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ABSTRACT 

We prove some results conceming necessary conditions for a graph to be 
Hamiltonian in terms of eigenvalues of certain matrices associated with the graph. As 
an example, we show how the results give an easy algebraic proof of the nonexistence 
of a Hamilton cycle in two graphs, one of them being the Petersen graph. 

1. INTRODUCTION 

There exist many results that show a relationship between eigenvalues of 
a graph and structural properties of the graph. By eigenvalues of a graph, we 
mean the eigenvalues of a certain matrix derived from the graph, where we 
must specie how the matrix is derived from the graph in Order for this 
information to make sense. In this note, we prove some results that connect 
the existente of a Hamilton cycle in the graph and bounds on the eigenvalues 
of the graph. A first theorem in this direction was given in Mohar [9], but the 
condition in [9] only holds for regular graphs and also involves some rather 
complicated considerations. In contrast, our results hold for general, nonregu- 
lar graphs. Also, the proofs are very easy and almost immediately follow from 
well-known properties of the spectra of graphs, but the conditions are 
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powerful enough to imply, using eigenvalues only, that the Petersen graph is 
non-Hamiltonian. The theorems with proofs and some corollaries are given in 
the next section. At the end of the Paper we show that the result in [9] is a 
consequence of our theorems. 

In the remainder of this Introduction we give some definitions and 
notation. We use Bondy and Murty [1] as our main Source and always assume 
that a graph is simple and finite. 

For a graph G we use Ao to denote the adjacency matrix of G and D, 

to denote the diagonal matrix with the degrees of the vertices of G on the 
diagonal. In these definitions and in the ones in the remainder of the paper-, 
we will assume that the rows and columns of the matrices are labeled with 
the vertices of the graph in a certain fixed Order. Set 

L, = DG - A, and Qc=Dc+AG. 

The matrix L, is well studied (See, e.g., Cvetkovib, Doob, and Sachs 121, 
Merris [7], or Mohar [8]) and app ears under several names. We will follow 
what appears to be the majority and cal1 L, the Laplacian of G, a name due 
to its connection with the Laplacian Operator in the theory of Riemannian 
manifolds. 

The matrix Qo seems to be less weil known. The monograph [2] gives 
only two references, both written in Cyrillic characters. Very recently the 
matrix also appeared in Desai and Rao [3]. It appears that there is a strong 
connection between the eigenvalues of QG and the eigenvalues of the 
adjacency matrix of the line graph of G. [The line graph of a graph G, 
sometimes called edge graph or derived graph, is the graph with vertex set 
E(G) in which two vertices are joined if and only if they have a common end 

vertex in G.] 
If M is an n x n symmetric matrix, then we denote the eigenvalues of M 

by Ai(M), i = 1,. . . , n, with the Order A,(M) < h,(M) < *** < A,(M). 

We use C, to denote the cycle on n vertices. 

2. RESULTS 

Our main result is the following theorem. 

THEOREM 1. Let G be a graph on n vertices. If G contains a Harnikon 

cycb, then for i = 1,. . . , n, 
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In fact, we will prove the following theorem, which is slightly stronger for 
graphs with only a small number of edges. 

THEOREM 1’. Let G be a graph on n vertices and m edges. Suppose G 

contains a Harnikon ycle. Then for i = 1, . . . , n, 

WC”) G *i(b) and *~(Qc”) G *i(QG). 

In addition, if m < 2n, then for i = m - n + 1, . . . , n, we haue 

A. t-m+n(L~) G “i(Lc,) G *i(Q,) 

and 

Theorems 1 and 1’ follow immediately from the following lemma, using 
the obvious fact that a Hamilton cycle in a graph G tan be considered as an 
edge-deleted subgraph of G isomorphic to C,. 

LEMMA 2. Let G be a graph on n vertices and let H be a subgraph of G 

obtained by deleting an edge in G. Then 

0 < A,( LH) < h,( L,) < A,( LH) f A2( LG) < *** 

and 

G *,-,(Q,) G *,(Qd G *n(QcJ- 

Proof. The properties in the lemma are well known to hold for the 
Laplacian of a graph (See, e.g., [SI). F or completeness, we give the proof for 
both L, and Qo. 

