COMBINATORICA

HAMILTONIAN CYCLES IN BIPARTITE GRAPHS

XIAOYUN LU

Received January 5, 1993
Revised May 10, 1993

Abstract

We give a sufficient condition for bipartite graphs to be Hamiltonian. The condition involves the edge-density and balanced independence number of a bipartite graph.

1. Introduction

All graphs here are simple finite graphs. All undefined terminology can be found in [5].

Let $G=(V, E)$ be a graph with vertex set $V(G)=V$ and edge set $E(G)=E$ and A be a subset of V. We use $G(A)$ to denote the subgraph of G induced by A, meaning that $G(A)=\left(A, E_{A}\right)$ with $E_{A}=\{u v \in E \mid u, v \in A\}$. If $G(A)$ contains no edges, then A is said to be an independent set. The independence number of G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set.

Let $A \subseteq V$. We use $G-A$ to denote the graph obtained from G by deleting all vertices in A and all edges containing at least one vertex of A. For a subgraph H of $G, G-H=G-V(H)$.

Let $x \in V, A \subseteq V$ and H a subgraph of G. Define the neighborhood $N(x)$ of x, the neighborhood $N(A)$ of A and the relative neighborhood $N(A, H)$ of A with respect to a subgraph H by

$$
\begin{aligned}
& N(x)=\{y \in V ; x y \in E\} \\
& N(A)=\bigcup_{x \in A} N(x)
\end{aligned}
$$

and

$$
N(A, H)=N(A) \cap V(H)
$$

Note that $N(A)=N(A, G)$. We use $N(H, K)$ for $N(V(H), K)$ when H, K are subgraphs of G.

Define the degree $d(x)$ of x, the degree $d(A)$ of A and the relative degree $d(A, H)$ of A with respect to H by

$$
\begin{aligned}
d(x) & =|N(x)| \\
d(A) & =|N(A)|
\end{aligned}
$$

and

$$
d(A, H)=|N(A, H)|
$$

Let the minimum degree of G be denoted by $\delta(G)$. For $A, B \subseteq V$, let $\lfloor A, B]:=\{a b \mid$ $a \neq b, a \in A, b \in B\}$.

A bipartite graph $G=(V, E)$ is a graph for which we can partition $V=X \cup Y$ such that $E \subseteq[X, Y]$. In this case we also use the notation $G=(X, Y ; E)$. The graph G is called a balanced bipartite graph if $|X|=|Y|$.

Let C be a cycle of G for which we are given a cyclic orientation. For a vertex u denote by u^{+}the out-neighbor of u, that is, the vertex v with $u \rightarrow v$, and similar by u^{-}the in-neighbor of u. Let $u^{-1}=u^{-}, u^{+1}=u^{+}$and $u^{-(k+1)}=\left(u^{-k}\right)^{-}, u^{+(k+1)}=$ $\left(u^{+k}\right)^{+}$. If A is a subset of $V(C)$, then we set $A^{+}=A^{+1}=\left\{u^{+} \mid u \in A\right\}$, and $A^{-}=$ $A^{-1}=\left\{u^{-} \mid u \in A\right\}$. We define A^{-k} and A^{+k} similarly. If u, v are two vertices of C, and $P=u v_{1} \ldots v_{a} v$ is the directed path from u to v in C, then we set

$$
\begin{aligned}
{[u, v] } & =\left\{u, v_{1}, \ldots, v_{a}, v\right\} \\
(u, v] & =\left\{v_{1}, v_{2}, \ldots, v_{a}, v\right\} \\
{[u, v) } & =\left\{u, v_{1}, \ldots, v_{a}\right\} \\
(u, v) & =\left\{v_{1}, v_{2}, \ldots, v_{a}\right\} .
\end{aligned}
$$

For later use, we need the following simple fact.
Fact 1. Let $G=(V, E)$ be a connected non-Hamiltonian graph, C a longest cycle of G, to which we assign a cyclic orientation, and H a component of $G-V(C)$. Let $N^{+}(H, C):=(N(H, C))^{+}$, and $N^{-}(H, C):=(N(H, C))^{-}$. Then
(1) $\left[V(H), N^{+}(H, C)\right]_{G}=\emptyset, \quad\left[V(H), N^{-}(H, C)\right]_{G}=\emptyset$.
(2) $N^{+}(H, C)$, and $N^{-}(H, C)$ are both independent.
(3) If $X \subseteq V(H)$ is independent, then $X \cup N^{+}(H, C)$ and $X \cup N^{-}(H, C)$ are both independent.

Proof. Statement (3) follows from (1) and (2). Statement (1) is trivial, for otherwise, we can easily obtain a cycle longer than C.

To prove (2), say $x, y \in N^{+}(H, C)$ with $x y \in E$. Let $u, v \in V(H)$ such that $u x^{-} \in E, v y^{-} \in E$ and P a $u-v$ path in H. Then $x^{-} P y^{-} \ldots x y y^{+1} \ldots x^{-2}$ is a cycle longer than C, a contradiction.

Let $G=(X, Y ; E)$ be a balanced bipartite graph with $|X|=n$. An independent vertex set A is said to be balanced if $||A \cap X|-|A \cap Y|| \leq 1$. We define the balanced independence number $\alpha^{*}(G)$ to be the maximum cardinality of a balanced independent vertex set. This quantity is much more sensitive than the ordinary independence number for bipartite graphs. For example, the complete bipartite graph $K_{n, n}$ has balanced independence number 1, and the graph consisting of
n independent edges has balanced independence number n, although both have independence number n.

For $A \subseteq X$ and $B \subseteq Y$, let $\bar{A}=X-A$ and $\bar{B}=Y-B$. We define the edge-density of G by

$$
\lambda(G)=\min \left\{\frac{|E \cap\{[A, \bar{B}] \cup[\bar{A}, B]\}|}{(|A|+|B|) n-2|A||B|} ; \quad A \subseteq X, B \subseteq Y, X \cup Y \neq A \cup B \neq \emptyset\right\}
$$

Set $A \neq \emptyset$ and $B=\emptyset$, we have $|E \cap[A, Y]| \geq \lambda(G)|A| n$. Similarly, for $B \neq \emptyset$, $|E \cap[B, X]| \geq \lambda(G)|B| n$. Therefore, we have $d(A, Y) \geq \lambda(G) n$ and $d(B, X) \geq \lambda(G) n$. Especially, we have $\delta(G) \geq \lambda(G) n$.

Our main result is the following
Theorem 1. If G is a balanced bipartite graph such that $\alpha^{*}(G) \leq n \lambda(G)-1$, then G is Hamiltonian.

2. A cycle-tree of a graph

We define a cycle-tree $T(G)$ for a graph G in this section. Let G be a connected graph. If G is a tree, then the cycle-tree of G is a vertex represented by a square, and we label this vertex as (\emptyset, G), meaning that the empty set is a longest cycle of G. If G is Hamiltonian and C is a Hamiltonian cycle of G, then the cycle-tree of G is a vertex represented by a circle, and we label the vertex as (C, G), meaning that C is a longest cycle of G. Assuming that we are able to construct a cycle-tree for all connected graphs of order less than n, we are going to construct a cycle-tree of a non-Hamiltonian graph G of order n as follows. Let C be a longest cycle of G, and $G_{1}, G_{2}, \ldots, G_{r}$ be the components of $G-C$, each of them has a cycle-tree, say G_{i} has a cycle-tree T_{i}. Then a cycle-tree $T(G)$ of G is obtained by adding a circle vertex, labeled as (C, G), to $T_{1} \cup \ldots \cup T_{r}$, and adding directed edges from (C, G) to the r roots of $T_{1}, T_{2}, \ldots, T_{r}$. Therefore, a cycle-tree of G is a directed tree.

Let T be a cycle-tree of G. Then each non-leaf vertex of T must be a circle vertex. The leaves of T can be either a circle vertex, or a square vertex.

Let $\left(C_{1}, G_{1}\right) \rightarrow\left(C_{2}, G_{2}\right) \rightarrow \ldots \rightarrow\left(C_{k}, G_{k}\right)$ be a directed path in T, where $\left(C_{k}, G_{k}\right)$ is a leaf of T. Then for $1 \leq i \leq k-1$, we have
(1) C_{i} is a longest cycle of G_{i},
(2) G_{i+1} is a component of $G_{i}-C_{i}$,
(3) $\left|C_{1}\right| \geq\left|C_{2}\right| \geq \ldots \geq\left|C_{k}\right|$, and
(4) $V\left(G_{1}\right) \supset V\left(G_{2}\right) \supset \ldots \supset V\left(G_{k}\right)$.

Furthermore, if $C_{k}=\emptyset$, then G_{k} is a tree; if $C_{k} \neq \emptyset$, then G_{k} is Hamiltonian (with a Hamiltonian cycle C_{k}).

Let $\left(C_{i}, G_{i}\right)$ and $\left(C_{j}, G_{j}\right)$ be two vertices of T. If there is a directed path P from $\left(C_{i}, G_{i}\right)$ to $\left(C_{j}, G_{j}\right)$, then $\left(C_{j}, G_{j}\right)$ is called a descendant of $\left(C_{i}, G_{i}\right)$, and $\left(C_{i}, G_{i}\right)$ an ancestor of $\left(C_{j}, G_{j}\right)$. If $x \in V\left(G_{j}\right)$, we also call $\left(C_{i}, G_{i}\right)$ an ancestor of x. If $H=\bigcup_{i=1}^{k} C_{i}$, then $N^{+}(K, H):=\bigcup_{i=1}^{k} N^{+}\left(K, C_{i}\right)$, and $N^{-}(K, H)$ can be defined similarly. We list the following simple fact as

Proposition 1. Let $P=x_{1} x_{2} \ldots x_{k}$ be a directed path of T, where $x_{i}=\left(C_{i}, G_{i}\right)$, $1 \leq i \leq k$, and $H=\bigcup_{i=1}^{k-1} C_{i}$. Then $N^{+}\left(G_{k}, H\right)$ and $N^{-}\left(G_{k}, H\right)$ are both independent, and $\left[V\left(G_{k}\right), N^{+}\left(G_{k}, H\right) \cup N^{-}\left(G_{k}, H\right)\right]=\emptyset$. In particular, we have $\alpha\left(G_{1}\right) \geq$ $\left|N^{+}\left(G_{k}, H\right)\right|+\alpha\left(G_{k}\right)$.

Let T be a cycle-tree of G. If T has no square vertex, then G has a 2-factor. If T has a square vertex, say $\left(\emptyset, G_{k}\right)$, and let x be a leaf of G_{k}, then $\alpha(G) \geq d(x)$, so we have

Proposition 2. If $\alpha(G) \leq \delta(G)-1$, then G has a 2-factor.

3. Some Lemmas

Let G be a connected graph that is not a tree nor Hamiltonian, and T a cycletree of G. Let C be a cycle drawn on the plain in convex position. If $x, y \in V(C)$ and $x y \in E(G)-E(C)$, then this edge is drawn as a straight line segment connecting x and y. Such a drawing is called a standard drawing. In the standard drawing, two edges of $G(V(C))$ are said to be crossing if they meet in a point other than their ends. In the proof of the following lemma, all cycles are drawn standard.
Lemma 1. Let $x \in X$ and $y \in Y$ be two vertices of G and (C, H) an ancestor of x and y. Then C contains an independent set J such that $|J \cap X| \geq \frac{d(x, C)}{2}$ and $|J \cap Y| \geq$ $\frac{d(y, C)}{2}$. Indeed, we have that

$$
J \subseteq N^{+}(x, C) \cup N^{-}(x, C) \cup N^{+}(y, C) \cup N^{-}(y, C)
$$

Proof. We have $|N(x, C)|=d(x, C)$ and $|N(y, C)|=d(y, C)$. Let

$$
\begin{aligned}
& A=N^{+}(x, C) \\
& B=N^{+}(y, C)
\end{aligned}
$$

We use u 's for vertices of A, and v 's for vertices of B. If $v_{1} \in\left(u_{1}, u_{2}\right), u_{2} \in\left(v_{1}, v_{2}\right)$, then $D=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is said to be an interwing set, otherwise, we call it a noninterwing set.
Fact 2. If D is an interwing set, then $G(D)$ does not contain two independent edges.
Proof. We prove this fact by contradiction. Suppose we have either
(a) $u_{1} v_{2} \in E$ and $u_{2} v_{1} \in E$ or
(b) $u_{1} v_{1} \in E$ and $u_{2} v_{2} \in E$.

In case (a), we obtain a cycle C^{\prime} longer than C as follows:

$$
C^{\prime}=u_{1} u_{1}^{+1} \ldots v_{1}^{-1} y v_{2}^{-1} v_{2}^{-2} \ldots u_{2}^{+1} u_{2} v_{1} v_{1}^{+1} \ldots u_{2}^{-1} x u_{1}^{-1} u_{1}^{-2} \ldots v_{2}^{+1} v_{2}
$$

a contradiction.

In case (b), we obtain a cycle C^{\prime} longer than C as follows:

$$
C^{\prime}=u_{1} v_{1} v_{1}^{+1} \ldots u_{2}^{-1} x u_{1}^{-1} u_{1}^{-2} \ldots v_{2}^{+1} v_{2} u_{2} u_{2}^{+1} \ldots v_{2}^{-1} y v_{1}^{-1} \ldots u_{1}^{+1}
$$

again a contradiction.
Fact 3. If $D=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is a non-interwing set, then $G(D)$ contains no crossing edges.

Proof. For otherwise, say with $u_{1}, u_{2}, v_{1}, v_{2}$ the cyclic ordering of the vertices of D on C, we have $u_{1} v_{1} \in E$ and $u_{2} v_{2} \in E$, and can obtain a cycle C^{\prime} longer than C as follows:

$$
C^{\prime}=u_{1} v_{1} v_{1}^{+1} \ldots v_{2}^{-1} y v_{1}^{-1} v_{1}^{-2} \ldots u_{2}^{+1} u_{2} v_{2} v_{2}^{+1} \ldots u_{1}^{-1} x u_{2}^{-1} \ldots u_{1}^{+1}
$$

Again this is a contradiction.
If $A \cup B$ is independent, then $J:=A \cup B$ is independent with $|J \cap X|=d(x, C)$ and $|J \cap Y|=d(y, C)$. If $A \cup B$ is dependent, i.e., $F=G(A \cup B)$ is not edgeless, then we call two edges of F parallel if the ends of the two edges do not form an interwing set (if two edges have a common end, then they are parallel). By the argument above, all edges in $F=G(A \cup B)$ are parallel.

Choose an edge $u_{1} v_{1}$ of F such that $G\left(\left[u_{1}, v_{1}\right]\right)$ contains no other edges of F. This is possible for the following reason: Take an edge $u_{1}^{*} v_{1}^{*}$ and suppose we have taken edges $u_{1}^{*} v_{1}^{*}, \ldots, u_{k}^{*} v_{k}^{*}$. If there is an edge $u v$ of F in $G\left(\left[u_{k}^{*}, v_{k}^{*}\right]\right)$, then take $u_{k+1}^{*}=u, v_{k+1}^{*}=v$, otherwise, stop. Therefore, we obtain a sequence of edges $u_{1}^{*} v_{1}^{*}$, $u_{2}^{*} v_{2}^{*}, \ldots$, and this sequence must stop, say at $u_{t}^{*} v_{t}^{*}$. Then set $u_{1}=u_{t}^{*}, v_{1}=v_{t}^{*}$. Similarly, choose an edge $u_{2} v_{2}$ of F such that $G\left(\left[v_{2}, u_{2}\right]\right)$ contains no other edges of F. (Note that we may have $u_{1}=u_{2}$ or $v_{1}=v_{2}$.)

We first note that if $v \in\left(v_{1}, v_{2}\right] \cap B$ and $u \in\left[u_{2}, v_{1}\right) \cap A$, then $u v^{-2} \notin E$. For otherwise, we get a cycle C^{\prime} longer than C as follows:

$$
C^{\prime}=u v^{-2} v^{-3} \ldots v_{1} u_{1} u_{1}^{+1} \ldots v_{1}^{-1} y v^{-1} v v^{+1} \ldots u^{-1} x u_{1}^{-1} \ldots u^{+1}
$$

a contradiction. Therefore, $J:=\left(\left(v_{1}, v_{2}\right] \cap B\right)^{-1} \cup\left(\left[u_{2}, u_{1}\right) \cap A\right)$ is independent. If $\left|\left(v_{1}, v_{2}\right] \cap B\right| \geq d(y, C) / 2$ and $\left|\left[u_{2}, u_{1}\right) \cap A\right| \geq d(x, C) / 2$, then J satisfies our requirement. We need the following fact to continue.
Fact 4. Let $D_{1}=B-\left(v_{1}, v_{2}\right]$ and $D_{2}=A-\left[u_{2}, u_{1}\right)$. Then D_{1}, D_{2} consist of isolated vertices of F.

Proof. We prove the case for D_{1}, and the similar proof works for D_{2}. Suppose that D_{1} contains non-isolated vertices of F. Let v be one of them, that is, $v u \in E(F)$ for some $u \in A$. If $v \in\left(u_{1}, v_{1}\right]$, then $u \notin\left[u_{1}, v_{1}\right)$ by the choice of $u_{1} v_{1}$, and thus $\left\{u_{1}, v_{1}, u, v\right\}$ is a non-interwing set containing crossing edges, a contradiction to Fact 3. Similarly, if $v \in\left[v_{2}, u_{2}\right)$, then $\left\{u_{2}, v_{2}, u, v\right\}$ is a non-interwing set containing crossing edges, again a contradiction to Fact 3. With the same proof we must have either $u \in\left[u_{2}, u_{1}\right]$ or $u \in\left(v_{1}, v_{2}\right)$. If $v \in\left(u_{2}, u_{1}\right)$ and $u \in\left[u_{2}, u_{1}\right]$, then $\left\{u_{2}, v_{2}, u, v\right\}$ or $\left\{v, u, u_{1}, v_{1}\right\}$ is an interwing set containing two independent edges, depending on whether $u \in\left(v, u_{1}\right]$ or $u \in\left[u_{2}, v\right)$, a contradiction to Fact 2. If, on the other hand, $v \in\left(u_{2}, u_{1}\right)$ and $u \in\left(v_{1}, v_{2}\right)$, then $\left\{u_{1}, v_{1}, u, v\right\}$ is an interwing set containing
two independent edges, also a contradiction to Fact 2. Therefore, there is no nonisolated vertices in D_{1}.

By Fact $4, D_{1} \cup A$ and $D_{2} \cup B$ are independent. If $\left|\left(v_{1}, v_{2}\right] \cap B\right|<d(y, C) / 2$, then $\left|D_{1}\right|>d(y, C) / 2$, and $J:=D_{1} \cup A$ satisfies our requirement. Similarly, if $\left|\left[u_{2}, u_{1}\right) \cap A\right|<d(x, C) / 2$, then $J:=D_{2} \cup B$ satisfies our requirement. Notice that in all cases we have $J \subseteq N^{+}(x, C) \cup N^{-}(x, C) \cup N^{+}(y, C) \cup N^{-}(y, C)$. Thus we have completed the proof of the lemma.

Lemma 2. Let $\left(C_{1}, H_{1}\right),\left(C_{2}, H_{2}\right)$ be two ancestors of $x \in X$ and $y \in Y$; and $J_{i} \subseteq$ $N^{+}\left(x, C_{i}\right) \cup N^{-}\left(x, C_{i}\right) \cup N^{+}\left(y, C_{i}\right) \cup N^{-}\left(y, C_{i}\right)$ be independent, where $i=1,2$. Then $J_{1} \cup J_{2}$ is also independent.
Proof. We may assume that $\left(C_{1}, H_{1}\right)$ is an ancestor of $\left(C_{2}, H_{2}\right)$. If our lemma is false, then one can find a cycle C in H_{1} that is longer than C_{1}, a contradiction.

Lemma 3. If $\alpha^{*}(G) \leq \delta(G)-1$, then $T(G)$ has no square vertex.
Proof. Suppose that we have square vertices. Let $\left(\emptyset, G_{r}\right)$ and $\left(\emptyset, G_{s}\right)$ be two leaves of T (we may have that $G_{r}=G_{s}$) such that we can find $x \in X$ be a leaf of G_{r} and $y \in Y$ a leaf of G_{s}. (This can be done as follows. Take a leaf G_{r} of T and a leaf x of G_{r}, say $x \in X$. If G_{r} also contains a leaf $y \in Y$, then let $G_{s}=G_{r}$. Otherwise, since G is balanced, there must be a leaf G_{s} of T such that G_{s} contains a leaf $y \in$ Y. If G_{r} or G_{s} consists of only one vertex, we also regard this vertex as a leaf, for convenience.) Let $\left(C_{0}, G_{0}\right),\left(C_{1}, G_{1}\right), \ldots,\left(C_{k}, G_{k}\right)$ be the common ancestor of x and y. Then by Lemma 1 and Lemma 2, H contains an independent set J such that $|J \cap X| \geq \frac{d(x, H)}{2}$ and $|J \cap Y| \geq \frac{d(y, H)}{2}$, where $H=C_{0} \cup C_{1} \cup \ldots \cup C_{k}$. Let $\left(D_{1}, H_{1}\right)$, $\ldots,\left(D_{j}, H_{j}\right)$ be all those vertices of T that is an ancestor of x but not an ancestor of y, and $K=D_{1} \cup \ldots \cup D_{j}$. Then K certainly contains an independent set I_{x} such that $\left|I_{x} \cap X\right| \geq d(x, K)$. Similarly, let $\left(D_{1}^{\prime}, H_{1}^{\prime}\right), \ldots,\left(D_{i}^{\prime}, H_{i}^{\prime}\right)$ be all those vertices of T that is an ancestor of y but not of x, and $K^{\prime}=D_{1}^{\prime} \cup \ldots \cup D_{i}^{\prime}$. Then K^{\prime} contains an independent set I_{y} such that $\left|I_{y} \cap Y\right| \geq d\left(y, K^{\prime}\right)$. Note that K or K^{\prime} may be empty. We consider two cases.
Case 1: $G_{r}=G_{s}=x y$. Then

$$
\begin{aligned}
& |J \cap X| \geq \frac{d(x, H)}{2}=\frac{d(x)-1}{2} \geq \frac{\delta(G)-1}{2} \\
& |J \cap Y| \geq \frac{d(y, H)}{2}=\frac{d(y)-1}{2} \geq \frac{\delta(G)-1}{2}
\end{aligned}
$$

Thus $J \cup\{x\}$ contains a balanced independent set of order at least $\frac{\delta(G)-1}{2}+\frac{\delta(G)-1}{2}+$ $1 \geq \delta(G)$, a contradiction.
Case 2: $G_{r}=G_{s}$ but $x y \notin E$, or $G_{r} \neq G_{s}$. In this case, $I:=J \cup I_{x} \cup I_{y} \cup\{x, y\}$ is an independent set with property that

$$
|I \cap X| \geq \frac{d(x, H)}{2}+d(x, K)+1 \geq \frac{d(x)-1}{2}+1=\frac{d(x)+1}{2} \geq \frac{\delta(G)+1}{2}
$$

and

$$
|I \cap Y| \geq \frac{d(y, H)}{2}+d\left(y, K^{\prime}\right)+1 \geq \frac{d(y)+1}{2} \geq \frac{\delta(G)+1}{2}
$$

which implies that I contains a balanced independent set of order $\delta(G)+1$, also a contradiction.

4. Proof of Theorem 1

Assume that G is not Hamiltonian. It is easy to see that G is connected but not a tree. Let T be a cycle-tree of G and $\lambda=\lambda(G)$. Since $\delta(G) \geq \lambda n$, we have $\alpha^{*}(G) \leq \lambda n-1 \leq \delta(G)-1$. By Lemma 3 this implies that $T(G)$ has no square vertex. However, this contradicts to the following fact.
Fact 5. If T is a cycle-tree of G, then all leaves of T are square vertices.
Proof. Assume that there exists a leaf that is also a circle vertex, say $\left(C_{k}, G_{k}\right)$ with $G_{k}=(A, B ; F)$, where $A \subseteq X$ and $B \subseteq Y$. Let

$$
\left(C_{0}, G_{0}\right) \rightarrow\left(C_{1}, G_{1}\right) \rightarrow \ldots \rightarrow\left(C_{k}, G_{k}\right)
$$

