Black branes in Lifshitz-like wraped backgrounds

This Jupyter/SageMath worksheet implements some computations of the article

  • I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: ??, in preparation

These computations are based on SageManifolds (v0.9)

The worksheet file (ipynb format) can be downloaded from ??.

First we set up the notebook to display mathematical objects using LaTeX formatting:

In [1]:
%display latex

Metric

Let us declare the spacetime $M$ as a 5-dimensional manifold:

In [2]:
M = Manifold(5, 'M')
print M
5-dimensional differentiable manifold M

We introduce a the Poincaré-type coordinate system on $M$:

In [3]:
X.<t,x,y1,y2,z> = M.chart(r't x y1:y_1 y2:y_2 z:(0,+oo)')
X
Out[3]:

Let us consider the following Lifshitz-symmetric metric, parametrized by some real numbers $\nu$ and $c$, and the blackening function $f(z)$:

In [5]:
g = M.lorentzian_metric('g')
var('nu', latex_name=r'\nu', domain='real')
var('c', domain='real')
ff = function('f')(z)
b(z) = exp(c*z^2/2)
# b(z)=1 ## for checks
g[0,0] = - b(z)*ff/z^2
g[1,1] = b(z)/z^2
g[2,2] = b(z)*z^(-2/nu)
g[3,3] = b(z)*z^(-2/nu)
g[4,4] = b(z)/z^2/ff
g.display()
Out[5]:

A matrix view of the metric components:

In [6]:
g[:]
Out[6]:
In [7]:
g.display_comp()
Out[7]:

Curvature

The Riemann tensor is

In [8]:
Riem = g.riemann()
print Riem
Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable manifold M
In [10]:
#Riem.display_comp(only_nonredundant=True)
Riem[0,1,0,1]
Out[10]:

The Ricci tensor:

In [11]:
Ric = g.ricci()
print Ric
Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M
In [12]:
Ric.display()
Out[12]:
In [13]:
Ric.display_comp()
Out[13]:

The Ricci scalar:

In [14]:
Rscal = g.ricci_scalar()
print Rscal
Scalar field r(g) on the 5-dimensional differentiable manifold M
In [15]:
Rscal.display()
Out[15]:

Source model

Let us consider a model based on the following action, involving a dilaton scalar field $\phi$ and a Maxwell 2-form $F$:

$$ S = \int \left( R(g) + \Lambda - \frac{1}{2} \nabla_m \phi \nabla^m \phi - \frac{1}{4} e^{\lambda\phi} F_{mn} F^{mn} \right) \sqrt{-g} \, \mathrm{d}^5 x \qquad\qquad \mbox{(1)}$$

where $R(g)$ is the Ricci scalar of metric $g$, $\Lambda$ is the cosmological constant and $\lambda$ is the dilatonic coupling constant.

The dilaton scalar field

We consider the following ansatz for the dilaton scalar field $\phi$: $$ \phi = \frac{1}{\lambda} \left( \ln\mu - \frac{4}{\nu}\ln z\right),$$ where $\mu$ is a constant.

In [16]:
var('mu', latex_name=r'\mu', domain='real')
var('lamb', latex_name=r'\lambda', domain='real')
phi = M.scalar_field({X: (ln(mu) - 4/nu*ln(z))/lamb}, 
                     name='phi', latex_name=r'\phi')
phi.display()
Out[16]:

The 1-form $\mathrm{d}\phi$ is

In [17]:
dphi = phi.differential()
print dphi
1-form dphi on the 5-dimensional differentiable manifold M
In [18]:
dphi.display()
Out[18]:
In [19]:
dphi[:]  # all the components in the default frame
Out[19]:

The 2-form field

We consider the following ansatz for $F$: $$ F = \frac{1}{2} q \, \mathrm{d}y_1\wedge \mathrm{d}y_2, $$ where $q$ is a constant.

Let us first get the 1-forms $\mathrm{d}y_1$ and $\mathrm{d}y_2$:

In [20]:
X.coframe()
Out[20]:
In [21]:
dy1 = X.coframe()[2]
dy2 = X.coframe()[3]
print dy1
print dy2
dy1, dy2
1-form dy1 on the 5-dimensional differentiable manifold M
1-form dy2 on the 5-dimensional differentiable manifold M
Out[21]:

Then we can form $F$ according to the above ansatz:

In [22]:
var('q', domain='real')
F = q/2 * dy1.wedge(dy2)
F.set_name('F')
print F
F.display()
2-form F on the 5-dimensional differentiable manifold M
Out[22]:

By construction, the 2-form $F$ is closed (since $q$ is constant):

In [23]:
print xder(F)
3-form dF on the 5-dimensional differentiable manifold M
In [24]:
xder(F).display()
Out[24]:

Let us evaluate the square $F_{mn} F^{mn}$ of $F$:

In [25]:
Fu = F.up(g)
print Fu
Fu.display()
Tensor field of type (2,0) on the 5-dimensional differentiable manifold M
Out[25]:
In [26]:
F2 = F['_{mn}']*Fu['^{mn}']  # using LaTeX notations to denote contraction
print F2
F2.display()
Scalar field on the 5-dimensional differentiable manifold M
Out[26]:

We shall also need the tensor $\mathcal{F}_{mn} := F_{mp} F_n^{\ \, p}$:

In [27]:
FF = F['_mp'] * F.up(g,1)['^p_n']
print FF
FF.display()
Tensor field of type (0,2) on the 5-dimensional differentiable manifold M
Out[27]:

The tensor field $\mathcal{F}$ is symmetric:

In [28]:
FF == FF.symmetrize()
Out[28]:

Therefore, from now on, we set

In [29]:
FF = FF.symmetrize()

Einstein equation

Let us first introduce the cosmological constant:

In [30]:
var('Lamb', latex_name=r'\Lambda', domain='real')
Out[30]:

From the action (1), the field equation for the metric $g$ is $$ R_{mn} + \frac{\Lambda}{3} \, g - \frac{1}{2}\partial_m\phi \partial_n\phi -\frac{1}{2} e^{\lambda\phi} F_{mp} F^{\ \, p}_n + \frac{1}{12} e^{\lambda\phi} F_{rs} F^{rs} \, g_{mn} = 0 $$ We write it as

EE == 0

with EE defined by

In [31]:
EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) -  1/2*exp(lamb*phi)*FF \
     + 1/12*exp(lamb*phi)*F2*g
EE.set_name('E')
print EE
Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold M
In [32]:
EE.display_comp(only_nonredundant=True)
Out[32]:

We note that EE==0 leads to 4 independent equations:

In [35]:
eq1 = EE[0,0]*24*nu*z^2/f(z)*exp(c*z^2/2)
eq1
Out[35]:
In [38]:
eq2 = EE[1,1]*24*nu*z^2*exp(c*z^2/2)
eq2
Out[38]:
In [39]:
eq3 = EE[2,2]*12*nu^2*z^(2/nu)*exp(c*z^2/2)
eq3
Out[39]:
In [41]:
eq4 = EE[4,4]*2*lamb^2*nu^2*z^2*f(z)*exp(c*z^2/2)
eq4
Out[41]:

Dilaton field equation

First we evaluate $\nabla_m \nabla^m \phi$:

In [42]:
nab = g.connection()
print nab
nab
Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M
Out[42]:
In [43]:
box_phi = nab(nab(phi).up(g)).trace()
print box_phi
box_phi.display()
Scalar field on the 5-dimensional differentiable manifold M
Out[43]:

From the action (1), the field equation for $\phi$ is $$ \nabla_m \nabla^m \phi = \frac{\lambda}{4} e^{\lambda\phi} F_{mn} F^{mn}$$ We write it as

DE == 0

with DE defined by

In [44]:
DE = box_phi - lamb/4*exp(lamb*phi) * F2
print DE
Scalar field on the 5-dimensional differentiable manifold M
In [45]:
DE.display()
Out[45]:

Hence the dilaton field equation provides a fifth equation:

In [47]:
eq5 = DE.coord_function()*lamb*nu^2*exp(c*z^2)/2
eq5
Out[47]:

Maxwell equation

From the action (1), the field equation for $F$ is $$ \nabla_m \left( e^{\lambda\phi} F^{mn} \right)= 0 $$ We write it as

ME == 0

with ME defined by

In [48]:
ME = nab(exp(lamb*phi)*Fu).trace(0,2)
print ME
ME.display()
Vector field on the 5-dimensional differentiable manifold M
Out[48]:

We get identically zero; hence the Maxwell equation do not provide any further equation.

The solution

The Einstein equation + the dilaton field equation yields a system of 5 equations (eq1, eq2, eq3, eq4, eq5).

Let us show that a solution is obtained for $\nu=2$ and $\nu=4$ with the following specific form of the blackening function:

$$ f(z) = 1 - m z^{2/\nu+2}, $$

where $m$ is a constant.

To this aim, we declare

In [50]:
var('m', domain='real')
fm(z) = 1 - m*z^(2/nu+2)
fm
Out[50]:

and substitute this function for $f(z)$ in all the equations:

In [51]:
eq1m = eq1.expr().substitute_function(f, fm).simplify_full()
eq1m
Out[51]:
In [52]:
eq2m = eq2.expr().substitute_function(f, fm).simplify_full()
eq2m
Out[52]:
In [53]:
eq3m = eq3.expr().substitute_function(f, fm).simplify_full()
eq3m
Out[53]:
In [55]:
eq4m = eq4.expr().substitute_function(f, fm).simplify_full()
eq4m
Out[55]:
In [56]:
eq5m = eq5.expr().substitute_function(f, fm).simplify_full()
eq5m
Out[56]:
In [57]:
eqs = [eq1m, eq2m, eq3m, eq4m, eq5m]

Solution for $\nu = 2$

In [58]:
neqs = [eq.subs(nu=2).simplify_full() for eq in eqs]
[eq == 0 for eq in neqs]
Out[58]:
In [59]:
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)
Out[59]:

In the above solutions, $r_i$, with $i$ an integer, stands for an arbitrary parameter.

The solutions for $c=0$ are those already obtained for $b(z)=1$. But there are no solution with $c\not = 0$ and $c={\rm const}$.

Solution for $\nu=4$

In [60]:
neqs = [eq.subs(nu=4).simplify_full() for eq in eqs]
[eq == 0 for eq in neqs]
Out[60]:
In [61]:
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)
Out[61]:

In the above solutions, $r_i$, with $i$ an integer, stands for an arbitrary parameter.

The solutions for $c=0$ are those already obtained for $b(z)=1$. But there are no solution with $c\not = 0$ and $c={\rm const}$.

In [ ]: