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We give a sufficient condition for bipartite graphs to be Hamiltonian. The condition involves
the edge-density and balanced independence number of a bipartite graph.

1. Introduction

All graphs here are simple finite graphs. All undefined terminology can be
found in [5].

Let G=(V,E) be a graph with vertex set V(G) =1V and edge set E(G) =
and A be a subset of V. We use G(A) to denote the subgraph of G induced by A,
meaning that G(A) =(A,E,) with E4 ={uv€ E|u, ve A}. If G(A) contains no
edges, then A is said to be an independent set. The independence number of G,
denoted by a(G), is the maximum cardinality of an independent set.

Let ACV. We use G— A to denote the graph obtained from G by deletmg all
vertices in A and all edges containing at least one vertex of A. For a subgraph H
of G,G-H=G-V(H).

Let zeV, ACV and H a subgraph of G. Define the neighborhood N(z) of
x, the neighborhood N(A) of A and the relative neighborhood N(A,H) of A with
respect to a subgraph H by

N(z)={y€V; zy e E},
N(4) = | ] N(=),

z€A
and

N(A,H) = N(A) NV (H).

Note that N(A) = N(A,G). We use N(H,K) for N(V(H),K) when H, K are
subgraphs of G.

Mathematics Subject Classification (1991): 05C

0209-9683/95/$6.00 ©1995 Akadémiai Kiadé, Budapest



248 XIAOYUN LU

Define the degree d(z) of z, the degree d(A) of A and the relative degree
d(A,H) of A with respect to H by

d(z) = |N(z)|,
d(A) = |N(4)],
and

d(A, H) = |N(A, H).

Let the minimum degree of G be denoted by §(G). For A, BCV, let [A, B]:={ab|
a#b, ac A, be B}.

A bipartite graph G=(V,E) is a graph for which we can partition V=XUY
such that £ C [X,Y]. In this case we also use the notation G = (X,Y;E). The
graph G is called a balanced bipartite graph if | X|=Y|.

Let C be a cycle of G for which we are given a cyclic orientation. For a vertex u
denote by u™ the out-neighbor of u, that is, the vertex v with ©— v, and similar by
u™ the in-neighbor of u. Let u™t=u", ut! =ut and 4= (F+1) = (y=F)~ o+ {k+1) =
(utk)*, If A is a subset of V(C), then we set AT =At={ut |uc A}, and A~ =
A"l ={u" |ue A}. We define A* and A1* similarly. If u, v are two vertices of
C, and P=wuwj...vqv is the directed path from u to v in C, then we set

[u,v] = {u,v1,...,vq,v}
(u,v] = {v1,v2,...,vq,v}
[w,v) = {u,v1,...,va}
{u,v) = {v1,v2,..., %}

For later use, we need the following simple fact.

Fact 1. Let G=(V,E) be a connected non-Hamiltonian graph, C a longest cycle of
G, to which we assign a cyclic orientation, and H a component of G—V(C). Let
N*(H,C):=(N(H,C))*, and N~ (H,C):=(N(H,C))~. Then
(1) [V(H)’N+(H7 C)]G:(D: [V(H)aN_(HaC)]G =0.
(2) N*(H,C), and N~(H,C) are both independent.
(3) If X CV(H) is independent, then X UNT(H,C) and XUN~(H,C) are
both independent.

Proof. Statement (3) follows from (1) and (2). Statement (1) is trivial, for
otherwise, we can easily obtain a cycle longer than C.

To prove (2), say z, y € NT(H,C) with zy € E. Let u, v € V(H) such that
uz~ €E,vy" € E and P au—v pathin H. Then 2~ Py~ ...zyy+' ...z 2 is a cycle
longer than C, a contradiction. ]

Let G=(X,Y;E) be a balanced bipartite graph with |X|=n. An independent
vertex set A is said to be balanced if ||[ANX|—]ANY|| < 1. We define the
balanced independence number o*(G) to be the maximum cardinality of a balanced
independent vertex set. This quantity is much more sensitive than the ordinary
independence number for bipartite graphs. For example, the complete bipartite
graph Ky, has balanced independence number 1, and the graph consisting of
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n independent edges has balanced independence number n, although both have
independence number 7. _ .

For ACX and BCY, let A=X—A and B=Y —B. We define the edge-density
of G by

_ o J1EN {[4,BlU[4, B]}|
MG) = {(;A| +|B|)n - 2]A]|B|’

Set A#0 and B =0, we have |[EN[A,Y]| > AMG)|A|n. Similarly, for B # 0,
|EN[B, X]|>A(G)|Bin. Therefore, we have d{A4,Y)>AG)n and d(B,X) > A(G)n.
Especially, we have 6(G) > A(G)n.

