo\n9V4vCsAnEDgAQFMcDsfnn3++du3aH3/8sdYVhg4d+tprr8XExKhQDHvyJHE4XC6mlO/blxiN\nKlQC4HMIHABQL/TGDebCBVpQIPcXlBCB0jKGIYSwv38oiQrKbbb3f/hh7fHjmUVFta5wZ2zs\nkmHD7u3YkRw96uG+LCzL87zu9zOG1UTLy2WW8rfdJnhxJlMA/4bAAQB1Y//zH8bFCYOanLNb\nqDni4EZJyYYffth2+nRpjWGhTu3CwxcNHDiya1dKKSkt9XyPnr9HgWW5Pn08rwSgsUDgAABZ\ngsAePcrUNhLCH5zKylp34sS+CxeqXJxQCQ8IeOH++6f07WtQerhGAwndumFucmhSEDgAwDWe\nZ7/+mrl0ydd1VHc+J+fTc+f2nD//a2Ghq3UiAgMn9+kz8667mgUEqFlbvej1/J13+roIAFUh\ncABA7SjHsf/6F7161deF/M/F3Ny9Fy7sOX/+Ul6ezGrtzeZpffs+1atXgL/e4sElJAh+GIMA\nlITA4RaHg6g+II5QKhBCbDa196sahhGcF+BtNk/mLfB3zj+Bfv9zpBzHfvklrTEFuE9cKyr6\n4tKlvRcunLh+XX7Nu2Jjp/frN+y221g/niNLMJn4hARfVwGgNgSOhuB5Ji3NWw9haiiOEAsh\nfvp9zUvEsXwafpvOoKHhN+gt5TZb2s2b31+//tnPP5/LzpZfWccwI7p2nXXPPT1btVKnPE/w\nvXrheSjQBCFw1FtVle6LL/zkCx+A9nA8fzEv7+SNGyezsk7euJGen8/VeJprTd1bthx1++2P\ndevWOixMhSI9J4SH8926+boKAB9A4Kgfm023fz+t62sWADTIzdLSU1lZqTdunMrKSrt501Lv\nS2ldmzcfdfvto2+/vWNEhKIVepnZzA0dSvzsfhkAdSBw1I1arey+fTQ/39eFAPgLITJScHFG\ngWEYvV5PCLHb7UKNebEqrNafrl//MSPjTEbGifT0a7JjP2tqGxU1sl+/cf37d/rt0knd50CU\nYTAYOI7j6j+WKzBQaNmS79gRD2CDJguB4//bu/+gKMo/DuDP3nHL3R4HcpwnJSDILyG7A9Qk\n+zUappXopZgG5eioM2o5+Udp2lRTk45pNVlqZtqMVE7jjL++QtMIytQMIwH+CCRHwvyBGSAg\ncMfeHfdjv3/sdN/lkB8ae3vs9/36i93n2b1nXZ99Prv77PMMprtb+Z//UP1/egcgrR6Px+/B\nQKfDIWznHS6XQzA2qJfjunp3We3u6REOYuHyert777DL4fAKQgeHTsfGxPjmEuM4rrOz05eq\nUCjcbrfT6fQFHF6v12q1EkJaWlrq6+vvoZH+R2Ji4rx58ywWi28G+YD32fanjoxkWdYT9J1/\nAYJHIAIOjuMOHz586tQpq9VqMplWr16t0+mGmGco24rIag05fpwSXEwhyLE9PT2C9szt9dp6\nt51Wp1PYM8Dp8dhdLmGGTodDeF/ucLv9W+veY1l29/S4BDt0eTz+rbXT6fXboeAXOUI6e+9w\n0EOwOZ3uIXRuGNFCQkLS0tImT56clZU1ZcqUxMREqUsEAP8W1feZ57A7cuTIwYMHV65cqdfr\nCwsLQ0NDt2/fTvWearm/PEPZ1odlWZZlh6vYVEdHyPHjZMCpEIKc/41p77aT4zj/ps7l8m/q\net/AWZ1Oj2CHTrfbr7Xu6L1Du8vlHN5768EOAUau2NjYrKysSZMmZWVlmc1mtVotdYkGEhkZ\nybKsU75POLRarUaj8Xg8d/qZmEYGKIqKiopqb2/3yjeCj4iIUKlUDofDFqi2zGAw9Jck+hMO\nr9dbVFSUl5c3a9YsQojRaFy7dm19fX1qauqgeZKTkwfd9l45HA6HoIlyOBx+lwy73c6voTo7\nldevO7q7Hb2nqvJ7QO3XBA6awS/132foWwC/m3iA4BQWFpaenm42m7Ozs7Ozs41Go9QlAgAR\niR5wNDY2tra2TvlnjqK4uDij0Xju3Dlh0NBfHrVaPei2Qtu2bduxYwf/N8uyPTIePApgBFKp\nVBMmTJg0adKkSZMyMzOTk5MV6EEJ8H9D9ICjo6ODCJ6xUBRlMBj4lYPmGXRbm822fv1636Ld\nbvfbM8AIoqZpdWjo/xZDQzWCxaFkCKVp4Zph2SETHk4ZDBRNE0LUarXfmw61Wq0RDNGtVqsZ\nhlEqlYQQt9vdN39ERIQ8ggyFQsEwTJC/9/k3+JOoUCgiRsgAJ/ctoP0CAy4kJIQQQtN0YM7j\nwC+nRA84urq6CCHCSxLDMF29p4fuL8+g27pcrsrKSt9icnLy8B8ABJZGoxFexPte78LCwlSC\nCTJUKlVY7yk3/Zo0vxaREBIZGSlcZBgmVNDKKpXK8PBwYQadTsdXWh5N01qtVphh1KhRwn5F\n93oIMEIplUql3EfUoChK9v9XZX+AhBCFQhGYQH/gb9BEDzj44NFut9P/DOVrt9v9OpX0l2fQ\nbWmazsnJ8S22ynSojL5NZmhoqN9t5T1l8Evtm2EoN7L3lKFvCf0yaLXa0NBQ/kS7XC4Z9+Hi\nYxcZdzb0jcMh42Mk9zEOx0gTEhKiVCo5jpPxu2mKomiavuuAMbKhUqkUCoXH43H37uonEo7j\nBojCRQ84+LvJ9vZ2301eW1ubyWQaSp5Bt9VqtVu3bvUt7tq1y2w2+xZ1Op3wyGma9mvzRo0a\nJVz0awIVCoXwURvV2qq7cUOlUHiTkriYGEKISqXyu9PV6XR+99bCHVIU5XenyzCMMLgOCQnx\nu1nvWzy5vjNyOp0ul0uv1xNC7Ha7jK9x/CkOWI/xwKNpmv9fbbPZZHwdj4yM9HUwlyX+KxXf\nGCqyxH+lYrPZZHyHwz/xdblcAbvmDPCeUfSAIyYmRq/Xnz9/PiEhgRDS3Nzc1NSUmZk5lDxD\n2VZo2bJlixYtEu9YFLW1nErFTZgg3k8AAADIkugBh1KpzM3NPXToEB897Nu3LyUlhf/MpKSk\n5Pbt2/n5+f3loSiqv20lgSmXAAAA7k8gRhqdP3++2+3ev39/d3e3yWRas2YN38OusrKyoaEh\nPz9/gDz9rQcAAIARJBAjjQbM8I40Gmzk3YeDEKJQKPg+HF1dXejDMXLRNM1/5tPW1iany4sf\njDQqAxhpVAwDjDQqhw/iAQAAIMgh4AAAAADRIeAAAAAA0SHgAAAAANEh4AAAAADRIeAAAAAA\n0SHgAAAAANEh4AAAAADRIeAAAAAA0SHgAAAAANEh4AAAAADRIeAAAAAA0QVitlgYFm63W8Yz\nRRFCHA7Hvn37CCHTpk0zGo1SF0csLpdLxlOaEUKuX7/+66+/EkLmzJkTEiLbK4zD4fB4PFKX\nQkTV1dWXL18ODw+fMWOG1GURkd1ul3d9PHHiRHt7e0JCgtlslros8go4GIZhGEbqUohLq9VK\nXQSx3LlzZ8+ePYSQ9PT09PR0qYsD9+nixYv8eXzppZdk/N9V9s6fP19YWJiYmPjiiy9KXRZx\naTQaqYsgouLi4t9++23+/PlPP/201GXBKxUAAAAQHwIOAAAAEB0CDgAAABAdJe/+MjCCcBxn\ntVoJIQzDyLizoey53W6WZQkhOp2OoiipiwP3yel0Op1OpVKJjjgjGsuybrebpmm1Wi11WRBw\nAAAAgPjwSgUAAABEh4ADAAAARIc35SA9lmW//fbbyspKq9UaHx9fUFDAj1Hz448/8iM6+Gzf\nvj01NVWiYsLgOI47fPjwqVOnrFaryWRavXq1TqeTulAwJKiGMtDfyQqSiomAA6T31VdfXbhw\nYcWKFVFRUaWlpe+99962bdtSUlKampqSkpIWLFjgy/nggw9KWE4Y1NGjR3/44YeVK1fq9frC\nwsL3339/+/bt6Do6IqAaykB/JytIKiYCDpCYw+EoKytbt27dE088QQhJS0traGg4efJkSkpK\nc3NzamrqY489JnUZYUi8Xm9RUVFeXt6sWbMIIUajce3atfX19bgbDn6ohvJw15MVPBUTfThA\nYm1tbQkJCRMnTuQXKYrS6/V37twhhDQ1NUVHR7Ms29LSgs+pgl9jY2Nra+uUKVP4xbi4OKPR\neO7cOWlLBUOBaigPdz1ZwVMx8YQDJDZ27NgdO3b4FhsbG2tra19++WWO45qamsrKyr755huO\n47Ra7dKlS/kIHYJTR0cHIcRgMPCLFEUZDAZ+JQQ5VEMZ6O9kBU/FRMABwYLjuIqKip07dyYl\nJT3//PNWq9XpdMbHx2/atEmtVhcXF+/atWvMmDEZGRlSlxTurquri/SeCothGH4ljBSohiNX\nfyeLH1AxGComAg4ItIqKii1btvB/v/POO/yDvtbW1p07d9bU1FgslsWLF9M0TdP0sWPHfFst\nXry4qqrq559/xpUuaPH93u12O03T/Bq73e67r4Lgh2o4ooWHh9/1ZD311FMkOComAg4ItKys\nrAMHDvB/86Mm//nnn2+//fb48eN3794dHR19160oioqJicHz+WAWGRlJCGlvb4+IiODXtLW1\nmUwmSQsFQ4VqKDO+kxU8FROdRiHQaJqO/AdN0x6PZ8uWLY888sgHH3wgvMxVVlYWFBTcunWL\nX+Q47urVq+PGjZOo1DC4mJgYvV5//vx5frG5ubmpqSkzM1PaUsFQoBrKQH8nK3gqJp5wgMRq\nampaWlosFktVVZVvpV6vz8jI0Gq1H3/88QsvvKDX60+ePHn79u3c3FwJiwoDUyqVubm5hw4d\n4i9w+/btS0lJwTexIwKqoQz0d7KCp2Ji8jaQWFFR0d69e/1WTps27a233mpqatq/f39dXR0h\nZMKECcuWLYuNjZWijDBUHMcdOnTo9OnT3d3dJpNpzZo1YWFhUhcKBodqKA/9nawgqZgIOAAA\nAEB06MMBAAAAokPAAQAAAKJDwAEAAACiQ8ABAAAAokPAAQAAAKJDwAEAAACiQ8ABAAAAokPA\nAQAAAKJDwAEAAACiQ8ABAAAAokPAAQAAAKJDwAEAI0ZPT095ebnX65W6IABwzxBwAMBwYln2\nww8/TEtL02g0sbGxy5Yt++uvv3ypNTU1c+fOjY6ONhgMs2fPFk6G/vvvv1ssltjY2KioqOnT\npx87dsyXZLFYcnJyzpw5Ex0d/fjjj/f09BBC/v7776VLlyYnJ2u12qysrL1792IqSoBghtli\nAWA4FRQUHDx4cMaMGVOnTq2rqysuLjabzVVVVQqF4vTp088999yYMWMWLlxICCksLLTZbFVV\nVQ899FB5eXlOTg7DMIsWLdLpdCdOnLh06dK2bdvefPNNQojFYmloaGhtbc3KysrOzt60adO1\na9eys7NdLldBQUFUVFRpaWlFRcWqVau+/PJLqf8BAKAfHADAMLHZbAqFIj8/37dm/fr1Wq32\nypUrbrd74sSJcXFxra2tfFJDQwNN08uXL/d6vZMnT9bpdFevXuWTWJadNm0awzC3bt3iOG7e\nvHmEkC1btvh2O2fOHL1e78vv9XpXrVpFCCkvLw/IgQLAPcMrFQAYThzHVVdXX7lyhV/86KOP\nbDbb+PHja2pqLl68+Oqrr0ZFRfFJiYmJu3fvfvTRR2/evFldXb1ixYr4+Hg+SaPRbNy4kWXZ\nkpISfg1FUa+//jr/N8uyRUVFS5cu9eWnKGrDhg2EkOLi4gAdJwDcIwQcADBstFrt5s2bGxoa\nkpKSpk6d+sYbb5SWlrpcLkLIH3/8QQiZOHGiMP/y5cuXL1/OJz388MPCJH6RTyKEjB49mmEY\n/u/6+npCyKeffkoJJCQkEEKam5vFPkYAuD8hUhcAAGRl48aNeXl5R44cOXXq1J49ez755JP0\n9PSSkhKn00kIUalUfTfhOI4QQlGUcKVSqSSE8MEKIUSj0fiSaJomhKxYsWLBggV+u3rggQeG\n82AAYPgg4ACAYdPe3n7jxo34+PgNGzZs2LDBbrfv3Llz/fr1n332GR8cXLp0aebMmb78Bw4c\nuHnz5iuvvEIIqaurE+6qtraWEJKamtr3V8aPH88/1Zg9e7ZvpdVqPXv2rNFoFOnQAOBfwisV\nABg2Fy9ezMzM3Lp1K7+o0Wjy8vIIIRRFmc3muLi4zz//vLOzk09taWlZt25dRUVFTExMZmbm\n119/3djYyCfZ7fbNmzer1eqcnJy+v6JWq3Nzc7/77jvfCxdCyLvvvjt9+nTfzgEg2OCzWAAY\nNna7PSMjo6GhYe7cuWazubGx8aeffuro6Dhz5ozJZDp69GheXt64ceMWLlwYGhr6/fff37x5\ns6KiIjMz85dffnnmmWfCw8Pz8/O1Wu3x48fr6uq2bt3KdwW1WCwXLly4du2a74cuX76cnZ3t\n8XiWLFkSGRlZVlZWXl7+2muvffHFF5IdPAAMTOKvZABAXq5evbpkyZLY2FiapseOHbtgwYKz\nZ8/6UsvLy2fOnGkwGEaPHv3ss89WV1f7kmpra+fOnTt27NhRo0Y9+eSTR48e9SXNmzdv3Lhx\nfj9048aNxYsXx8fHMwyTkZGxZ88et9st8sEBwP3DEw4AAAAQHfpwAAAAgOgQcAAAAIDoEHAA\nAACA6BBwAAAAgOgQcAAAAIDoEHAAAACA6BBwAAAAgOgQcAAAAIDo/gtW0LKaxZd36gAAAABJ\nRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create Plot\n", "cdf.filtered<-ggplot(newcomb_1_cdf) +\n", "geom_line(mapping = aes(x = score, y = CDF), color = \"cyan4\", size = 2) +\n", "geom_line(data = newcomb_1_cdf_model, mapping = aes(x = score, y = CDF), color = \"black\", size = 1)\n", "ggsave(\"cdf.filtered.png\", plot = cdf.filtered, device=\"png\", scale=1, width=5, height=4)\n", "cdf.filtered\n", "# Create Plot\n", "cdf.unfiltered<-ggplot(newcomb_cdf) +\n", "geom_line(mapping = aes(x = score, y = CDF), color = \"lightcoral\", size = 2) +\n", "geom_line(data = newcomb_cdf_model, mapping = aes(x = score, y = CDF), color = \"black\", size = 1)\n", "ggsave(\"cdf.unfiltered.png\", plot = cdf.unfiltered, device=\"png\", scale=1, width=5, height=4)\n", "cdf.unfiltered" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lab Task 10 ###\n", "\n", "The code below calculates the confidence interval for the unfiltered and filtered datasets, and then prints out the two versions of the experimental result in the format mean ± confidence interval." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The confidence interval for the unfiltered dataset is 26.21212 +- 21.49065 \n", "The confidence interval for the unfiltered dataset is 27.75 +- 10.16686" ] } ], "source": [ "ci_filtered<- 2 * stat.table.filtered$sd\n", "ci<- 2 * stat.table$sd\n", "\n", "cat(\"The confidence interval for the unfiltered dataset is \", stat.table$mean, \"+-\",ci,\"\\n\")\n", "cat(\"The confidence interval for the unfiltered dataset is \", stat.table.filtered$mean, \"+-\",ci_filtered)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code below performs a 1 sample t-test which can tell us the probability that the confidence interval obtained contains the true mean." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "\tOne Sample t-test\n", "\n", "data: newcomb$x\n", "t = -5.1471, df = 65, p-value = 2.648e-06\n", "alternative hypothesis: true mean is not equal to 33.02\n", "95 percent confidence interval:\n", " 23.57059 28.85365\n", "sample estimates:\n", "mean of x \n", " 26.21212 \n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "t.test(x = newcomb$x, mu = 33.02)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R (SageMath)", "language": "r", "name": "ir-sage" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.2.4" } }, "nbformat": 4, "nbformat_minor": 0 }