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We give a sufficient condition for biparti te graphs to be Hamiltonian. The condition involves 
the edge-density and balanced independence number of a bipartite graph. 

1. Introduct ion 

All graphs here are simple finite graphs. All undefined terminology can be 
found in [5]. 

Let G = (V,E) be a graph with vertex set V(G)= V and edge set E(G)= E 
and A be a subset of V. We use G(A) to denote the subgraph of G induced by A, 
meaning tha t  G(A) = (A, EA) with EA ---- {uv E E I u, v E A}. If  G(A) contains no 
edges, then A is said to be an independent set. The independence number of G, 
denoted by a (G) ,  is the maximum cardinality of an independent set. 

Let A C_ V. We use G - A  to denote the graph obtained from G by deleting all 
vertices in A and all edges containing at least one vertex of A. For a subgraph H 
of G, G - H = G - V ( H ) .  

Let x E V, A _C V and H a subgraph of G. Define the neighborhood N(x) of 
x, the neighborhood N(A) of A and the relative neighborhood N(A,H) of A with 
respect to a subgraph H by 

N(x) = {y e V; xy e E}, 

N(A) = [_J N(x), 
xCA 

and 

Note tha t  N ( A ) =  N(A,G). 
subgraphs of G. 

N(A, H) = N(A) n V(H). 

We use N(H,K) for N(V(H),K) when H,  K are 
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Define the degree d(x) of x, the degree d(A) of A and the relative degree 
d(A, H) of A with respect to H by 

d(x) --IN(xDI; 
d(A) = IN(A)I, 

and 

d(A, H) = IN(A, H)I. 

Let the minimum degree of G be denoted by 6(G). For A, B C_ V, let [A, B] :--- {ab I 
a#b, aEA, bEB}. 

A bipartite graph G = (V, E) is a graph for which we can parti t ion V -  X U Y 
such that  E __C IX, Y]. In this case we also use the notation G = (X,Y; E).  The 
graph G is called a balanced biparti te graph if IXI = IY[- 

Let C be a cycle of G for which we are given a cyclic orientation. For a vertex u 
denote by u + the out-neighbor of u, that  is, the vertex v with u-*v, and similar by 
u -  the in-neighbor ofu.  Let u -1  = u - ,  u +1 ---u + and u - (k+l )  = (u -k)  - ,  u+(k+l)  -- 

(u+k) +. If  A is a subset of V(C), then we set A + = A  +1 = { u  + [ uEA}, and A -  = 
A -1  = { u -  ] u E A}. We define A -k and A +k similarly. If u, v are two vertices of 
C, and P=uvl.. .VaV is the directed pa th  from u to v in C, then we set 

[/Z, V] : {/ t ,  V l , . . .  , Va, V} 

(u, ~'1 = {~1, ~ 2 , . . . ,  ~,~, ~} 
[~, ~) = (u,  ~ 1 , . . . ,  ~o} 
(~,,~) = {~i ,  ~ 2 , . . . ,  ~ } .  

For later use, we need the following simple fact. 

Fact 1. Let C = (V, E) be a connected non-Hamittonian graph, C a longest cycle of 
G, to which we assign a cyclic orientation, and H a component of G - V ( C ) .  Let 
N + (H, C):= (N(H, C)) +, and N -  (H, C):-- (N(H, C))-. Then 

(1) [V(+H),N+(H,C)]G=O, [V(H),N-(H,C)]G=r 
(2) N (H, C), and N-(H,  C) ~e both independent. 
(3) If X C_ V(H) is independent, then XUN+(H,C)  and X U N - ( H , C )  are 

both independent. 

Proof. Statement  (3) follows from (1) and (2). Statement (1) is trivial, for 
otherwise, we can easily obtain a cycle longer than C. 

To prove (2), say x, y E N+(H,C) with xy E E. Let u, v E V(H) such that  
ux-  EE, vy-  EE and P a u - v  path in H.  Then x - P y - . . . x y y  +1 . . .x  -2 is a cycle 
longer than C, a contradiction. I 

Let G = (X, Y; E)  be a balanced biparti te graph with [X[--n.  An independent 
vertex set A is said to be balanced if [IAnXI-IA•Y[I  _< 1. We define the 
balanced independence number ~* (G) to be the maximum cardinality of a balanced 
independent vertex set. This quantity is much more sensitive than the ordinary 
independence number for biparti te graphs. For example, the complete bipart i te  
graph Kn,n has balanced independence number 1, and the graph consisting of 
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n independent edges has balanced independence number n, although both have 
independence number n. 