Our main result is the following

ACX, BCY, XUY;AAUB;&@},

Theorem 1. If G is a balanced bipartite graph such that o*(G) <nA(G) -1, then
G is Hamiltonian. )

2. A cycle-tree of a graph

We define a cycle-tree T(G) for a graph G in this section. Let G be a connected
graph. If G is a tree, then the cycle-tree of G is a vertex represented by a square,
and we label this vertex as (§,G), meaning that the empty set is a longest cycle of
G. If G is Hamiltonian and C is a Hamiltonian cycle of G, then the cycle-tree of G
is a vertex represented by a circle, and we label the vertex as (C,G), meaning that
C'is a longest cycle of G. Assuming that we are able to construct a cycle-tree for
all connected graphs of order less than n, we are going to construct a cycle-tree of
a non-Hamiltonian graph G of order n as follows. Let C be a longest cycle of G,
and G, Gy, ..., Gy be the components of G—C, each of them has a cycle-tree, say
G; has a cycle-tree T;. Then a cycle-tree T'(G) of G is obtained by adding a circle
vertex, labeled as (C,G), to T1U...UT;, and adding directed edges from (C,G) to
the r roots of T, Ty, ..., Tr. Therefore, a cycle-tree of ( is a directed tree.

© "Let T be a cycle-tree of G. Then each non-leaf vertex of T must be a circle
vertex. The leaves of T' can be either a circle vertex, or a square vertex.

Let (C1,G1) — (C2,G2) — ... — (Cy,G}) be a directed path in T, where
(Ck,Gy) is a leaf of T. Then for 1<i<k—1, we have

(1) C; is a longest cycle of Gj,
(2) Gji41 is a component of G; —C;,

(3) |C1]|21C2|>...2|Ck], and

(4) V(G1)DV(G2)2...DV(Gy).

Furthermore, if C, = (2) then Gy, is a tree; if Cy # 0, then Gy, is Hamiltonian
(with a Hamiltonian cycle C’k)

Let (C;,G;) and (C’],G ) be two vertices of T. If there is a directed path
P from (C;,Gy) to (C;,G;), then (C5,G;) is called a descendant of (C;,G;), and
(C;,G;) an ancestor of ( 5, Gj). If xe V(G ), we also call (C;,G;) an ancestor of

z. f H= U C;, then NY(K,H):= U NT(K,C;), and N™(K,H) can be defined

similarly. We list the following sunple fact as
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Proposition 1. Let P = z1z2...z; be a directed path of T, where z; = (C;,G;),

k—1
1<i<k, and H= |J C;. Then N*(Gy,H) and N~ (Gy, H) are both indepen-
i=1

dent, and [V(Gy),NT(Gy,H) U N~ (G, H)] =0. In particular, we have a(G1) >
INT(Gy, H)|+a(Gy).

Let T be a cycle-tree of G. If T' has no square vertex, then G has a 2-factor.
If T has a square vertex, say (0,G}), and let = be a leaf of Gy, then a(G) > d(z),
so we have

Proposition 2. If o(G)<6(G)—1, then G has a 2-factor.

3. Some Lemmas

Let G be a connected graph that is not a tree nor Hamiltonian, and T a cycle-
tree of G. Let C' be a cycle drawn on the plain in convex position. If z, y € V(C)
and zy € E(G)—E(C), then this edge is drawn as a straight line segment connecting
z and y. Such a drawing is called a standard drawing. In the standard drawing,
two edges of G(V(C')) are said to be crossing if they meet in a point other than
their ends. In the proof of the following lemma, all cycles are drawn standard.

Lemma 1. Let z€ X and yeY be two vertices of G and (C, H) an ancestor of z and
y. Then C contains an independent set J such that |JNX|> ﬂ%ﬁl and [JNY|>
ﬂyz’—c). Indeed, we have that

JC Nt (z,C)UN"(z,C)UNT(y,C) UN(y,0).

Proof. We have |N(z,C)|=d(z,C) and |N(y,C)|=d(y,C). Let

A= N*t(z,C),
B=N"*(y,0).

We use u’s for vertices of A, and v’s for vertices of B. If v; € (uj,ua), uz € (v1,v2),
then D ={uy,ug,v1,v2} is said to be an inierwing set, otherwise, we call it a non-
interuing set.

Fact 2. If D is an interwing set, then G(D) does not contain two independent edges.

Proof. We prove this fact by contradiction. Suppose we have either
(a) wivg € F and ugv; € E or
(b) u1v1 €E and ugvg € E.

