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In this article we survey some interesting examples and counterexamples con- 
cerning hamiltonian graphs and related concepts. The discussion is divided into 
three areas: necessary or sufficient conditions, planar graphs, and hamiltonianlike 
conditions. Throughout we shall use the terminology of Harary [16]. In particular, 
a graph is hamiltonian if it possesses a cycle which passes through each of its points 
exactly once. The number of points and lines of a graph are denoted by p and q, 
respectively. We assume throughout that p 2 3 and that all graphs are connected. 
The degree of a point u is denoted by d(u)  and the minimum degree of the points 
of G by 6(G). The degree sequence of a graph is written in nondecreasing order, 
dl 5 d2 I ... I d . Let H be a graph of order p which contains the graph G such 
that d&) + &(up < p ,  for all uu $ E(H) .  If H1 and H ,  are such graphs, then so is 
HI n H 2 .  Thus, there exists a unique smallest graph H with the above property. 
We call this graph the closure of G and denote it by cl(G). One can thus obtain 
cl(G) from G by joining pairs of nonadjacent points of G with degree sum at least p 
until no such pair remains. 

SECTION 1 

Most of the sufficient conditions for a graph to be hamiltonian force the graph 
to have many lines relative to the number of its points. A sequence of successively 
stronger theorems giving sufficient conditions for a graph to be hamiltonian were 
developed beginning in 1952. Each of the following is sufficient for a graph to be 
hamiltonian : 

S1. 6(G) 2 p /2  [9 ] .  
S2 .  u nonadjacent to u implies d(u)  + d ( u )  2 p [27] .  
S3. For every n, 1 2 n 2 ( p  - 1)/2, the number of points of degree not exceeding 

n is less than n and, for odd p ,  the number of points of degree at most 
( p  - 1)/2 does not exceed ( p  - 1)/2 [28] .  

S4. di I i and dj ,  j imply di  + d j  2 p [l]. 
S5. di  I i < p /2  implies d,-i 2 p - I [6] .  
S6. If the points of G are u l ,  .. ., up,  let there be no i, j with i < j ,  u i u j  $ E(G), 

S7. cl(G) = K ,  [3 ] .  
It is interesting to note that none of these conditions is strong enough to prove 

that the simple 5-cycle C, is hamiltonian. 
One of the few useful necessary conditions for hamiltonicity may be phrased in 

terms of the toughness of a graph. If k(G) denotes the number of connected com- 
ponents of the graph G ,  we define G to be t-tough if k(G - S) > 1 implies that 
IS\ 2 t .  k(G - S) for all sets S of points of G. Chvatal [7]  has proved that every 
hamiltonian graph is 1-tough. That 1-toughness is not sufficient for hamiltonicity is 
shown by the graph of FIGURE 1. 

If G is not complete, the largest t for which G is t-tough is called the toughness 
of G and is denoted t(G). Chvatal conjectured that every graph G with t(G) > 3/2 

d(ui)  I i, d(uj )  2 j - 1, and d(ui)  + d ( u j )  I p - 1, with i + j 2 p [20] .  
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FIGURE 1 .  A I-tough nonhamiltonian graph. 

is hamiltonian. That this conjecture could not be improved to include t = 3/2 is 
shown by the nonhamiltonian graph of FIGURE 2b. This graph is the inflation of 
the Petersen graph which is depicted in FIGURE 2a. The inflation G* of a graph G 
is the graph whose points are all ordered pairs (0, x), where x is a line of G and c 
is an endpoint of x, with two points of G* adjacent if and only if they differ in 
exactly one coordinate. Although true for planar graphs, since a graph with t > 3/2 
is 4-connected (see Section 2), Chvatal's conjecture has recently been disproved by 
C. Thomassen [34]. 

FIGURE 2(a). The Petersen graph. 

A graph which is obtained in a manner similar to that of the inflation of the 
Petersen graph is due to Meredith [25] and appears in FIGURE 3. This graph was 
obtained as a counterexample to the following conjecture of Nash-Williams [26]: If 
G is 4-connected and 4-regular, then G is hamiltonian. If one shrinks each of the 
K 3 . 4 ' ~  to a point, it is easy to show that the resulting multigraph is nonhamiltonian. 
This in turn implies that the original graph is nonhamiltonian. 