be a path from the root to $\left(C_{k}, G_{k}\right)$. Then $\frac{n}{2} \geq|A|=|B|=l \geq 2$. Let $H=\bigcup_{i=0}^{k-1} C_{i}$. Recall that $d(A, Y) \geq \lambda n$ and $d(B, X) \geq \lambda n$. This implies that $d(A, \bar{B}) \geq \lambda n-l$ and $d(B, \bar{A}) \geq \lambda n-l$. So if $l \leq \frac{\lambda n}{2}$, then $d(A, H)=d(A, \bar{B}) \geq \frac{\lambda n}{2}$ and $d(B, H)=d(B, \bar{A}) \geq$ $\frac{\lambda n}{2}$. Therefore, $N^{+}(A \cup B, H) \cup A \cup B$ contains a balanced independent set of order at least $\lambda n+1$, a contradiction. On the other hand, if $l>\frac{\lambda n}{2}$, then

$$
|E \cap\{[A, \bar{B}] \cup[\bar{A}, B]\}| \geq 2 l(n-l) \lambda
$$

We may assume that $|E \cap[A, \bar{B}]| \geq|E \cap[\bar{A}, B]|$. Then

$$
|E \cap[A, \bar{B}]| \geq l(n-l) \lambda \geq \ln \lambda / 2
$$

So $d(A, H) \geq \lambda n / 2$. Thus $N^{+}(A, H) \cup B$ contains a balanced independent set of order at least $\lambda n+1$, also a contradiction.

5. A remark

Consider the following two person's game on the complete bipartite graph $K_{n, n}$. Two players, maker and breaker, alternately take previously untaken edges of $K_{n, n}$, one edge per move, with the breaker going first. The game ends when all edges of $K_{n, n}$ have been taken. Then the edges taken by the maker induce a graph G, where G has the same vertex set as $K_{n, n}$. The maker's objective here is to construct a graph G such that G has as many edge-disjoint Hamiltonian cycles as possible, and the breaker's aim is to prevent such an event. One can see [7] for a similar game on K_{n}.

In [10], we proved that the maker can achieve $\frac{1}{37} n$ edge-disjoint Hamiltonian cycles. To prove this result, we made use of the well known weight function method, which was originated by Erdős and Selfridge [6] and substantially extended by Beck $[1,2,3,4]$, and the following theorem $[8,9]$.
Theorem 2. If G is a balanced bipartite graph such that $\alpha^{*}(G) \leq \kappa(G)$, where $\kappa(G)$ is the vertex-connectivity of G, then G is Hamiltonian.

If we use Theorem 1 instead of Theorem 2, we can then improve the above mentioned result to the following (we omit the proof here)

Theorem 3. In the Hamiltonian game on $K_{n, n}$, the maker can achieve $\frac{2}{37} n$ edgedisjoint Hamiltonian cycles.

References

[1] J. Beck: Random graphs and positional games on the complete graph, Annals of Discrete Math. 28 (1983), 7-14.
[2] J. Beck: Remarks on positional games, Acta Math. Acad. Sci. Hungar. 40 (1-2) (1982), 65-71.
[3] J. Beck, and L. Csirmaz: Variations on a game, J. of Combinatorial Theory A 33 (1982), 297-315.
[4] J. Beck: Van Der Waerden and Ramsey Type Games, Combinatorica 1 (1981), 103-116.
[5] J. A. Bondy, and U. S. R. Murty: Graph Theory with Applications, NorthHolland, 1976.
[6] P. Erdős, and J. Selfridge: On combinatorial Game, J. Combinatorial Theory Ser. A 14 (1973), 298-301.
[7] X. Lu: Hamiltonian games, J. Combinatorial Theory B 55 (1992), 18-32.
[8] X. Lu: Hamiltonian cycles and games of graphs, Thesis, 1992, Rutgers University, and Dimacs Technical Report 92-136.
[9] X. Lu: A sufficient condition for bipartite graphs to be Hamiltonian, submitted.
[10] X. Lu: Hamiltonian games on the complete bipartite graph $K_{n, n}$, to appear in Discrete Math.

Xiaoyun Lu
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
xluces.uiuc.edu