In case (a), we obtain a cycle C’ longer than C as follows:

+1 +1 +1 1

C':ulu1 ...vl—lyvz_lv;?..uz UQVIV] ..Uy 2 +1

-1 -
TUy uy .. .vg g,

a contradiction.
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In case (b), we obtain a cycle C’ longer than C' as follows:

! 1 -1,..-1 -2 1 1 -1 -1 +1
C =u1v1v1" ceUg TTUL UG v; vzugu;' ceUg YU Ly

*
again a contradiction. |

Fact 3. If D={uj,ug,v1,v2} is a non-interwing set, then G(D) contains no crossing
edges.

Proof. For otherwise, say with uy, ug, v1, vg the cyclic ordering of the vertices of
D on C, we have ujv) € E and uguvg € E, and can obtain a cycle C’ longer than C
as follows:

C' = ulvl'vf'l e 'U2_1y’U1—1U1_2 . .uglugvgvé’”l e ul—lacuZ_1 . .u’li'l.
Again this is a contradiction. [ |

If AUB is independent, then J:=AUB is independent with |JNX|=d(z,C)
and |JNY|=d(y,C). If AUB is dependent, i.e., F=G(AUB) is not edgeless, then
we call two edges of F' parallel if the ends of the two edges do not form an interwing
set (if two edges have a common end, then they are parallel). By the argument
above, all edges in F'=G(AU B) are parallel.

Choose an edge ujvy of F' such that G([uy,v1]) contains no other edges of F'.
This is possible for the following reason: Take an edge ujv] and suppose we have

taken edges ujvy, ..., upvy. If there is an edge uv of F' in G([u},v}]), then take
uj, L1, vy 41 =0, otherwise, stop. Therefore, we obtain a sequence of edges ujv,
u3v3, ..., and this sequence must stop, say at ufvf. Then set uj =uf, v; =v}.

Similarly, choose an edge ugvg of F such that G([vg,u2]) contains no other edges
of F. (Note that we may have uj =ug or v; =v3.)

We first note that if v € (v1,v2) N B and u € [ug,v1) N A, then wv—2 ¢ E. For
otherwise, we get a cycle C' longer than C as follows:

1 1 +1

C'=uw %3 +1 Tlyp 1yt Uy ..uT,

e RN L T L S N T A
a contradiction. Therefore, J := ((v1,v2] N B)~1 U (Juz,u1) N A) is independent.
If |(v1,v2] N B| > d(y,C)/2 and |[ug,u1) N A| > d(z,C)/2, then J satisfies our
requirement. We need the following fact to continue.

Fact 4. Let D1 =B—(v1,vp) and Dyg=A~[ug,u1). Then Dy, Dy consist of isolated
vertices of F.

Proof. We prove the case for D, and the similar proof works for Dy. Suppose that
D1 contains non-isolated vertices of F'. Let v be one of them, that is, vu € E(F)
for some u € A. If v € (u1,v1], then u ¢ [u3,v1) by the choice of ujvy, and thus
{v1,v1,u,v} is a non-interwing set containing crossing edges, a contradiction to
Fact 3. Similarly, if v [va,ug), then {ug,vs,u,v} is a non-interwing set containing
crossing edges, again a contradiction to Fact 3. With the same proof we must have
either u € [ug,u1] or u € (vy,v2). If v € (ug,u1) and u € [ug,u1], then {ug,v9,u,v}
or {v,u,u1,v1} is an interwing set containing two independent edges, depending
on whether u € (v,u1] or u € [ug,v), a contradiction to Fact 2. If, on the other
hand, v € (ug,u1) and u € (v1,ve), then {uj,v1,u,v} is an interwing set containing
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two independent edges, also a contradiction to Fact 2. Therefore, there is no non-
isolated vertices in Dj. 1

By Fact 4, D1 UA and Dy U B are independent. If |(v1,v2] N B| < d(y,C)/2,
then |Di| > d(y,C)/2, and J := D; U A satisfies our requirement. Similarly, if
llug,u1)NA|<d(z,C)/2, then J:=DyUB satisfies our requirement. Notice that in
all cases we have JC N1 (z,C)UN~(z,C)UNT(y,C)UN~(y,C). Thus we have
completed the proof of the lemma. [ ]

Lemma 2. Let (Cy,Hy), (Ca,Hy) be two ancestors of t € X and y€Y; and J;
N*(2,C;)UN~(z,C;)UNT(y,C;)UN~(y,C;) be independent, where i=1, 2. Then
J1UJy is also independent.

Proof. We may assume that (C1,H;) is an ancestor of (Cg,Ha). If our lemma is
false, then one can find a cycle C in H; that is longer than C7, a contradiction. §

Lemma 3. If o*(Q) <6(G)—1, then T(G) has no square vertex.