FIGURE 2(b). A nonhamiltonian graph with t = 3/2. 
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FIGURE 3. A 4-connected, 4-regular, nonharniltonian graph. 

SECTION 2 

Planar hamiltonian graphs historically have been the object of intensive investiga- 
tion because of their relation to the Four Color Problem. More recently they have 
found application to the structure of organic compounds and to linear programming 
algorithms. 

A cyclic cutset L of a 3-connected graph G is a set of lines of G such that 
G - L has two components each of which contains a cycle. The cyclic connectivity 
of G, cl(G), is the minimum cardinality of all the cyclic cutsets of G. The graph 
G is cyclically n-connected if c l ( G )  2 n.  We define a graph G to be polyhedral if 
it is cubic, planar, and 3-connected. 

A proof of the Four Color Theorem could be based on any one of the following 
statements, if any were true: 

P1. Every polyhedral graph is hamiltonian. 
P2. Every polyhedral cyclically 4-connected graph is hamiltonian. 
P3. Every polyhedral cyclically 5-connected graph is hamiltonian. 

Unfortunately, for the Four Color Problem, they are all false. The counterexamples 
that have been constructed to prove them false, however, are very interesting graphs. 

The first counterexample to P1 was the forty-six-point graph of FIGURE 4 con- 
structed by Tutte [35] and is now known as the Tutte graph. For later reference we 

FIGURE 4. The Tutte graph: a nonhamiltonian 
polyhedral graph. 
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shall refer to the fifteen-point triangular configuration with vertices I(, v, and w as 
the Tutte configuration. 

Since 1946 a great deal of effort has gone into finding the smallest non- 
hamiltonian polyhedral graph. It has been shown [14] that all polyhedral graphs 
with up to twenty points are hamiltonian. The smallest known nonhamiltonian 
polyhedral graph, discovered independently by Lederberg [21], Barnette, and Bosak 
[5], has thirty-eight points and is depicted in FIGURE 5. Note the use of the Tutte 
configuration. 

FIGURE 5. The smallest-known nonhamiltonian poly 
hedral graph. 

A variation of statement P1 has given rise to a very interesting graph due to 
J. D. Horton [4]. Tutte conjectured that every bipartite cubic 3-connected graph is 
hamiltonian. Horton’s graph (FIGURE 6) shows this to be false. 

Still other variations on statement P1 may be obtained as follows. Tutte [36] 
proved that every planar Cconnected graph is hamiltonian. If we now consider 
3-connected planar graphs, we can ask what additional condition on these graphs 
will force them to be hamiltonian? The hypothesis of statement P1 adds the con- 
dition that G be regular of degree 3, which is not enough to force G to be 
hamiltonian. Suppose we require that G be regular of degree 4, or regular of degree 5 
(if G were regular of degree 6 or greater, then G would not be planar). Sachs [29] 
showed that neither condition forces G to be hamiltonian. Recently Zaks [39] simpli- 
fied Sachs’ constructions by finding a planar 3-connected, 4-regular, nonhamiltonian 
graph with 114 points and a planar 3-connect4, 5-regular, nonhamiltonian graph 
with 228 points. We shall omit these graphs but mention that they are derived from 
the graph G of FIGURE 5 by replacing the edges of a 1-factor of G by certain 
configurations. 

The first counterexample to statement P2 was constructed by Tutte [37] and 
has sixty points. The smallest known counterexample to P2, which has forty-two 

FIGURE 6. A bipartite 3-connected nonhamiltonian 
graph. 
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FIGURE 7. The smallest-known polyhedral 
cyclically 4-connected nonhamiltonian graph. 

points, is shown in FIGURE 7 [l5]. The first counterexample to statement P3 was 
constructed by Walther [38] and has 162 points. The graph of FIGURE 8, which 
appears in [15], is due independently to Tutte and Grinberg, has forty-four points, 
and is the smallest known counterexample to P3. 

FIGURE 8. The smallest-known polyhedral cyclically 5-connected nonhamiltonian graph 

SECTION 3 

We shall first consider some conditions weaker than that of a graph being 
hamiltonian. The nth power G" of G has the same set of points as G with two 
points adjacent if and only if the distance between them in G is n or less. Sekanina 
[31] and Karaganis [19] have proved that every connected graph G has G 3  hamil- 
tonian. Fleischner [12] then showed that if G is 2-connected, then GZ is hamiltonian. 
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(In fact, in this case much more is true of G2. Faudree and Schelp [ll] have shown 
that G2 is strongly path-connected, i.e., between each pair of distinct points u and u 
of G2 there exists a path in G2 of every possible length greater than or equal to the 
distance between u and u in G’.) Fleischner’s theorem cannot be improved. FIGURE 
9a shows a tree whose square is nonhamiltonian and FIGURE 9b shows a graph, 
due to Fleischner and Kronk [13], which is bridgeless and has a nonhamiltonian 
square. 

FIGURE 9. (a) A tree whose square is nonhamiltonian. (b) A bridgeless graph whose square 
is nonhamiltonian. 

A graph is traceable if it has a hamiltonian path. Balinski conjectured that 
every polyhedral graph is traceable. The graph in FIGURE 10, constructed by T. A. 
Brown [14], shows this to be false. In each triangle T of FIGURE 10 is a copy of 
the Tutte configuration placed so that the points u, u, and w of FIGURE 4 get 
mapped to the correspondingly labelled points. 

U 
V 

FIGURE 10. A nontraceable polyhedral graph. 



Molluzzo: Hamiltonian Counterexamples 163 

A nonhamiltonian (nontraceable) graph G is hypohamiltonian (hypotraceable) if 
G - u is hamiltonian (traceable) for every point v of G. The following theorem 
[17, 23, 32, 10, 81 establishes the existence of hypohamiltonian graphs of almost all 
orders p. 

THEOREM. There exist no hypohamiltonian graphs on points p < 10, p = 11, 12, 
or 14. For p = 10, 13, and p 2 15, except possibly p = 17, there exists a hypo- 
hamiltonian graph of order p .  

The smallest hypohamiltonian graph is the Petersen graph (FIGURE 2a). 
Less is known about hypotraceable graphs. We have the following theorem of 

Thomassen [32, 341. 

THEOREM. There exist hypotraceable graphs of order p for p = 34, 37 and all 
p 2 39. 

It is not known if hypotraceable graphs of orders 35, 36, or 38 exist, nor is the 
order of the smallest hypotraceable graph known. The smallest hypotraceable graph 
constructed to date is depicted in FIGURE 11. 

The only condition stronger than hamiltonicity that will be mentioned is that of 
a graph being pancyclic. The graph G is pancyclic if it contains cycles of all lengths 
n, 3 5 n 5 p .  Many of the conditions which are sufficient for a graph to be 
hamiltonian are also sufficient for a graph to be pancyclic or bipartite. For example, 
Ore's condition S2 implies that G is pancyclic or bipartite [2]; Chvatal's condition 
S5 implies that G is pancyclic or bipartite [30]; G 2-connected implies that G2 is 
pancyclic [18]. Such results led Bondy to make the metaconjecture that almost all 
conditions that imply that G is hamiltonian also imply that G is pancyclic or bipartite. 

The last examples we present are cases where the metaconjecture is false. As 
mentioned previously, every planar 4-connected graph is hamiltonian. Malkevitch 
[24] has constructed the graph of FIGURE 12 which is planar and Cconnected but 
which is not pancyclic since it does not contain a 4-cycle. 

The graph of FIGURE 13, due to C. Thomassen, was communicated to the 
author by J. A. Bondy. It is an example of a graph with a complete closure but 
which is not pancyclic since it contains no triangles, Hence, condition S l  does not 
imply that G is pancyclic. 
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FIGURE 12. A planar 4-connected nonpancyclic graph 

FIGURE 13. A nonpancyclic graph with a complete closure. 
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