TOUGH GRAPHS AND HAMILTONIAN CIRCUITS

V. CHVÁTAL
Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada

Received 11 August 1972*

Abstract

The toughness of a graph G is defined as the largest real number t such that deletion of any s points from G results in a graph which is either connected or else has at most s / t components. Clearly, every hamiltonian graph is 1 -tough. Conversely, we conjecture that for some t_{0}, every $\boldsymbol{t}_{\mathbf{0}}$-tough graph is hamiltonian. Since a square of a k-connected graph is always k tough, a proof of this conjecture with $t_{0}=2$ would imply Fleischner's theorem (the square of a block is hamiltonian). We construct 29 infinite family of (3/2)-tough nonhamiltonian graphs.

0. Introduction

In this paper, we introduce a new invariant for graph:. It measures in a simple way how tightly various pieces of a graph hold together; therefore we call it toughness. Our central point is to indicate the importance of toughness for the existence of hamiltonian circuits. Every hamiltonian graph is necessarily 1 -tough. On the other hand, we conjecture that every graph that is more than $\frac{3}{2}$-tough is necessarily hamiltonian. This conjecture, if true, would strengthen recent results of Fleischner concerning hamiltonian properties of squares of blocks.

I am indebted to Professor Jack Edmonds and Professor C. St. J.A. Nash-Williams for stimulating discussions and constant encouragement during my work on this peper.

We follow Harary's nutation and terminology [11] with minor modifications. First of all, by a subgraph we always mean a spanning subgraph. Accordingly, $G \subset H$ means that G is a sparning sujgraph of H. As in [11], $p(G)$ denotes the number of points, $k(G)$ the n amber of com-

[^0]ponents, $\kappa(G)$ the point-connectivity, $\lambda(G)$ the line-connectivity and $\beta_{0}(G)$ the point-independence number of a graph G. By a point-cutset (resp. line-cutset) in G we mean a set S of points (resp. a set X of lines) of G whose removal results in a disconnected graph, i.e., for which $k(G-S)>1($ resp. $k(G-X)>1)$.

1. Toughness

Let G je a graph and t a reai number such that the implication $k(G-S)>1 \Rightarrow|S| \geqslant t \cdot k(G-S)$ holds for each set S of points of G. Thien G will be said to be t-tough. Obviously, a t-tough graph is s-tough for all $s<t$. If G is not complete, then there is a largest t such that G is t-tough; this t will be called the toughness of G and denoted by $t(G)$. On the other hand, a complete graph contains no point-cutset and so it is t-tough for every t. Accordingly, we set $t\left(K_{n}\right)=+\infty$ for every n.
Adopting the convention $\min \emptyset=+\infty$, we can write

$$
\begin{equation*}
t(G)=\min |S| / k(G-S), \tag{1}
\end{equation*}
$$

where S ranges over all point-cutsets of G.
Using the obvious implication $G \subset H \Rightarrow k(G) \geqslant k(H)$ and the definition of toughness we arrive at:

Proposition 1.1. $G \subset H \Rightarrow t(G) \leqslant t(H)$.

T ; toughness is a nondecreasing invariant whose values range from 2ero 2. infinity. A graph G is disconnected if and only if $t(G)=0 ; G$ is complete if and only if $t(G)=+\infty$.

For every point-cutset S of G, we have $|S| \geqslant \kappa(G)$ and $k(G-S) \leqslant$ $\beta_{0}(G)$. Using (1), we readily obtain:

Proposition 1.2. $t \geqslant \kappa / \beta_{0}$.
If G is not complete (i.e., $\kappa \leqslant p(G)-2$), then G has at least one pointcutset. Substituting the smallest point-cutset S of G into the right-hand side of (1), we derive:

Proposition 1.3. If G is not complete, then $t \leqslant \frac{1}{2} \kappa$.
Similarly, taking S to be the comple.ment of a largest independent set of points of G, we deduce:

Proposition 1.4. If G is not complete, then $t \leqslant\left(p-\beta_{0}\right) / \beta_{0}$.
If $G=K_{m, n}$ with $m \leqslant n$, then obviously $\kappa(G)=m, \beta_{0}(G)=n$ and $p(G)=m+n$. Combining Propositions 1.2 and 1.4, we obtain:

