{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Black branes in Lifshitz-like wraped backgrounds "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Jupyter/SageMath \n",
"worksheet implements some computations of the article\n",
"- I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: *??*, in preparation\n",
" \n",
"These computations are based on [SageManifolds](http://sagemanifolds.obspm.fr) (v0.9)\n",
"\n",
"The worksheet file (ipynb format) can be downloaded from ??.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we set up the notebook to display mathematical objects using LaTeX formatting:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%display latex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Metric\n",
"\n",
"Let us declare the spacetime $M$ as a 5-dimensional manifold:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"M = Manifold(5, 'M')\n",
"print M"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We introduce a the Poincaré-type coordinate system on $M$:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Chart (M, (t, x, y1, y2, z))"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X. = M.chart(r't x y1:y_1 y2:y_2 z:(0,+oo)')\n",
"X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us consider the following Lifshitz-symmetric metric, parametrized by some real numbers $\\nu$ and $c$, and the blackening function $f(z)$:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"g = -e^(1/2*c*z^2)*f(z)/z^2 dt*dt + e^(1/2*c*z^2)/z^2 dx*dx + z^(-2/nu)*e^(1/2*c*z^2) dy1*dy1 + z^(-2/nu)*e^(1/2*c*z^2) dy2*dy2 + e^(1/2*c*z^2)/(z^2*f(z)) dz*dz"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g = M.lorentzian_metric('g')\n",
"var('nu', latex_name=r'\\nu', domain='real')\n",
"var('c', domain='real')\n",
"ff = function('f')(z)\n",
"b(z) = exp(c*z^2/2)\n",
"# b(z)=1 ## for checks\n",
"g[0,0] = - b(z)*ff/z^2\n",
"g[1,1] = b(z)/z^2\n",
"g[2,2] = b(z)*z^(-2/nu)\n",
"g[3,3] = b(z)*z^(-2/nu)\n",
"g[4,4] = b(z)/z^2/ff\n",
"g.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A matrix view of the metric components:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[ -e^(1/2*c*z^2)*f(z)/z^2 0 0 0 0]\n",
"[ 0 e^(1/2*c*z^2)/z^2 0 0 0]\n",
"[ 0 0 z^(-2/nu)*e^(1/2*c*z^2) 0 0]\n",
"[ 0 0 0 z^(-2/nu)*e^(1/2*c*z^2) 0]\n",
"[ 0 0 0 0 e^(1/2*c*z^2)/(z^2*f(z))]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g[:]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"g_t,t = -e^(1/2*c*z^2)*f(z)/z^2 \n",
"g_x,x = e^(1/2*c*z^2)/z^2 \n",
"g_y1,y1 = z^(-2/nu)*e^(1/2*c*z^2) \n",
"g_y2,y2 = z^(-2/nu)*e^(1/2*c*z^2) \n",
"g_z,z = e^(1/2*c*z^2)/(z^2*f(z)) "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g.display_comp()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Curvature\n",
"\n",
"The Riemann tensor is"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Riem = g.riemann()\n",
"print Riem"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/4*((c^2*z^4 - 4*c*z^2 + 4)*f(z) + (c*z^3 - 2*z)*d(f)/dz)/z^2"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Riem.display_comp(only_nonredundant=True)\n",
"Riem[0,1,0,1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Ricci tensor:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Ric = g.ricci()\n",
"print Ric"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Ric(g) = 1/4*(2*nu*z^2*f(z)*d^2(f)/dz^2 + (3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*f(z)^2 + (5*c*nu*z^3 - 2*(3*nu + 2)*z)*f(z)*d(f)/dz)/(nu*z^2) dt*dt - 1/4*((3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*f(z) + 2*(c*nu*z^3 - 2*nu*z)*d(f)/dz)/(nu*z^2) dx*dx - 1/4*((3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*f(z) + 2*(c*nu^2*z^3 - 2*nu*z)*d(f)/dz)*z^(-2/nu)/nu^2 dy1*dy1 - 1/4*((3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*f(z) + 2*(c*nu^2*z^3 - 2*nu*z)*d(f)/dz)*z^(-2/nu)/nu^2 dy2*dy2 - 1/4*(2*nu^2*z^2*d^2(f)/dz^2 + 4*((3*c*nu^2 - c*nu)*z^2 + 2*nu^2 + 2)*f(z) + (5*c*nu^2*z^3 - 2*(3*nu^2 + 2*nu)*z)*d(f)/dz)/(nu^2*z^2*f(z)) dz*dz"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ric.display()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Ric(g)_t,t = 1/4*(2*nu*z^2*f(z)*d^2(f)/dz^2 + (3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*f(z)^2 + (5*c*nu*z^3 - 2*(3*nu + 2)*z)*f(z)*d(f)/dz)/(nu*z^2) \n",
"Ric(g)_x,x = -1/4*((3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*f(z) + 2*(c*nu*z^3 - 2*nu*z)*d(f)/dz)/(nu*z^2) \n",
"Ric(g)_y1,y1 = -1/4*((3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*f(z) + 2*(c*nu^2*z^3 - 2*nu*z)*d(f)/dz)*z^(-2/nu)/nu^2 \n",
"Ric(g)_y2,y2 = -1/4*((3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*f(z) + 2*(c*nu^2*z^3 - 2*nu*z)*d(f)/dz)*z^(-2/nu)/nu^2 \n",
"Ric(g)_z,z = -1/4*(2*nu^2*z^2*d^2(f)/dz^2 + 4*((3*c*nu^2 - c*nu)*z^2 + 2*nu^2 + 2)*f(z) + (5*c*nu^2*z^3 - 2*(3*nu^2 + 2*nu)*z)*d(f)/dz)/(nu^2*z^2*f(z)) "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ric.display_comp()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Ricci scalar:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field r(g) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Rscal = g.ricci_scalar()\n",
"print Rscal"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"r(g): M --> R\n",
" (t, x, y1, y2, z) |--> -(nu^2*z^2*d^2(f)/dz^2 + (3*c^2*nu^2*z^4 - 8*c*nu*z^2 + 6*nu^2 + 8*nu + 6)*f(z) + 4*(c*nu^2*z^3 - (nu^2 + nu)*z)*d(f)/dz)*e^(-1/2*c*z^2)/nu^2"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Rscal.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Source model\n",
"Let us consider a model based on the following action, involving a dilaton scalar field $\\phi$ and a Maxwell 2-form $F$:\n",
"\n",
"$$ S = \\int \\left( R(g) + \\Lambda - \\frac{1}{2} \\nabla_m \\phi \\nabla^m \\phi - \\frac{1}{4} e^{\\lambda\\phi} F_{mn} F^{mn} \\right) \\sqrt{-g} \\, \\mathrm{d}^5 x \\qquad\\qquad \\mbox{(1)}$$\n",
"\n",
"where $R(g)$ is the Ricci scalar of metric $g$, $\\Lambda$ is the cosmological constant and $\\lambda$ is the dilatonic coupling constant."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The dilaton scalar field\n",
"\n",
"We consider the following ansatz for the dilaton scalar field $\\phi$:\n",
"$$ \\phi = \\frac{1}{\\lambda} \\left( \\ln\\mu - \\frac{4}{\\nu}\\ln z\\right),$$\n",
"where $\\mu$ is a constant. "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"phi: M --> R\n",
" (t, x, y1, y2, z) |--> -(4*log(z)/nu - log(mu))/lamb"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('mu', latex_name=r'\\mu', domain='real')\n",