Proof. Suppose that we have square vertices. Let (§,Gr) and (8,Gs) be two leaves
of T (we may have that Gy =G;) such that we can find z € X be a leaf of G, and
y €Y a leaf of G5. (This can be done as follows. Take a leaf G of T and a leaf
z of G, say z € X. If G, also contains a leaf y € Y, then let G5 =G,. Otherwise,
since G is balanced, there must be a leaf G5 of T' such that G, contains a leaf y&
Y. If G, or G5 consists of only one vertex, we also regard this vertex as a leaf,
for convenience.) Let (Cp,Gq), (C1,G1), ---, (Ck,Gg) be the coramon ancestor of
z and y. Then by Lemma 1 and Lemma 2, H contains an independent set J such
that [JNX| > LSH) and (JnY|> 285 where H=CyuCyU...UCk. Let (Dy, Hy),
..., (Dj,Hj) be all those vertices of T that is an ancestor of z but not an ancestor
of y, and K=D;U...UD;. Then K certainly contains an independent set I such
that |I;NX|>d(z,K). Similarly, let (D], H}), ..., (D}, H}) be all those vertices of
T that is an ancestor of y but not of z, and K’=D{U...UD]. Then K’ contains an
independent set I such that |[I;NY|>d(y,K’). Note that K or K’ may be empty.
We consider two cases.

Case 1: G,=Gs=zy. Then
d(z,H) d(z)-1 S 8(G)—1

|[ITNnX|> = > ,
. 2 2 2

soys dwH) _dw) -1 86 -1
- 2 2 - 2 '

Thus JU{z} contains a balanced independent set of order at least ﬂ%ﬂ—i—is—(-%z_—l—i—
1>6(G), a contradiction.

Case 2: G, =Gs but zy¢ E, or Gr #Gs. In this case, I:==JUI;UI,U{z,y} is an
independent set with property that

d(z, H)

2 - 2

and
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d 1_6G)+1

IIOY|>d(y’H)—|—d( K’)+1> (y)2+ Z ( ;‘1— ,
which implies that I contains a balanced independent set of order §(G)+1, also a
contradiction. 1

4. Proof of Theorem 1

Assume that G is not Hamiltonian. It is easy to see that G is connected but
not a tree. Let T be a cycle-tree of G and A = A(G). Since §(G) > An, we have
o*(@)<In—-1<6(G)—1. By Lemma 3 this implies that T(G) has no square vertex.
However, this contradicts to the following fact.

Fact 5. If T is a cycle-tree of G, then all leaves of T' are square vertices.

Proof. Assume that there exists a leaf that is also a circle vertex, say (Cy,Gj) with
Gr=(A,B;F), where ACX and BCY. Let

(Co,Go) = (C1,G1) = ... — (Ck, Gy)
. k-1
be a path from the root to (Cy,Gg). Then 5 >|A|=|B|=1>2. Let H= |J C;.
i=0
Recall that d(A,Y) > An and d(B,X) > An. This implies that d(A,B) > n—1 and
d(B,A)>Xn—1. So if I<AL, then d(A, H)=d(A,B) > 2% and d(B,H)=d(B,A)>
521‘-. Therefore, N*(AUB, H)UAUB contains a balanced independent set of order
at least An+1, a contradiction. On the other hand, if | > )‘—2@, then

B {4, B0, B}l > 21(n — )
We may assume that |[EN[A, B]|>|EN[4,B]|. Then
|[EN[A,B]| > l(n— )X > In)/2.

So d(A,H) > An/2. Thus N1(A,H)UB contains a balanced independent set of
order at least An+1, also a contradiction. [ |

5. A remark

Consider the following two person’s game on the complete bipartite graph
Ky . Two players, maker and breaker, alternately take previously untaken edges
of Ky, n, one edge per move, with the breaker going first. The game ends when
al]l edges of Kn n have been taken. Then the edges taken by the maker induce a
graph G, where G has the same vertex set as Ky, . The maker’s objective here is
to construct a graph ¢ such that G has as many edge-disjoint Hamiltonian cycles
as possible, and the breaker’s aim is to prevent such an event. One can see [7] for
a similar game on Kp.
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In [10}, we proved that the maker can achieve,3—17n edge-disjoint Hamiltonian
cycles. To prove this result, we made use of the well known weight function method,
which was originated by Erdés and Selfridge [6] and substantially extended by Beck
[1, 2, 3, 4], and the following theorem (8, 9].

Theorem 2. If G is a balanced bipartite graph such that a*(G) <x(G), where x(G)
is the vertex-connectivity of G, then G is Hamiltonian.

If we use Theorem 1 instead of Theorem 2, we can then improve the above
mentioned result to the following (we omit the proof here)

Theorem 3. In the Hamiltonian game on Ky n, the maker can achieve —327n edge-
disjoint Hamiltonian cycles.

(6]

[7
8l

[9]
(10]

[
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