Proposition 1.5. $m \leqslant n \Rightarrow t\left(K_{m, n}\right)=m / n$.
Hence the equality in Propositions 1.2, 1.4 can be attained. In order to show that the equality in Proposition 1.3 can be attained a well, we shall prove:

Theorem 1.6. $t\left(K_{m} \times K_{n}\right)=\frac{1}{2}(m+n)-1 \quad(m, n \geqslant 2)$.
Proof. Let S be a point-cutset of $G=K_{m} \times K_{n}$ minimizing $|S| / k(G-S)$; let us set $k=k(G-S)$. Then S is necessarily minimal with respect to the property $k(G-S)=k$. The point-set of C will be written as $V \times W$ with $|V|=m,|W|=n$. From the minimality of S, we easily conclude that the point-set of the $j^{\text {th }}$ component of $G-S$ is $V_{i} \times W_{j}$ with $V_{j} \subset V$ and $W_{j} \subset W$. Moreover, $V_{i} \cap V_{j}=\emptyset$ and $W_{i}^{\prime} \cap W_{j} \div \emptyset$ whenever $i \neq j$. Thus, we have

$$
\begin{equation*}
|S|=m n-\sum_{i=1}^{k} m_{i} i_{i} \tag{2}
\end{equation*}
$$

where $m_{i}=\left|V_{i}\right|$ and $n_{i}=\left|W_{i}\right|$ for each $i=1,2, \ldots, k$. The right-hand side of (2) is minimized by $m_{1}=m_{2}=\ldots=m_{k-1}=1, m_{k}=m-k+1$ and $n_{1}=n_{2}=\ldots=n_{k-1}=1, n_{k}=n-k+1$. Hence

$$
\begin{aligned}
|S| & \geqslant r n-(k-1)-(m-k+1)(n-k+1) \\
& =(k-1)(m+n-k),
\end{aligned}
$$

and so

$$
t(G)=|S| / k(G-S) \geqslant(k-1)(m+n-k) / k \geqslant \frac{1}{2}(m+n-2) .
$$

The opposite inequality follows from Proposition 1.3 as G is tegular of degree $m+n-2$.

Propositions 1.2 and 1.3 indicate a relationship between toughness and connectivity. Another indication of this relationship is given by:

Theorem 1.7. $t\left(G^{2}\right) \geqslant \kappa(G)$.
Proof. Let G be a graph with connectivity κ and let S be a point-cutset in G^{2}. Let $V_{1}, V_{2}, \ldots, V_{m}$ be the point-sets of components of $G^{2}-S$. For each point $u \in S$ and each $i=1,2, \ldots, m$, we set $u \in S_{i}$ if and only if there is a point $v \in V_{i}$ adjacent to u in G. Obviously, each S_{i} is a pointcutset of G (it separates V_{i} from the rest of G). Hence

$$
\begin{equation*}
\left|S_{i}\right| \geqslant \kappa \text { for each } i=1,2, \ldots, m \tag{3}
\end{equation*}
$$

Moreover, each $u \in S$ belongs to at most one S_{i}. Otherwise there would be points $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$ with $i \neq j$ such that u is adjacent in G to both v_{i} and v_{j}. Consequently, the points v_{i} and v_{j} would be adjacent in \mathcal{G}^{2}, contradicting the fact that they belong to distinct components of $G^{2}-S$. Thus we have

$$
\begin{equation*}
i \neq j \Rightarrow S_{i} \cap S_{j}=\emptyset \tag{4}
\end{equation*}
$$

Combining (3) and (4) we have

$$
|S| \geqslant \sum_{i=1}^{m}\left|S_{i}\right| \geqslant \kappa m=\kappa k\left(G^{2}-S\right)
$$

Since S was an arbitrary set with $k\left(G^{2}-S\right)>1, G^{2}$ is κ-tough, which is the desired result.