"var('lamb', latex_name=r'\\lambda', domain='real')\n",
"phi = M.scalar_field({X: (ln(mu) - 4/nu*ln(z))/lamb}, \n",
" name='phi', latex_name=r'\\phi')\n",
"phi.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The 1-form $\\mathrm{d}\\phi$ is"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1-form dphi on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"dphi = phi.differential()\n",
"print dphi"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"dphi = -4/(lamb*nu*z) dz"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dphi.display()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[0, 0, 0, 0, -4/(lamb*nu*z)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dphi[:] # all the components in the default frame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The 2-form field\n",
"\n",
"We consider the following ansatz for $F$:\n",
"$$ F = \\frac{1}{2} q \\, \\mathrm{d}y_1\\wedge \\mathrm{d}y_2, $$\n",
"where $q$ is a constant. \n",
"\n",
"Let us first get the 1-forms $\\mathrm{d}y_1$ and $\\mathrm{d}y_2$:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Coordinate coframe (M, (dt,dx,dy1,dy2,dz))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.coframe()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1-form dy1 on the 5-dimensional differentiable manifold M\n",
"1-form dy2 on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"(1-form dy1 on the 5-dimensional differentiable manifold M,\n",
" 1-form dy2 on the 5-dimensional differentiable manifold M)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dy1 = X.coframe()[2]\n",
"dy2 = X.coframe()[3]\n",
"print dy1\n",
"print dy2\n",
"dy1, dy2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we can form $F$ according to the above ansatz:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2-form F on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"F = 1/2*q dy1/\\dy2"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('q', domain='real')\n",
"F = q/2 * dy1.wedge(dy2)\n",
"F.set_name('F')\n",
"print F\n",
"F.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By construction, the 2-form $F$ is closed (since $q$ is constant):"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3-form dF on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"print xder(F)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"dF = 0"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xder(F).display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us evaluate the square $F_{mn} F^{mn}$ of $F$:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field of type (2,0) on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/2*q*z^(4/nu)*e^(-c*z^2) d/dy1*d/dy2 - 1/2*q*z^(4/nu)*e^(-c*z^2) d/dy2*d/dy1"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Fu = F.up(g)\n",
"print Fu\n",
"Fu.display()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(t, x, y1, y2, z) |--> 1/2*q^2*z^(4/nu)*e^(-c*z^2)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"F2 = F['_{mn}']*Fu['^{mn}'] # using LaTeX notations to denote contraction\n",
"print F2\n",