For ACX and BC_Y, let A = X - A  and B=Y-B .  We define the edge-density 
of G by 

{ IEn{[A'B]U[A'B]}[ A C X ,  BCY,  X U Y ~ A U B ~ O }  
A(G) = min (IAI + IBI) n -  2IAI IBI . . . .  

Set A r  and B = 0 ,  we have IEn[A,YII >_  (G)fAI . Similarly, for B r  
Izn [B, Nil>_ a(C)tBI . Therefore, we have g(A,Y) >  (C)n and d(B,X) >_ a(C)n. 
Especially, we have 5(G)>_)~(G)n. 

Our main result is the following 

Theorem 1. / f G  is a balanced bipartite graph such that a*(G)< n A ( G ) -  1, then 
G is Hamiltonian. 

2. A cycle-tree of a graph 

We define a cycle-tree T(G) for a graph G in this section. Let G be a connected 
graph. If G is a tree, then the cycle-tree of G is a vertex represented by a square, 
and we label this vertex as (l~, G), meaning that  the empty set is a longest cycle of 
G. If G is Hamiltonian and C is a Hamiltonian cycle of G, then the cycle-tree of G 
is a vertex represented by a circle, and we label the vertex as (C,G), meaning that  
C is a longest cycle of G. Assuming that  we are able to construct a cycle-tree for 
all connected graphs of order less than n, we are going to construct a cycle-tree of 
a non-Hamiltonian graph G of order n as follows. Let C be a longest cycle of G, 
and G1, G2, . . . ,  Gr be the components of G-C, each of them has a cycle-tree, say 
Gi has a cycle-tree Ti. Then a cycle-tree T(G) of G is obtained by adding a circle 
vertex, labeled as (C,G), to T1 U.. .  UTr, and adding directed edges from (C,G) to 
the r roots of T1, T2, . . . ,  Tr. Therefore, a cycle-tree of G is a directed tree. 

Let T be a cycle-tree of G. Then each non-leaf vertex of T must be a circle 
vertex. The leaves of T can be either a circle vertex, or a square vertex. 

Let (C1,G1) --+ ( C 2 , G 2 )  ---+ . . . - - - +  (Ck,Gk) be a directed pa th  in T, where 
(Ck,Gk) is a leaf of T. Then for l < i < k -  1, we have 

(1) C / i s  a longest cycle of Gi, 
(2) Gi+l is a component  of Gi- Q, 
(3) Jvlj>lc21>.. >lckl, and 
(4) V ( G 1 )  D V(G2 )  D . . .  D V(Gk). 

Furthermore,  if C k = @, then G k is a tree; if Ck ~ 9, then Gk is Hamiltonian 
(with a Hamiltonian cycle Ck). 

Let (Ci,Gi) and (Cj,Gj) be two vertices of T. If there is a directed pa th  
P from (Ci,Gi) to (C,Gj), then (C,G.) is called a descendant of (Ci,Gi), and 
(c ,ci) J : an ancestor of (Cj,Gi). If  xE V(Gj), we also call (Ci,Gi) an ancestor of 

k k 
x. If  H =  U Ci, then N+(K,H):-- [.J N+(K, Ci), and N-(K,H) can be defined 

i=1 i----1 
similarly. We list the following simple fact as 
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Propos i t ion  1. Let  P = Xl X2 . . . x  k be a directed p a t h  o f T ,  where xi = (Ci,Gi),  
k-1  

1 < i < k, and H : U c i .  Then N + ( G k , H )  and N - ( G k , H )  are both indepen- 
i=l 

dent, and [ V ( G k ) , N + ( G k , H )  U N - ( G k , H ) ]  = ~. In particular, we have oz(G1) 
IN +(Gk,H)[+a(Gk). 

Let T be a cycle-tree of G. If  T has no square vertex, then G has a 2-factor. 
If  T has a square vertex, say (0,Gk),  and let x be a leaf of Gk, then a (G)  _> d(x), 
so we have 

Propos i t ion  2. I r a ( G )  < 6 ( G ) -  1, then G has a 2-factor. 