Corollary 1.8. If m is a positive integer and $n=2 m$, then $t\left(G^{n}\right) \geqslant \frac{1}{2} n k(G)$.
Proof. We shall proceed by induction on m. The case $m=1$ is equivalent to Theorem 1.7. Next, if $t\left(G^{n}\right)=+\infty$, then $t\left(G^{2 n}\right)=+\infty$. If $t\left(G^{n}\right)<+\infty$,
then by Theorem 1.7 and Proposition 1.3 we have

$$
t\left(G^{2 n}\right) \geqslant \kappa\left(G^{n}\right) \geqslant 2 t\left(G^{n}\right),
$$

which is the induction step from m to $m+1$.
Let us note that the inequality $t\left(G^{n}\right) \geqslant \frac{1}{2} n \kappa(G)$ does not hold in general. The graph G in Fig. 1 is 1 -connected but its cube $G^{3}=K_{4}+\bar{K}_{3}$ is not $\frac{3}{2}$-tough. Actualiy, $\beta_{0}\left(G^{3}\right)=3$; using Proposition 1.4, we conclude that $t\left(G^{3}\right) \leqslant \frac{4}{3}$.

Fig. 1.

2. Toughness and hamiltonian graphs

It is easy to see that every cycle is 1-tough. This observation and Proposition 1.1 imply

Proposition 2.1. Every hamiltonian graph is 1-tough.
Unfortunately, the converse of Proposition 2.1 holds for graphs with at most six points only. The nonhamiltonian graph H in Fig. 2 is 1 -tough. Let us note that H is a square of the graph G in Fig. 1; as $\kappa(G)=1$, Theorem 1.6 yields $t(H) \geqslant 1$. Nevertheless, the graphs which are not 1 tough do play a special role among nonhamiltonian graphs. Let us say that a graph G is degree-majorized by a graph H if there is a one-to one correspondence f between the points of G and those of H such that, for

Fig. 2.
each point u of G, the degree of u in G does not exceed the degree of $f(u)$ in H. Recently, I proved that every nonhamiltonian graph is degreemajorized by a graph which is not 1 -tough [5] (in fact, by ($\bar{K}_{m} \cup K_{p-2 m}$) $+K_{m}$ with a suitable $m<\frac{1}{2} p$). This is a strengthening of previous results due to Dirac [7], Posa [14] and Bondy [1].

Now let us return to our Proposition 2.1. Even though its converse does not hold, one may wonder what additional conditions placed upon a 1 -tough graph G would imply the existence of a hamiltonian cycle in G. As in our next conjecture, such conditions may have the flavour of Ramsey's theorem.

Conjecture 2.2. If G is 1 -tcugh, then either G is hamiltonian or its complement \bar{G} contains the graph F in Fig. 3.

Fig. 3.

If this conjecture is true, then it is best possible in the sense that a replacement of F by any other graph F^{\prime} results in a conjecture which is either weaker or false. To show this, it is sufficient to observe that the complement \bar{H} of the nonhamiltoniar. 1-tough graph H in Fig. 2 consists of the graph \bar{F} with an added isolated point.

As every 1-tough graph is 2-connected (see Proposition 1.3), our Proposition 2.1 is a strengthening of the obvious implication.

$$
\begin{equation*}
G \text { is hamiltonian } \Rightarrow \kappa(G) \geqslant 2 . \tag{5}
\end{equation*}
$$

Even a weakened converse of (5), i.e. the implication

$$
\kappa(G) \geqslant \kappa_{0} \Rightarrow G \text { is hamiltonian },
$$

does not hoid. Indeed, the complete bipartite graphs $K_{m n}$ with $m<n$ are m-connected but not 1 -tough (and therefore not hamiltonian) - see Proposition 1.5. However, it may well be that such a weakened converse of Proposition 2.1 holds.

Conjecture 2.3. There exists t_{0} such that every t_{0}-tough graph is hamiltonian.

It was conjectured independently by Nash-Williams [12] and Plummer [11, p. 69] that the square of every block (i.e., 2-connected graph) is hamiltonian. This has been proved only recently by Fleischner [9].