"F2.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We shall also need the tensor $\\mathcal{F}_{mn} := F_{mp} F_n^{\\ \\, p}$:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field of type (0,2) on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/4*q^2*z^(2/nu)*e^(-1/2*c*z^2) dy1*dy1 + 1/4*q^2*z^(2/nu)*e^(-1/2*c*z^2) dy2*dy2"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FF = F['_mp'] * F.up(g,1)['^p_n']\n",
"print FF\n",
"FF.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tensor field $\\mathcal{F}$ is symmetric:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"True"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FF == FF.symmetrize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Therefore, from now on, we set"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"FF = FF.symmetrize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Einstein equation\n",
"\n",
"Let us first introduce the cosmological constant:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Lamb"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('Lamb', latex_name=r'\\Lambda', domain='real')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the action (1), the field equation for the metric $g$ is\n",
"$$ R_{mn} + \\frac{\\Lambda}{3} \\, g - \\frac{1}{2}\\partial_m\\phi \\partial_n\\phi -\\frac{1}{2} e^{\\lambda\\phi} F_{mp} F^{\\ \\, p}_n + \\frac{1}{12} e^{\\lambda\\phi} F_{rs} F^{rs} \\, g_{mn} = 0 $$\n",
"We write it as\n",
"\n",
" EE == 0\n",
"\n",
"with `EE` defined by"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \\\n",
" + 1/12*exp(lamb*phi)*F2*g\n",
"EE.set_name('E')\n",
"print EE"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"E_t,t = 1/24*(12*nu*z^2*e^(1/2*c*z^2)*f(z)*d^2(f)/dz^2 + 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z)^2 + 6*(5*c*nu*z^3 - 2*(3*nu + 2)*z)*e^(1/2*c*z^2)*f(z)*d(f)/dz - (mu*nu*q^2 + 8*Lamb*nu*e^(c*z^2))*f(z))*e^(-1/2*c*z^2)/(nu*z^2) \n",
"E_x,x = 1/24*(mu*nu*q^2 + 8*Lamb*nu*e^(c*z^2) - 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) - 12*(c*nu*z^3 - 2*nu*z)*e^(1/2*c*z^2)*d(f)/dz)*e^(-1/2*c*z^2)/(nu*z^2) \n",
"E_y1,y1 = -1/12*(mu*nu^2*q^2 - 4*Lamb*nu^2*e^(c*z^2) + 3*(3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) + 6*(c*nu^2*z^3 - 2*nu*z)*e^(1/2*c*z^2)*d(f)/dz)*z^(-2/nu)*e^(-1/2*c*z^2)/nu^2 \n",
"E_y2,y2 = -1/12*(mu*nu^2*q^2 - 4*Lamb*nu^2*e^(c*z^2) + 3*(3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) + 6*(c*nu^2*z^3 - 2*nu*z)*e^(1/2*c*z^2)*d(f)/dz)*z^(-2/nu)*e^(-1/2*c*z^2)/nu^2 \n",
"E_z,z = -1/24*(12*lamb^2*nu^2*z^2*e^(1/2*c*z^2)*d^2(f)/dz^2 - lamb^2*mu*nu^2*q^2 - 8*Lamb*lamb^2*nu^2*e^(c*z^2) + 24*(2*lamb^2*nu^2 + (3*c*lamb^2*nu^2 - c*lamb^2*nu)*z^2 + 2*lamb^2 + 8)*e^(1/2*c*z^2)*f(z) + 6*(5*c*lamb^2*nu^2*z^3 - 2*(3*lamb^2*nu^2 + 2*lamb^2*nu)*z)*e^(1/2*c*z^2)*d(f)/dz)*e^(-1/2*c*z^2)/(lamb^2*nu^2*z^2*f(z)) "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EE.display_comp(only_nonredundant=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We note that `EE==0` leads to 4 independent equations:"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"12*nu*z^2*e^(1/2*c*z^2)*d^2(f)/dz^2 - mu*nu*q^2 - 8*Lamb*nu*e^(c*z^2) + 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) + 6*(5*c*nu*z^3 - 2*(3*nu + 2)*z)*e^(1/2*c*z^2)*d(f)/dz"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq1 = EE[0,0]*24*nu*z^2/f(z)*exp(c*z^2/2)\n",