3. Some Lemmas 

Let G be a connected graph tha t  is not  a tree nor Hamiltonian,  and T a cycle- 
tree of G. Let C be a cycle drawn on the plain in convex position. If  x, y E V(C)  
and xy  E E ( G ) - E ( C ) ,  then this edge is drawn as a straight  line segment connect ing 
x and y. Such a drawing is called a standard drawing. In  the s tandard  drawing, 
two edges of G(V(C) )  are said to  be crossing if they meet  in a point  other  than  
their  ends. In  the proof  of the following lemma, all cycles are drawn standard.  

Lemma 1. Let  x E  X and yE Y be two vertices of  G and (C,H)  an ancestor of x and 

y. Then C contains an independent set J such that I J M X  I >_ ~ and IJMYI  >_ 

d(y,C) Indeed, we have tha t  
2 �9 

J C_ N + ( x ,  C) U N - ( x ,  C) U N+(y ,  C) U N - ( y ,  C). 

Proof. We have [N(x ,C) l=d(x ,C ) and [N(y,C)[=d(y,C) .  Let 

A = g + ( x ,  C), 

B = N +(y, C). 

We use u ' s  for vertices of A, and v 's  for vertices of B. If  vl E (u 1,u2) , u 2 E (Vl,V2), 
then D = { u l , u 2 , v l , v 2 }  is said to be an interwing set, otherwise, we call it a non- 
interwing set. 

Fact 2. f f  D is an interwing set, then C(D)  does not contain two independent edges. 

Proof. We prove this fact by contradiction. Suppose we have either 
(a) ulv2 E E and u2vl E E or 
(b) UlVl e E  and u2v2EE.  

In  case (a), we obtain  a cycle C I longer than  C as follows: 

C' Ul l t t  1 -1 - - 1 - 2  +1 +1 U21Xlzl lUl  2 +1 = . . . .  .. v 1 YV 2 v 2 �9 u 2 U2VlV 1 �9 v 2 v2, 

a contradict ion.  
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In case (b), we obtain a cycle C I longer than C as follows: 

C '  -~  U l V l V ~ l  1 .  . u 2 1 x u l l u l  2 . v W 2 1 v 2 u 2 u + 2  1 - 1  - 1  . . . . . .  v 2 Yv I . . . u  +1, 

again a contradiction. I 

Fact 8. I f  D = {Ul, u2, v l ,  v 2 }  is ~t non-interwing set, then G(D) contains no crossing 
edges. 

Proof. For otherwise, say with Ul, u2, vl ,  v2 the cyclic ordering of the vertices of 
D on C, we have/ZlV 1 E E and u2v 2 E E, and can obtain a cycle C t longer than C 
as follows: 

C ! UlVlVlH-1 --1 --1 -2  +1 +1 . . u -~ lxu~ l  u+l = . . .  v 2 Y V  1 v 1 � 9  u 2 u 2 v 2 v  2 . . . . .  

Again this is a contradiction. I 

If A U B  is independent, then J : = A U B  is independent with IJMXI = d (x ,C)  
and I J A Y I = d ( y , C ) .  If  A U B  is dependent, i.e., F = G ( A U B )  is not edgeless, then 
we call two edges of F parallel if the ends of the two edges do not form an interwing 
set (if two edges have a common end, then they are parallel). By the argument 
above, all edges in F = G ( A U B )  are parallel. 

Choose an edge ulv l  of F such tha t  G([ul,vl]) contains no other edges of F.  
This is possible for the following reason: Take an edge UlV 1 .  * and suppose we have 

, "~* V* taken edgesulvl,* * ... u*v*k k" If there is an e d g e u v  o f f i n G ( [  k, k]), then take 
Uk+ 1 --~ u, Vk+ 1 = v, otherwise, stop. Therefore, we obtain a sequence of edges u l*v 1., 

�9 * * * Then set U l = U *  u 2 v 2 ,  . . . ,  and this sequence must stop, say at utv  t . t ,  Vl = v~. 
Similarly, choose an edge u2v 2 of F such that  G([v2,u2]) contains no other edges 
of F.  (Note tha t  we may have Ul =u2  or Vl =v2.) 