Theorem 1.7 implies that the square of every block is 2 -tough. Thus a proof of Conjecture 2.3 with $t_{0}=2$ would yield a strengthening of Fleischner's theorem. Actually, to strengthen Fleischner's theorern, it would suffice to prove the slightly weaker conjecture stated below. To formulate this one, we need the notion of a neighborhood-connected graph. This is a graph G such that the neighborhood of each point of G induces a connected subgraph of G. It is easy to see that the square of every graph is neighborhood-connected.

Conjecture 2.4. Every 2-tough neighborhood-connected graph is hamiltonian.

In Section 5, we shall construct $\frac{3}{2}$-toug $: \mathrm{i}$ nt $\mathrm{n}:$ itonian graphs. The strongest form of Conjecture 2.3 for which I 10 know any counterexample is the following:

Conjecture 2.5. Every t-tough graph with $:>{ }^{3}$ is hamiltonian.
This conjecture is certainly valid for planar griphs. Indsed, eyery t tough graph with $t>\frac{3}{2}$ is 4 -connected (Proposition 1.3) and by Tutte's theorem [16], every 4 -connected planar graph is namiltonian. By the theorem of Watkins and N esner [17], every t-totigh graph with $t>1$ is 3 -cyclable (that is, every three points lie on a scinmon cycle).

Recently, it has been proved that every graph with $\kappa \geqslant \beta_{0}$ is hamiltonian [6]. Propositions 2.1 and 1.2 show how to relate this theorem to our concept of toughness. By Proposition 1.2, ail graj hs satisfy either $\kappa / \beta_{0} \leqslant t<1$ or $\kappa / \beta_{0}<1 \leqslant t$ or $1 \leqslant \kappa / \beta_{0} \leqslant t$. By Proposition 2.1 , graphs of the first kind are nonhamiltonian and, by the result of [6], graphs of the third kind are hamiltonian.

There may also be a relation between toughness and the concept of pancyclic graphs (i.e., graphs containing cycles of every length l, $3 \leqslant l \leqslant p$) introduced and studied in [2]. Actually, one can make

Conjecture 2.0. There exists t_{0} such that every t_{0}-tough graph is pancyclic.

3. Toughness and k-factors

Conjecture 3.1. Let G be a graph with p vertices and let k be a positive integer such that G is k-tough and $k p$ is even. Then G has $a k$-factor.
t follows from Tutte's matching theorem [15] that Conjecture 3.1 is valid with $k=1$.

If Conjecture 2.5 is true, then every graph that is more than $\frac{3}{2}$-tough has a 2 -factor. Actually, I even do not know any counterexample to the following:

Conjecture 3.2. Every $\frac{3}{2}$-tough graph has a 2 -factor.

If this conjecture is true, then it is certainly the best possible as the following set of examples shows.

Theorem 3.3. Given any $t<\frac{3}{2}$, there is a t-tough graph having ro 2 -factor.
Proof. Let $t<\frac{3}{2}$ be given. Then there is a positive integer n such that $3 n /(2 n+1)>t$. Take pairwise disjoint sets $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, T=$ $\left\{t_{1}, t_{2}, \ldots, t_{2 n+1}\right\}, R=\left\{r_{1}, r_{2}, \ldots, r_{2 n+1}\right\}$, join each s_{i} to all the other points and each r_{i} to every other r_{j} as well as to the point t_{i} with the same subscript i. Call the resulting graph H. (If $n=1$, we obtain the graph H in Fig. 2.)

Let W be a point-cutset in H which minimizes $|W| / k(H-W)$. Let $k=k\left(H-W^{W}\right)$ and $m=|W \cap R|$. Obviously: W is a minimal set whose removal from H results in a graph with k components. As W is a cutset, we have $S=W$ and $m \geqslant 1$. From the minimality of W we then easily conclude that $T \cap W=\emptyset$ and $m \leqslant 2 n$. Then we have $\left|W^{\prime}\right|=n+m$ and $k(H-W)=m+1$. Hence

$$
t(H)=\frac{|W|}{k\left(H-W^{\prime}\right)}=\min _{1 \leqslant m \leqslant 2 n} \frac{n+m}{m+1}=\frac{3 n}{2 n+1}>t
$$

It is straightforward to see that H has no 2-factor. Indeed, let us assume the contrary, i.e., let $F \subset H$ be regular of degree 2 . Let us denote by X the set of lines of F having at least one endpoint in T. Since T is independent, we have $|X|=2|T|$. On the other hand, there are at most $2|S|$ lines in X having one endpoint in S and at most $|R|$ lines in X having one endpoint in R. Thus

$$
4 n+2=2|T|=|X| \leqslant 2|S|+|R|=4 n+1
$$

which is a contradiction.