The incioknce mutrix of G, denoted Pc, is the IV(G)1 x IE(G)1 matrix 



J. VAN DEN HEUVEL 

with entries 

if u and e are incident, 
if u and e are not incident, 

u E V(G), e E E(G). 

Next we choose an orientation on G, i.e., for each e E E(G) we choose one 
of its end vertices as the initial vertex and the other end vertex as the terminal 
vertex. The oriented incidence matrix with respect to the Chosen orientation 
is the IV(G)1 X (E(G)1 matrix K, with entries 

uk)ue = L i 
if u is the terminal vertex of e, 
if u is the initial vertex of e, u E V(G), e E E(G). 

0, if u and e are not incident, 

Now it is easy to check that 

L, = K& and Qc = P,Pz, 

where NT denotes the transpose of the matrix N. Note that K, depends on 
the Chosen orientation on G, whereas L, does not. 

It is well known that if N is a matrix, then both NN T and N TN are 
symmetric matrices with only nonnegative eigenvalues. Moreover, apart from 
the multiplicity of the eigenvalue 0, the spectra of NN T and NTN coincide 
(See, e.g., Godsil [4, p, 1861). In particular, the positive eigenvalues of L, are 
the same as the positive eigenvalues of KG K, and a similar relation holds for 
Qo and PzPG. 

Let H be a subgraph of G obtained by deleting an edge from G. Then 
the matrix Ki K, is obtained from KG K, be deleting the row and column 
corresponding to the deleted edge, and Pi PH is obtained from PJP, in the 
similar way. Using the interlacing properties of principal submatrices of 
symmetric matrices (See, e.g., Van Lint and Wilson [5, p. 3961) and the 
observations above, this proves the lemma. ??

Note that if G is a graph with rz vertices and m edges, then the matrix 
Pz Pc defined in the proof above is equal to the matrix 2 1, + A,(,), where 
Z,,, is the m X  m identity matrix and L(G) denotes the line graph of G. This 
means that a real number A is a nonnegative eigenvalue of Qo if and only if 
-2 + h is an eigenvalue of AL(c) greater than -2. 

For regular graphs we tan give the following form of Theorem 1 in terms 
of the eigenvalues of the adjacency matrix. 
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COROLLARY 3. Z,et G be a k-regular graph on n vertices. Zf G contains a 
Hamilton cycle, then for i = 1, . . . , n, 

*i(A,) -(k-2) <Ai(A,“) <Ai(A,) + (k-2). 

Proof. If G is a k-regular graph, then we have L, = kl, - A, and 
Qo = kZ, + A,; hence, A,(L,) = k - A, (  A,) and Ai(QG) = k + 
A,_i+l(AG), for i = l,..., n. Of course, this also means A,(Lc,) = 2 - 
Ai( Ac ) and Ai(Q,“) = 2 + A,_i+i( Ac.). Substitution in Theorem 1 gives 
the reiult. ??

The eigenvalues of Ac” are 

( _2~li2cos( cn ;2)711,1;2Cos( (n ~4)?r)lil;...~2cos(~)I~1,21’l)~ 

if n is even, and 

if n is odd. Here Ai,] denotes that the eigenvalue A has multiplicity 1. The 
eigenvalues of the adjacency matrix of the Petersen graph P are { - 2L41, 1t5], 
3,,,). This means A,(A,) - 1 = 0 > 2cos(37r/5) = A,(AclO) and A,(AclO) 
= 2 cos(39r/5) = i - k6 > - 1 = A4(AP) + 1, so by Corollary 3 and the 
fact that P is 3-regular, the Petersen graph is non-Hamiltonian. 