"eq1"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"mu*nu*q^2 + 8*Lamb*nu*e^(c*z^2) - 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) - 12*(c*nu*z^3 - 2*nu*z)*e^(1/2*c*z^2)*d(f)/dz"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq2 = EE[1,1]*24*nu*z^2*exp(c*z^2/2)\n",
"eq2"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-mu*nu^2*q^2 + 4*Lamb*nu^2*e^(c*z^2) - 3*(3*c^2*nu^2*z^4 - 10*c*nu*z^2 + 8*nu + 8)*e^(1/2*c*z^2)*f(z) - 6*(c*nu^2*z^3 - 2*nu*z)*e^(1/2*c*z^2)*d(f)/dz"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq3 = EE[2,2]*12*nu^2*z^(2/nu)*exp(c*z^2/2)\n",
"eq3"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-lamb^2*nu^2*z^2*e^(1/2*c*z^2)*d^2(f)/dz^2 + 1/12*lamb^2*mu*nu^2*q^2 + 2/3*Lamb*lamb^2*nu^2*e^(c*z^2) - 2*(2*lamb^2*nu^2 + (3*c*lamb^2*nu^2 - c*lamb^2*nu)*z^2 + 2*lamb^2 + 8)*e^(1/2*c*z^2)*f(z) - 1/2*(5*c*lamb^2*nu^2*z^3 - 2*(3*lamb^2*nu^2 + 2*lamb^2*nu)*z)*e^(1/2*c*z^2)*d(f)/dz"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq4 = EE[4,4]*2*lamb^2*nu^2*z^2*f(z)*exp(c*z^2/2)\n",
"eq4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dilaton field equation\n",
"\n",
"First we evaluate $\\nabla_m \\nabla^m \\phi$:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nab = g.connection()\n",
"print nab\n",
"nab"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(t, x, y1, y2, z) |--> -2*(2*nu*z*d(f)/dz + (3*c*nu*z^2 - 4*nu - 4)*f(z))*e^(-1/2*c*z^2)/(lamb*nu^2)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"box_phi = nab(nab(phi).up(g)).trace()\n",
"print box_phi\n",
"box_phi.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the action (1), the field equation for $\\phi$ is \n",
"$$ \\nabla_m \\nabla^m \\phi = \\frac{\\lambda}{4} e^{\\lambda\\phi} F_{mn} F^{mn}$$\n",
"We write it as\n",
"\n",
" DE == 0\n",
" \n",
"with `DE` defined by"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"DE = box_phi - lamb/4*exp(lamb*phi) * F2\n",
"print DE"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(t, x, y1, y2, z) |--> -1/8*(lamb^2*mu*nu^2*q^2 + 32*nu*z*e^(1/2*c*z^2)*d(f)/dz + 16*(3*c*nu*z^2 - 4*nu - 4)*e^(1/2*c*z^2)*f(z))*e^(-c*z^2)/(lamb*nu^2)"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DE.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence the dilaton field equation provides a fifth equation:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/16*lamb^2*mu*nu^2*q^2 - 2*nu*z*e^(1/2*c*z^2)*d(f)/dz - (3*c*nu*z^2 - 4*nu - 4)*e^(1/2*c*z^2)*f(z)"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq5 = DE.coord_function()*lamb*nu^2*exp(c*z^2)/2\n",
"eq5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Maxwell equation\n",
"\n",
"From the action (1), the field equation for $F$ is \n",
"$$ \\nabla_m \\left( e^{\\lambda\\phi} F^{mn} \\right)= 0 $$\n",
"We write it as\n",
"\n",
" ME == 0\n",
" \n",
"with `ME` defined by"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vector field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"0"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ME = nab(exp(lamb*phi)*Fu).trace(0,2)\n",
"print ME\n",
"ME.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We get identically zero; hence the Maxwell equation do not provide any further equation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The solution\n",
"\n",
"The Einstein equation + the dilaton field equation yields a system of 5 equations (eq1, eq2, eq3, eq4, eq5). \n",
"\n",
"Let us show that a solution is obtained for $\\nu=2$ and $\\nu=4$ with the following specific form of the blackening function:\n",
"\n",
"$$ f(z) = 1 - m z^{2/\\nu+2}, $$\n",
"\n",
"where $m$ is a constant. \n",
"\n",
"To this aim, we declare"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"z |--> -m*z^(2/nu + 2) + 1"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('m', domain='real')\n",
"fm(z) = 1 - m*z^(2/nu+2)\n",
"fm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"and substitute this function for $f(z)$ in all the equations:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-mu*nu*q^2 - 8*Lamb*nu*e^(c*z^2) + 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 - (3*c^2*m*nu*z^6 + 2*(2*c*m*nu + 3*c*m)*z^4)*z^(2/nu) + 8*nu + 8)*e^(1/2*c*z^2)"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq1m = eq1.expr().substitute_function(f, fm).simplify_full()\n",
"eq1m"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"mu*nu*q^2 + 8*Lamb*nu*e^(c*z^2) - 6*(3*c^2*nu*z^4 - 2*(3*c*nu + 2*c)*z^2 - (3*c^2*m*nu*z^6 - 2*c*m*nu*z^4)*z^(2/nu) + 8*nu + 8)*e^(1/2*c*z^2)"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq2m = eq2.expr().substitute_function(f, fm).simplify_full()\n",
"eq2m"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-mu*nu^2*q^2 + 4*Lamb*nu^2*e^(c*z^2) - 3*(3*c^2*nu^2*z^4 - 10*c*nu*z^2 - (3*c^2*m*nu^2*z^6 + 2*(2*c*m*nu^2 - 3*c*m*nu)*z^4)*z^(2/nu) + 8*nu + 8)*e^(1/2*c*z^2)"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq3m = eq3.expr().substitute_function(f, fm).simplify_full()\n",
"eq3m"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/12*lamb^2*mu*nu^2*q^2 + 2/3*Lamb*lamb^2*nu^2*e^(c*z^2) - (4*lamb^2*nu^2 + 2*(3*c*lamb^2*nu^2 - c*lamb^2*nu)*z^2 + 4*lamb^2 - ((11*c*lamb^2*m*nu^2 + 3*c*lamb^2*m*nu)*z^4 - 4*(lamb^2*m*nu - (lamb^2 + 4)*m)*z^2)*z^(2/nu) + 16)*e^(1/2*c*z^2)"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq4m = eq4.expr().substitute_function(f, fm).simplify_full()\n",
"eq4m"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/16*lamb^2*mu*nu^2*q^2 + (3*c*m*nu*z^(2/nu + 4) - 3*c*nu*z^2 + 4*nu + 4)*e^(1/2*c*z^2)"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq5m = eq5.expr().substitute_function(f, fm).simplify_full()\n",
"eq5m"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"eqs = [eq1m, eq2m, eq3m, eq4m, eq5m]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Solution for $\\nu = 2$"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-2*mu*q^2 - 16*Lamb*e^(c*z^2) - 12*(3*c^2*m*z^7 + 7*c*m*z^5 - 3*c^2*z^4 + 8*c*z^2 - 12)*e^(1/2*c*z^2) == 0,\n",
" 2*mu*q^2 + 16*Lamb*e^(c*z^2) + 12*(3*c^2*m*z^7 - 2*c*m*z^5 - 3*c^2*z^4 + 8*c*z^2 - 12)*e^(1/2*c*z^2) == 0,\n",
" -4*mu*q^2 + 16*Lamb*e^(c*z^2) + 12*(3*c^2*m*z^7 + c*m*z^5 - 3*c^2*z^4 + 5*c*z^2 - 6)*e^(1/2*c*z^2) == 0,\n",
" 1/3*lamb^2*mu*q^2 + 8/3*Lamb*lamb^2*e^(c*z^2) + 2*(25*c*lamb^2*m*z^5 - 10*c*lamb^2*z^2 - 2*(lamb^2 - 4)*m*z^3 - 10*lamb^2 - 8)*e^(1/2*c*z^2) == 0,\n",