We first note tha t  if v E (Vl,V2] A B  and u E [u2,vl) AA, then uv -2  ~ E. For 
otherwise, we get a cycle C r longer than C as follows: 

C '  = u v - 2 v - 3  . . . V l U l u + l  l . . . v l l y v - l v v + l  . . . u - l x u l t  . .  . u + 1 ,  

a contradiction. Therefore, J := ((Vl,V2] A B) -1 U ([u2,ul) A A) is independent. 
If  I(vl,v2] AS]  2 d(y ,C) /2  and I [u2,ul )MA I > d(x ,C) /2 ,  then g satisfies our 
requirement. We need the following fact to continue. 

Fact 4. Let  D1 = B -  (vl , v2] and D 2 = A -  [u2, ul ). Then D1, D2 consist of isolated 
vertices of F. 

Proof. We prove the case for D1, and the similar proof works for D2. Suppose tha t  
D1 contains non-isolated vertices of F.  Let v be one of them, that  is, vu E E ( F )  
for some u E A. If  v E (Ul,Vl], then u ~ [Ul,Vl) by the choice of UlVl, and thus 
{Ul,Vl,U,v ) is a non-interwing set containing crossing edges, a contradiction to 
Fact 3. Similarly, if vE [v2,u2), then {u2,v2,u,v } is  a non-interwing set containing 
crossing edges, again a contradiction to Fact 3. With the same proof we must have 
either u E [u2,ul] or u E (Vl,V2). If  v E (u2,ul)  and u E [u2,ul], then {u2,v2,u,v } 
or {v,u, Ul,Vl} is an interwing set containing two independent edges, depending 
on whether u E (v,ul] or u E [u2,v), a contradiction to Fact 2. If, on the other 
hand, v E (u2,ul)  and uE  (vl,v2), then {Ul,Vl,U,V} is an interwing set containing 
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two independent edges, also a contradiction to Fact 2. Therefore, there is no non- 
isolated vertices in D1. | 

By Fact 4, D1 U A and D2 U B are independent. If ](vl,v2] N B] < d(y, C)/2, 
then [DI[ > d(y,C)/2, and J := D1 U A satisfies our requirement. Similarly, if 
I[u2, ul) N A[ < d(x, C)/2, then d := D2 U B satisfies our requirement. Notice that in 
all cases we have J c_ N+(x, C) U N -  (x, C) U N+(y ,  C) U N -  (y, C). Thus we have 
completed the proof of the lemma. | 

Lemma 2. Let (C1,H1), (C2,H2) be two ancestors of x �9 X and y ~ Y; and Ji C_ 
N + (x, Ci)U N -  (x, Ci)UN q- (y, Ci)U N -  (y, Ci) be independent, where i = 1, 2. Then 
J1 U J2 is also independent. 

Proof. We may assume that  (CI,H1) is an ancestor of (C2,H2). If our lemma is 
false, then one can find a cycle C in H1 that is longer than C], a contradiction. I 

Lemma 3. If  a* (G)< 6(G)-  1, then T(G) has no square vertex. 

Proof. Suppose that we have square vertices. Let (@,Gr) and ((~,Gs) be two leaves 
of T (we may have that Gr = G s )  such that we can find x E X  be a leaf of Gr and 
y 6 Y a leaf of Gs. (This can be done as follows. Take a leaf Gr of T and a leaf 
x of Gr, say x E X. If Gr also contains a leaf y E Y, then let Gs = Gr. Otherwise, 
since G is balanced, there must be a leaf Gs of T such that Gs contains a leaf y E 
Y. If Gr or Gs consists of only one vertex, we also regard this vertex as a leaf, 
for convenience.) Let (Co,Go), (C1,G1), . . . ,  (Ck,Gk) be the common ancestor of 
x and y. Then by Lemma 1 and Lemma 2, H contains an independent set J such 

that  IJNX I >>_ ~ and IJNYI >_ ~ ,  where H=CoUClU...UCk. Let (D1,H1), 
. . . ,  (Dj,Hj)  be all those vertices of T that is an ancestor of x but not an ancestor 
of y, and K = D l U . . . U D j .  Then K certainly contains an independent set Ix such 
that  IIxnXI >d(x,K).  Similarly, let (D~I,H[), ..., (D~,H~) be all those vertices of 
T that  is an ancestor of y but not of x, and Kr=D~U...UD~. Then K l contains an 
independent set Iy such that IIynYI 2d(y ,K') .  Note that K or K '  may be empty. 
We consider two cases. 