4. Line-toughness

Looking at our definition of toughness from a merely formal point of view, one could wonder why we did not define a line-toug ness $t^{*}(G)$ of G by

$$
t^{*}(G)=\min \{|X| / k(G-X)\}
$$

where X ranges over all the line-cutsets of G. The answer is given by the following theorem; line-toughness is exactly one half of line-connectivity.

Theorem 4.1. $t^{*}=\frac{1}{2} \lambda$.
Proof. Let G be a graph with line-connectivity λ. Then there is a linecutset X_{0}^{r} of G with $\left|X_{0}\right|=\lambda$ and we have

$$
t^{*}(G) \leqslant\left|X_{0}\right| / k\left(G-X_{0}\right) \leqslant \frac{1}{2} \lambda .
$$

On the other hand, let X be a line-cutset of G minimizing $|X| / k(G-X)$. Let the components of $G-X$ be $H_{1}, H_{2}, \ldots, H_{k}$. For each $i=1,2, \ldots, k$, let us denote by X_{j} the set of lines in X having an endpoint in H_{i}. Obviously, each X_{i} is a line-cutset of G and so we have $\left|X_{i}\right| \geqslant \lambda$ for each $i=1,2, \ldots, k$.
Moreover, X is a minimal line-cutset of G whose removal results in a graph with k csmponents. Hence no line in X has both endpoints in the same H_{i} and so we have

$$
2|X|=\sum_{i=1}^{k}\left|X_{i}\right| \geqslant \lambda k
$$

or

$$
t^{*}(G)=|X| / k \geqslant \frac{1}{2} \lambda
$$

5. Toughness of inflations

Let G be an arbitrary graph. By the inflation G^{*} of G we mean the graph whose points are all ordered pairs (u, x), where x is a line of G and u is an endpoint of x; two points of G^{*} are adjacent if they differ in exactly one coordinate.

Theorem 5.1 Let Gi be an arbitrary graph without isolated points and G^{*} its inflation. If $G \neq K_{2}$, then $t\left(G^{*}\right)=\frac{1}{2} \lambda(G)$ and $\kappa\left(G^{*}\right)=\lambda\left(G^{*}\right)=\lambda(G)$,
Proof. Let S be a point-cutset of G^{*} minimizing $|S| / k\left(G^{*}-S\right)$; set $k=k\left(G^{*}-S\right)$. Obviously, S is a minimal set whose removal from G^{*}
yields a graph with at least k components. From this we easily conclude that for each line x of G, S contains at most one point (u, x) of G^{*}. Denoting by X the set of all the lines x of G with $(u, x) \in S$ for some u, we then have $|X|=|S|$. If two points $(u, x),(v, y)$ of G^{*} belong to distinct components of $G^{*}-S$, then necessarily $u \neq v$ and u, v belong to distinct components of $G-X$. Hence $k(G-X) \geqslant k\left(G^{*}-S\right)$ and Theorem 4.1 implies

$$
\begin{equation*}
t\left(G^{*}\right)=|S| / k\left(G^{*}-S\right) \geqslant|X| / k(G-X) \geqslant t^{*}(G)=\frac{1}{2} \lambda(G) \tag{6}
\end{equation*}
$$