" -1/4*lamb^2*mu*q^2 + 6*(c*m*z^5 - c*z^2 + 2)*e^(1/2*c*z^2) == 0]"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neqs = [eq.subs(nu=2).simplify_full() for eq in eqs]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[[lamb == -2, mu == 12/r1^2, Lamb == (15/2), q == r1, m == r2, c == 0], [lamb == 2, mu == 12/r3^2, Lamb == (15/2), q == r3, m == r4, c == 0], [lamb == 2, mu == -24*e^3/r5^2, Lamb == 57*e^(-3), q == r5, m == 0, c == 6/z^2], [lamb == -2, mu == -24*e^3/r6^2, Lamb == 57*e^(-3), q == r6, m == 0, c == 6/z^2], [lamb == 2/11*I*sqrt(11), mu == 0, Lamb == 6*e^(-1), q == r7, m == 0, c == 2/z^2], [lamb == -2/11*I*sqrt(11), mu == 0, Lamb == 6*e^(-1), q == r8, m == 0, c == 2/z^2], [lamb == 2/11*I*sqrt(11), mu == r9, Lamb == 6*e^(-1), q == 0, m == 0, c == 2/z^2], [lamb == -2/11*I*sqrt(11), mu == r10, Lamb == 6*e^(-1), q == 0, m == 0, c == 2/z^2]]"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the above solutions, $r_i$, with $i$ an integer, stands for an arbitrary parameter.\n",
"\n",
"The solutions for $c=0$ are those already obtained for $b(z)=1$.\n",
"But there are no solution with $c\\not = 0$ and $c={\\rm const}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Solution for $\\nu=4$"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-4*mu*q^2 - 12*(6*c^2*m*z^6 + 11*c*m*z^4)*sqrt(z)*e^(1/2*c*z^2) - 32*Lamb*e^(c*z^2) + 24*(3*c^2*z^4 - 7*c*z^2 + 10)*e^(1/2*c*z^2) == 0,\n",
" 4*mu*q^2 + 24*(3*c^2*m*z^6 - 2*c*m*z^4)*sqrt(z)*e^(1/2*c*z^2) + 32*Lamb*e^(c*z^2) - 24*(3*c^2*z^4 - 7*c*z^2 + 10)*e^(1/2*c*z^2) == 0,\n",
" -16*mu*q^2 + 24*(6*c^2*m*z^6 + 5*c*m*z^4)*sqrt(z)*e^(1/2*c*z^2) + 64*Lamb*e^(c*z^2) - 24*(6*c^2*z^4 - 5*c*z^2 + 5)*e^(1/2*c*z^2) == 0,\n",
" 4/3*lamb^2*mu*q^2 + 32/3*Lamb*lamb^2*e^(c*z^2) + 4*(47*c*lamb^2*m*z^4 - (3*lamb^2 - 4)*m*z^2)*sqrt(z)*e^(1/2*c*z^2) - 4*(22*c*lamb^2*z^2 + 17*lamb^2 + 4)*e^(1/2*c*z^2) == 0,\n",
" 12*c*m*z^(9/2)*e^(1/2*c*z^2) - lamb^2*mu*q^2 - 4*(3*c*z^2 - 5)*e^(1/2*c*z^2) == 0]"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neqs = [eq.subs(nu=4).simplify_full() for eq in eqs]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[[lamb == -2/3*sqrt(3), mu == 15/r11^2, Lamb == (45/8), q == r11, m == r12, c == 0], [lamb == 2/3*sqrt(3), mu == 15/r13^2, Lamb == (45/8), q == r13, m == r14, c == 0], [lamb == 2/3*sqrt(3), mu == -39*e^3/r15^2, Lamb == 495/8*e^(-3), q == r15, m == 0, c == 6/z^2], [lamb == -2/3*sqrt(3), mu == -39*e^3/r16^2, Lamb == 495/8*e^(-3), q == r16, m == 0, c == 6/z^2], [lamb == 2/11*I*sqrt(3), mu == 0, Lamb == 5*e^(-5/6), q == r17, m == 0, c == 5/3/z^2], [lamb == -2/11*I*sqrt(3), mu == 0, Lamb == 5*e^(-5/6), q == r18, m == 0, c == 5/3/z^2], [lamb == 2/11*I*sqrt(3), mu == r19, Lamb == 5*e^(-5/6), q == 0, m == 0, c == 5/3/z^2], [lamb == -2/11*I*sqrt(3), mu == r20, Lamb == 5*e^(-5/6), q == 0, m == 0, c == 5/3/z^2]]"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"In the above solutions, $r_i$, with $i$ an integer, stands for an arbitrary parameter. \n",
"\n",
"The solutions for $c=0$ are those already obtained for $b(z)=1$.\n",
"But there are no solution with $c\\not = 0$ and $c={\\rm const}$."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 6.10",
"language": "",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
},
"name": "Lifshitz_black_brane_warped.ipynb"
},
"nbformat": 4,
"nbformat_minor": 0
}