Case 1: Gr=Gs=xy .  Then 

I J N X  I > d(x,H) _ d(x) - 1 > 6(G) - 1 
- 2 2 - 2 ' 

d(y, H______~) _ d(y) - 1 > ~(G) - 1 
IJ n Y[ 

- 2 2 - 2 

Thus JUtx} contains a balanced independent set of order at least 6 G 2 - - ( ~ + ~ +  
1>  6(G), a contradiction. 

Case 2: Gr=Gs but x y ~ E ,  or GrOGs. In this case, I : = d U G U I y U { x , y }  is an 
independent set with property that 

l lN  X[ > d(x,H) d(x) - 1 d(x) + 1 > 6(G) + 1 
_ + + 1 >_ + 1 - _ 2 

and 
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]I N YI > 3H-------~jd(Y' + d(y, K') + 1 > l*d(y) _________~_ > 5(G) + 1 
- 2 - 2 - 2 

which implies that  I contains a balanced independent set of order 5(G)+ 1, also a 
contradiction. | 

4. P roof  of Theorem 1 

Assume tha t  G is not Hamiltonian. I t  is easy to see that  G is connected but 
not a tree. Let T be a cycle-tree of G and A = A(G). Since 6(G) -> An, we have 
a* ( G ) ~  A n - 1  ~ 5 (G) -1 .  By Lemma 3 this implies that  T(G) has no square vertex. 
However, this contradicts to the following fact. 

Fact 5. If T is a cycle-tree of G, then alI leaves o f t  are square vertices. 

Proof. Assume tha t  there exists a leaf tha t  is also a circle vertex, say (Ck, Gk) with 
Gk=(A,B;F) ,  where AC_X and B C Y .  Let 

(Co, co) (cl, cl) (ok, ak) 
�9 k - 1  

be a pa th  from the root to (Ck,Gk). Then ~ -> [A I = [B] =l >2 .  Let H =  [.J Ci. 
i = 0  

Recall tha t  d(A,Y) -> An and d(B,X) -> An. This implies that  d(A,-B) -> A n - l  and 
<An d(B,A) -> An - 1. So if 1 _ 2 , then d(A, H) = d(A,B)  -> ~ and d(B, H) = d(B,-A) > 

An -2-" Therefore, N + (A U B, H)  U A U B contains a balanced independent set of order 

at least A n + l ,  a contradiction. On the other hand, if l >  ~ ,  then 

l e a  {[A,B] U [A, S]} I -> 21(n - l )A.  

We may assume tha t  IEn[A,B]]  ~ IEn~,B]I .  Then 

iE n [A,B]I -> l(n - l)A -> lnA/2. 

So d(A,H) > An~2. Thus N + ( A , H ) U B  contains a balanced independent set of 
order at least An+ 1, also a contradiction. | 

5. A remark  

Consider the following two person's game on the complete bipart i te graph 
Kn,n. Two players, maker and breaker, alternately take previously untaken edges 
of Kn,n, one edge per  move, with the breaker going first. The game ends when 
all edges of Kn,n have been taken. Then the edges taken by the maker induce a 
graph G, where G has the same vertex set as Kn,n. The maker 's  objective here is 
to construct a graph G such tha t  G has as many edge-disjoint Hamiltonian cycles 
as possible, and the breaker 's  aim is to prevent such an event. One can see [7] for 
a similar game on Kn. 
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In  [10], we proved tha t  the maker can achieve  ~7 n edge-disjoint Hamil tonian 
cycles. To prove this result, we made use of the well known weight function method,  
which was originated by ErdSs and Selfridge [6] and substantial ly extended by Beck 
[1, 2, 3, 4], and the following theorem [8, 9]. 

Theo rem 2. I f  G is a balanced bipartite graph such that a *(G) ~_n(G), where n(G) 
is the vertex-connectivity of  C, then G is Hamiltonian. 

If  we use Theorem 1 instead of Theorem 2, we can then improve the above 
ment ioned result to  the following (we omit  the proof  here) 

T heorem 3. In the Hamiltonian game on tr(n,n, the maker  can achieve 2 n edge- 
disjoint Hamiltonian cycles. 
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