Next, if $G \neq K_{2}$, then G^{*} is not complete and so, by Proposition 1.3, $t\left(G^{*}\right) \leqslant \frac{1}{2} \kappa\left(G^{*}\right)$. By Whitney's inequality [18], $\kappa\left(G^{*}\right) \leqslant \lambda\left(G^{*}\right)$. Moreover, there is a natural one-to-one mapping f from the line-set of G into the line-set of G^{*}. If X is a cutset of G then $f(X)$ is a cutset of G^{*}. Hence $\lambda\left(G^{*}\right) \leqslant \lambda(G)$ and we have

$$
\begin{equation*}
t\left(G^{*}\right) \leqslant \frac{1}{2} \kappa\left(G^{*}\right) \leqslant \frac{1}{2} \lambda\left(G^{*}\right) \leqslant \frac{1}{2} \lambda(G) \tag{7}
\end{equation*}
$$

Combining (6) and (7), we obtain the desired result.
It is quite easy to see that a hamiltonian circuit in G^{*} induces a closed spanning trail in G and vice versa. Hence we have:

Proposition 5.2. G^{*} is hamiltonian if and only if G has an eulerian spanning sitbgraph.

This proposition and Theorem 5.1 yield:

Corollary 5.3. Let G be a cubic nonhamiltonian graph with $\lambda(G)=3$. Then its inflation G^{*} is a cubic nonhamiltonian graph with $t\left(G^{*}\right)=\frac{3}{2}$ and $\lambda\left(G^{*}\right)=3$.

Indeed, the inflation of a regular graph of degree n is a regular graph of degree n. Moreover, ani eulerian spanning subgraph of a cubic graph is necessarily a hamiltonian cycle.

In particular, denoting by G_{0} the Petersen graph and setting $G_{k+1}=$ G_{k}^{*} we obtain an infinite family G_{1}, G_{2}, \ldots of cubic nonhamiltonian $\frac{3}{2}$.tough graphs. The Petersen graph G_{0} is not $\frac{3}{2}$-tough; one can show that $t\left(G_{f_{i}}\right)=\frac{4}{3}$. In the next section, we will prove that the number of points of any $\frac{3}{2}$-tough cubic graph G with $G \neq K_{4}$ is divis ible by six.

6. Toughness of regular graphs

Let G be a regular graph of degree n with p points, where $p>n+1$ (so that: G is not complete). Then $\kappa(G) \leqslant n$ and by Proposition 1.3, $t(G) \leqslant \frac{1}{2} n$. One may ask for which choice of n and p the equality $t(G)=\frac{1}{2} n$ can be attained. If n is even, then every p works. Indeed, it is easy to see that the graph $C_{p}^{n / 2}$ is $\frac{1}{2} n$-tough. Now, let n be odd and greater than one; then the situation is diffeient.

We already have two methods for constructing $\frac{1}{2} n$-tough regular graphs of degree n. Firstly, if $p=r s$ with $r+s-2=n$, then the graph $K_{r} \times K_{s}$ with p points is regular of degree n and $\frac{1}{2} n$-tough (see Theorem 1.6). Secondly, if $p=n k$ for an even integer $k \geqslant n+1$, then there is a regular graph H of degree n with k points and $\lambda(H)=n$ (the existence of H follows from [8] or [4]). Its inflation H^{*} has p points, is regular of degree n and $\frac{1}{2} n$-tough (see Theorem 5.1).

However, it seems likely that for p sufficiently large and not divisible by n there is no graph G with p points which is regular of degree n anci $\frac{1}{2} n$-tough. We will prove this for $n=3$ and leave the cases $n \geqslant 5$ open.

Let us call a coloring of G balanced if all of its color classes have the same size: otherwise the coioring is unbalanced.

Theorem 6.1. No cubic $\frac{3}{2}$-tough graph admits an unbalanced 3-coloring.
Proof. Ler G be a cubic $\frac{3}{2}$-tough graph and et the point-set of G be pertitioned into color classes R, S, T with

$$
\begin{equation*}
|R| \leqslant|S| \leqslant|T| . \tag{8}
\end{equation*}
$$

Let $|R|$ be as small as possible. Then each $u \in R$ is adjacent to some $v \in S$ (ctherwise $R^{*}=R-\{u\}, S^{*}=S \cup\{u\}$ and $T^{*}=T$ would be color classes with $\left.\left|R^{*}\right|<|R|\right)$ and similarly, each $u \in R$ is adjacent to some $v \in T$. Hence there is a partition $R=R_{S} \cup R_{T}$ such that each $u \in R_{S}$ is adjacent to exactly one point in S and each $u \in R_{T}$ is adjacent to exactly one point in T. Obviously, the subgraph of G induced by $S \cup R_{S}$ has exactly $|S|$ components. Thus,

$$
k\left(G-\left(T \cup R_{T}\right)\right)=|S|
$$

and similarly

$$
k\left(G-\left(S \cup R_{S}\right)\right)=|T| .
$$

We have $|S| \geqslant 2$ (otherwise (8) implies $|R \cup S| \leqslant 2$, which is impossible since each point in T is adjacent to three points in $R \cup S$) and by (8) also $|T| \geqslant 2$. Since G is $\frac{3}{2}$-tough, we have

$$
\left|T \cup R_{T}\right| \geqslant \frac{3}{2}|S|
$$

and

$$
\left|S \cup R_{S}\right| \geqslant \frac{3}{2}|T| .
$$

Adding these two inequalities we obtain $|R|+|S|+|T| \geqslant \frac{3}{2}\left(\left|S_{1}+|T|\right)\right.$ or $|F| \geqslant \frac{1}{2}(|S|+|T|)$ which together with (8) implies $|R|=|S|=|T|$.

Corollary 6.2. A necessary and sufficient condition for the existence of a culic $\frac{3}{2}$-tough graph with p points is that either $p=4$ or p is divisible by six.

Indeed, K_{4} and $K_{2} \times K_{3}$ are $\frac{3}{2}$-tough and we can construct cubic $\frac{3}{2}$-tough graphs with $6 k$ points ($k>1$) by inflations as described above. On the other hand, let G be a cubic $\frac{3}{2}$-tough graph with more than four points. Obviously, the number p of points of G must be even. By Brooks' theorem [3], G admits a 3-coloring. By Theorem 5.4, this 3-coloring must: be balanced and therefore p divisible by 3 .

References

[1] i.A. Bondy, Properties of graphs with constraints on degrees, Studia Sci. Math. Hung. 4 (1969) 473-475.
[2] I.A. Bondy, Pancyclic graphs, I, II, III, to appear.
[3] R.L. Brcoks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
[4] G. Chartrand and F. Harary, Graphs with presciibed connectivities, in: P. Erdös and G. Katona, eds., Theory of graphs (Akadémiai Kiadó, Budapest, 1968) 61-63.
[5] V. Chvátal, On Hamilton's ideals, J. Combin. Theory 12 (1972) 163-168.
[6] V. Givátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111113.
[7] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81.
[8] J. Edmonds, Existence of k-edge coinected ordinary graphs with prescribed degrees, J. Res. Natl. Bur. Standards B 68 (1964) 73-74.
[9] H. Fieischner, The square of every non-separable graph is hamiltonian, J. Combin. Theory, to appsar.
[10] B. Griunbaum, Convex polytopes (Wiley-Interscience, New York, 1967).
111] F. Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).
[12] C.St.J.A. Nash-Williams, Problem 48, in: P. Erdös and G. Katona, eds., Theory of graphs (Akadémiai Kiadć, Budapest, 1968).
[13] O. Ore, Graphs and subgraphs, Trans. Am. Math. Soc. 84 (1951) 109-136.
[14] L. P'́ssa, A theorem concerning hamilton lines, Magyar Tud. Akad. Mat. Fiz. Int. Közl. 7 (1962) 225-226.
[15] W.T. Thute, A short proof of the factor theorem for finite graphs, Can. J. Math. 6 (1954) 347-352.
[16] W.T. Tutte, A theorem on planar graphs, Trans. Am. Mati. Soc. 82 (1956) 99-116.
[17] M.E. Watkins and D.M. Mesner, Cycles and connectivity in graphs, Can. J. Matr. 19 (1967) 1319-1328.
[18] II. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932) 150-168.

[^0]: * Original version received 20 December 1971; revised version received 29 June 1972.