Frc. 1. 
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An example of a nonregular graph that tan be shown to be non- 
Hamiltonian by Theorem 1 is the graph G depicted in Figure 1. This graph 
appears in Kratsch, Lehel, and Müller [6] as an example of a bipartite graph 
that satisfies most known necessary conditions for the existente of a Hamilton 
cycle (e.g., it is I-tough and contains a 2-factor), but is non-Hamiltonian. 
Using a symbolic manipulation package like Maple, we find that the eigenval- 

ues of Lc arc IO,,,, 112,, <: - +q,, (3 - fi),,,, 3[1], 4p1, (3 + fi),a,, 
<i + $JI?>,,,}. This means 
h,( L,). So by Th 

h,(Lc,J = 2 - 2co&) = 2 > 3 - J2 = 
eorem 1 the graph is non-Hamiltonian. 

Finally, we Show that the main result in [9] follows from Theorem 1’. In 
Order to do this we need some extra terminology. 

We extend our concept of a graph by allowing free edges, which are edges 
with only one end vertex. In this case, we define the degree of a vertex as the 
number of (ordinary or free) edges incident with the vertex. Also, free edges 
do not appear in the adjacency matrix of a graph. With these conventions we 
tan dehne the Laplacian of a graph with free edges as before. By Czn,[ we 
denote the graph obtained from the cycle C,, by adding 1 free edges to 
every second vertex on the cycle. If G is a graph, then the subdivision graph 
S(G) is obtained from G by subdividing each edge in G. 

COROLLARY 4 (Mohar [9]). Let G b e a k-regular graph of Order n. Let 
S(G) be the subdivision graph of G. If G has a Hamilton cycle, then for 
i = 1,. . . ,2n, 

Proof. Let m = $k be the number of edgesvf G. From [9, Lemma 
3.11 it follows that if the Laplacian of G has eigenvalues A,( L,) < A,( L,) < 
*** < A,(L,), then the eigenvalues of the Laplacian of S(G) are 

$(k + 2) - id(k + 2)2 - 4A,(L,), i = l,..., n, 

“i( L,(C)) = 
2, i = n + 1, . . . . m, . 

+(k + 2) + +d(k + 2)2 - 4A,,+,-i+i( L,) , 

i=m+l,...,m+n. 

Furthermore, it is proved in [9, Lemma 3.21 that the eigenvalues of the 

Laplacian of C2n,k _ 2 are $(k + 2) + $ (k - 2)” + 8 + 8cos(2rj/n) and 

$(k + 2) - id( k - 2)” + 8 + Bcos(2rj/n) , for j = 1,. . . , n. Ordering 
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these eigenvalues, we obtain 

i(k + 2) - id(k - 2)2 + 8 + SCOS((2T[i/2~)/4 , 

= i = l,...,n, 

;(k + 2) + +&k - 2)2 + 8 + 8cos((2~[(2n - i + 1)/2])/n) 

i = n + 1,...,2n. 

Substituting these expressions, it follows that the condition in the corollary is 
equivalent to 

< 2k - Ai(L,), i = l,...,n, 

27r[(2n - i + 1)/2] (1) 
2k - h nr+n-i+l(&) Q 2 + 2cos n 

i = m + 1,...,2n. 

Since G is k-regular, Qo = 2kl, -LG; hence, 2k - A,(L,) = hn_i+l(QG). 
Also, 2 + 2cod@aii/2J>/n> = h,_i+l(Qcm), so the first part of (1) is equiv- 

alent to 

or 

Ai(Qc")  =G Ai(QG)> i=l ,..., n. (2) 

In the Same way we see that 2k - A,+,_,+,(L,. = Ai_,,,(QG) and 2 + 
2cos((27r[(2n - i + 1)/2l)/n) = Ai_,,(Qc,), so the second part of (1) be- 
Comes 

Ai-m(Qc) G Ai-"(Qcn), i = m + 1,...,2n, 
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which is equivalent to 

Ai_m+n(Qc) < A , (Q ,") ,  i  = m - n + l,...,n. (3) 

The equations (2) and (3) follow clirectly from Theorem 1’. 
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