# Exercise Week 12 

COMP 150
Spring 2021
\# Your name here
(1.) Define the functions $f(x)=\tan \left(\frac{\pi x^{2}}{4}\right)$ and $g(x)=\pi x+1-\pi$ in Sage for use throughout this exercise.
(2.) Plot both functions on the same set of axes. Choose a scaling that lets you see the key features of each graph.
(3.) Find an $x$-value where the two graphs intersect. You may identify this value visually. Make sure you also establish mathematically that you have found an $x$-value where the graphs intersect.
(4.) Find the corresponding $y$-value where the intersect. You may identify this value visually. Make sure you also establish mathematically that you have found a point $(x, y)$ where the graphs intersect.
(5.) One of the graphs is a line. What is its slope? In Sage, we can calculate the derivative of $f(x)$ using the following command: derivative( $\mathrm{f}(\mathrm{x})$, x$)$. Use Sage to find the derivative of $f(x)$. Use Sage to find the value of the derivative of $f(x)$ at $x=1$. Explain how this value compares with the slope of the line you identified in this question. From a calculus point of view, what is the significance of how $f^{\prime}(1)$ compares to the slope? Refer to your graph in your answer.

