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Abstract. This article is intended as a survey, updating earlier surveys in the area. For
completeness of the presentation of both particular questions and the general area, it also
contains material on closely related topics such as traceable, pancyclic and hamiltonian-
connected graphs and digraphs.

1. Introduction

A graph G is hamiltonian if it contains a spanning cycle. The hamiltonian problem
is generally considered to be determining conditions under which a graph contains
a spanning cycle. Named for Sir William Rowan Hamilton, this problem traces its
origins to the 1850s. Today, however, the constant stream of results in this area
continues to supply us with new and interesting theorems and still further ques-
tions.

To many, including myself, any path or cycle problem is really a part of this
general area and it is difficult to separate many of these ideas. Thus, although I
will concentrate on spanning cycles (the classic hamiltonian problem), other
related results, both stronger and weaker, will be presented in order to provide
you with a better picture of the overall theory and problems as they exist
today.

In doing this I shall generally restrict my attention to work done since [137]
appeared in 1991, as earlier hamiltonian and related surveys (see [28], [42], [31],
[185], [242], [25], [194], [43], [9], [88] and [137]) provide ample background on
previous work. Thus, I shall expect my reader to be somewhat familiar with this
area already. Since this area is so vast, I shall certainly be unable to mention
everything, but shall do my best to cover important topics. However, I will cover
only a limited amount dealing with closure operations as the recent survey [63]
provides an excellent view of developments in this area and I shall not attempt to
cover hamiltonian digraph results.

Throughout this article we consider finite simple graphs G ¼ ðV ;EÞ, unless
otherwise indicated. We reserve n to denote the order (jV j) and q the size (jEj) of
G. We use dðGÞ and DðGÞ for the minimum and maximum degrees of G respec-
tively, and let NðxÞ and NðSÞ denote the neighborhood of the vertex x and set
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S respectively. Further, let cðGÞ denote the circumference of G, that is, the length
of a longest cycle, gðGÞ, the girth, that is the length of a shortest cycle and

rkðGÞ ¼ min fdeg x1 þ � � � þ deg xk j x1; . . . ; xk are independent in Gg:

Graphs satisfying lower bounds on rk with k 	 2 will often be called Ore-type
graphs, while if k ¼ 1, Dirac-type graphs. If G contains no induced subgraph
isomorphic to any graph in the set F ¼ fH1; . . . ;Hkg, we say G is F -free, or H1-free
if F contains only H1. For terms not defined here see [68].

2. Extending the Classics

In this section I will concentrate on results that generalize, or extend in some way,
well-known hamiltonian results. Several such directions either emerged or were
greatly developed over the past decade and a number of intriguing conjectures
were solved.

An interesting problem concerning powers of hamiltonian cycles proved to be
very difficult and developed in stages until finally resolved. The kth power of a
graph G is the graph obtained from G by inserting edges between vertices at a
distance at most k in G. Part (a) of the following Conjecture is due to Pósa (see
[101]) while part (b) is due to Seymour [221]. Both parts generalize the classic
result of Dirac [92].

Conjecture 1. (a) If dðGÞ 	 2n=3, then G contains the square of a hamiltonian cycle.

(b) If dðGÞ 	 kn
kþ1, then G contains the kth power of a hamiltonian cycle.

Pósa’s conjecture dates to 1962, but it was many years before a series of real
advances were made on this question. Seymour indicated the difficulties involved
here by observing that the truth of his conjecture would imply the difficult Hajnal-
Szemerédi Theorem [143], that if DðGÞ < r, then G is r colorable such that the
sizes of the color classes are all bn=rc or dn=re.

A flurry of work on the Pósa conjecture began when M. S. Jacobson (un-
published) showed that if dðGÞ 	 5n=6, then the conjecture holds. Then, Faudree,
Gould, Jacobson and Schelp [118] showed that dðGÞ 	 ð3=4þ �Þnþ cð�Þ suffices.
They later improved this to dðGÞ 	 3n=4 (again unpublished). Fan and Häggkvist
[107] further lowered the bound to dðGÞ 	 5n=7. Fan and Kierstead (manuscript)
then improved the bound to ð17nþ 9Þ=24. Faudree, Gould and Jacobson
(manuscript) decreased the bound to 7n=10 and Fan and Kierstead [108] showed
that the Pósa condition was nearly optimal when they showed that
ð2=3þ �Þnþ cð�Þ suffices. They also showed that � ¼ 0 suffices if we only seek the
square of a hamiltonian path [110]. Kierstead and Quintana [171] showed the
Pósa Conjecture holds on graphs with minimum degree 2n/3 that also contain a
maximal 4-clique. Fan and Kierstead [109] also gave conditions for a graph to
contain two edge disjoint square hamiltonian cycles.
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Turning to the Seymour conjecture, in [118] it was shown that for any � 	 0
and positive integer k, there is a constant C such that if a graph G satisfies
dðGÞ 	 ðð2k � 1Þ=ð2kÞ þ �Þnþ C, then G contains the kth power of a hamiltonian
cycle. In [172], the above was improved to ð k

kþ1þ �Þn:
Ultimately, in [173] and [174], the truth of both the Pósa and Seymour Con-

jectures were verified for large n by Komlós, Sáközy and Szemerédi. I combine
these results below.

Theorem 1 [173], [174]. There exists a natural number n0 such that if G has order n
and n 	 n0 and dðGÞ 	 kn=ðk þ 1Þ, then G contains the k-th power of a hamiltonian
cycle.

The main tools used in proving these results are the well-known regularity
lemma [230] and the powerful Blow-up Lemma [176]. The regularity lemma has
long been recognized as one of the best tools for dealing with problems on dense
graphs. Recently, it has been emerging as a very effective approach to difficult
cycle results.

A related result, also of Dirac type, is due to Aigner and Brandt [4]. This one
concerns subgraphs of maximum degree two, originally conjectured in a some-
what weaker form by Sauer and Spencer [216].

Theorem 2 [4]. Every graph G of order n with dðGÞ 	 ð2n� 1Þ=3 contains any
graph with at most n vertices and maximum degree two.

Corollary 3 [4]. Let G be a graph of order n with dðGÞ 	 ð2n� 1Þ=3 and suppose
n 	 n1 þ n2 þ � � � þ nk where ni 	 3 for all i. Then G contains the vertex disjoint
union of the cycles Cn1 [ Cn2 [ . . . [ Cnk .

Clearly then, any such graph contains any 2-factor we would want and hence
provides a strong analogue to Dirac’s theorem. I should mention that Alon and
Fischer [6] also provided a solution to the Sauer-Spencer conjecture (d ¼ 2n=3).
Their result used work dependent on the regularity lemma and thus holds only for
large graphs.

Related to the last result is another old conjecture due to El-Zahar [95].

Conjecture 2. Let G be a graph of order n ¼ n1 þ n2 þ � � � þ nk with
dðGÞ 	

Pk
i¼1 dni=2e, then G contains the 2-factor Cn1 [ . . . [ Cnk .

Note that the graph Ks�1 þ Kdn�sþ1
2 e;dn�sþ1

2 e has minimum degree ðnþ s� 1Þ=2 but
contains no s vertex disjoint odd length cycles. Thus, the conjecture is best pos-
sible.

El-Zahar [95] provided an affirmative answer to the case k ¼ 2, while Dirac’s
Theorem handles k ¼ 1. Recently, Abbasi [1] announced a solution for large n
using the regularity lemma. It would still be interesting to find a solution to this
beautiful conjecture for all n. It should be noted that Corrádi and Hajnal [87]
provided an affirmative answer to the El-Zahar conjecture for the case that each
ni ¼ 3.
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An old conjecture of Erd}os and Faudree [102] generalizes the Corrádi-Hajnal
theorem in another direction.

Conjecture 3. Let G be a graph with order n ¼ 4k and dðGÞ 	 2k, then G contains k
vertex disjoint 4-cycles.

Alon and Yuster [8] proved that for any � > 0, there exists k0 such that if G
has order 4k and dðGÞ 	 ð2þ �Þk with k 	 k0, then G contains k disjoint
4-cycles. In [207], a near solution was provided by Randerath, Schiermeyer and
Wang.

Theorem 4. Let G be a graph of order 4k and minimum degree at least 2k. Then G
contains a vertex disjoint collection of subgraphs, k � 1 of which are 4-cycles and the
remaining subgraph has order 4 and at least four edges.

Finally, in [175], a solution for large n was indicated as a consequence of
another result (again dependent upon the regularity lemma).

Next we turn our attention to another generalization of the classic results of
Dirac [92] and Ore [199]. Recall that a 2-factor is a 2-regular spanning subgraph
of G. A hamiltonian cycle is then a 2-factor, and in one sense, it is the simplest
2-factor as it is composed of a single cycle. In another sense, it may be the most
difficult 2-factor to find, as we must force a single cycle. We now ask the question:
If we weaken the conditions that allow total control of the structure of a 2-factor
(as was done above), can we still at least control the number of cycles in the
2-factor?

Theorem 5 [56]. If G is a graph of order n satisfying
ð1Þ dðGÞ 	 n=2 and n 	 4k or
ð2Þ r2ðGÞ 	 n and n 	 4k
then G contains a 2-factor with exactly k cycles, and this result is best possible.

To see this result is best possible we need only consider the complete bipartite
graph Kn=2;n=2. Clearly, the smallest cycle in any 2-factor of this graph is a 4-cycle
and hence the bound on n is sharp. Further, Kðn�1Þ=2;ðnþ1Þ=2 (n odd), does not
contain a 2-factor, hence the degree conditions are also sharp.

Theorem 5 was a natural direction to take, given the fact that Ore-type graphs
are either pancyclic (contain cycles of all possible lengths) or Kn=2;n=2. Upon
viewing Theorem 5, the next question is obvious.

Question 1. Which of the conditions implying a graph G of order n is hamiltonian
also imply that G contains a 2-factor with k cycles for all values of k, 1 � k � f ðnÞ.
Further, in each case how large can f ðnÞ be?

A number of results along these lines followed. I shall only mention a few.
Generalizing the result of Matthews and Sumner [192] on claw-free hamilto-

nian graphs, the following was shown in [72].
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Theorem 6. Let G be a 2-connected, claw-free graph of order n 	 51 with
dðGÞ 	 1

3 ðn� 2Þ: Then for each k with 1 � k � n�24
3 , G has a 2-factor with exactly k

cycles.

The next result is from [71] and concerns a bipartite version of the question.

Theorem 7. Let k be a positive integer and let G be a balanced bipartite graph of
order 2n where n 	 maxf51; k22 þ 1g. If deg uþ deg v 	 nþ 1 for every u 2 V1 and
v 2 V2, then G contains a 2-factor with exactly k cycles.

Extending Jung’s [165] result on 1-tough graphs (restricted to minimum a
degree condition), the following was shown in [117].

Theorem 8. If G is a 1-tough graph of sufficiently large order n with dðGÞ 	 n�t
2

ð0 � t � 4Þ, then G contains a 2-factor with k cycles where 1 � k � n
4� t.

Recall, a dominating circuit of a graph G is a circuit of G with the property that
every edge of G either belongs to the circuit or is adjacent to an edge of the circuit.
The next classic result is by Harary and Nash-Williams [144].

Theorem 9. Let G be a graph without isolated vertices. Then LðGÞ is hamiltonian if
and only if G ’ K1;n, for some n 	 3, or G contains a dominating circuit. An old
conjecture of

In order to generalize Theorem 9 we say that G contains a k-system that
dominates if G contains a collection of k edge disjoint circuits and stars, (here stars
are K1;ni ; ni 	 3), such that each edge of G is either contained in one of the circuits
or stars, or is adjacent to one of the circuits. With this in mind, the following was
shown in [140].

Theorem 10. Let G be a graph with no isolated vertices. The graph LðGÞ contains a
2-factor with k ðk 	 1Þ cycles if, and only if, G contains a k-system that dominates.

Using Theorem 10, Hynds [153] investigated Question 1 in various graphs
whose line graphs were already known to be hamiltonian.

Now we turn to another strong hamiltonian property introduced by Chartrand
(see [198]). A graph is k-ordered (hamiltonian) if for every ordered sequence of k
vertices there is a (hamiltonian) cycle that encounters the vertices of the sequence
in the given order. Clearly, every hamiltonian graph is 3-ordered hamiltonian.

Ng and Schultz [198] were the first to investigate such graphs.

Theorem 11 [198]. Let G be a graph of order n and let k be an integer with
3 � k � n. If degðuÞ þ degðvÞ 	 nþ 2k � 6 for every pair u; v of nonadjacent ver-
tices of G, then G is k-ordered hamiltonian.

Corollary 12 [198]. Let G be a graph of order n and let k be an integer with
3 � k � n. If degðuÞ 	 n=2þ k � 3 for every vertex u of G, then G is k-ordered
hamiltonian.
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Clearly, this theorem and corollary are analogs of Ore’s [199] and Dirac’s [92]
fundamental results, respectively. Both bounds for k-ordered hamiltonicity were
improved for small k with respect to n. Theorem 11 was improved by Faudree,
Faudree, Gould, Jacobson and Lesniak [114].

Theorem 13 [114]. Let k 	 3 be an integer and let G be a graph of order n 	 53k2. If
degðuÞ þ degðvÞ 	 nþ ð3k � 9Þ=2 for every pair u; v of nonadjacent vertices of G,
then G is k-ordered hamiltonian.

Corollary 12 was improved by Kierstead, Sárközy and Selkow [170] as follows.

Theorem 14 [170]. Let k 	 2 be an integer and let G be a graph of order
n 	 11k � 3. If degðuÞ 	 n

2

� �
þ k

2

� �
� 1 for every vertex u of G, then G is k-ordered

hamiltonian.

We note that both of these bounds are sharp for the respective values of
k. Unexpectedly, for small k, the Dirac type bound does not follow from the
Ore type bound. In [119], this was further investigated and the following shown:

Theorem 15 [119]. Let k be an integer with 3 � k � n=2 and let G be a graph of
order n. If degðuÞ þ degðvÞ 	 nþ ð3k � 9Þ=2 for every pair u; v of nonadjacent
vertices of G, then G is k-ordered hamiltonian.

The bound in Theorem 15 is sharp and for large k it implies the bound of
Dirac-type. Thus,

(a) for large k, the Ore type bound yields the Dirac type bound;
(b) for small k, the Ore type bound is more than twice the Dirac type bound; and
(c) for moderate k, the situation is still not clear.

We summarize the above more precisely as follows. Let dðn; kÞ be the smallest
integer m for which any graph of order n with minimum degree at least m is k-
ordered hamiltonian. The following theorem is from [119].

Theorem 16. For positive integers k,n with 3 � k � n we have

(i) dðn; kÞ ¼ n
2

� �
þ k

2

� �
� 1; for k � ðnþ 3Þ=11;

(ii) dðn; kÞ > n
2þ k

2� 2; for ðnþ 3Þ=11 < k � n=3;
(iii) dðn; kÞ 	 2k � 2; for n=3 < k < 2ðnþ 2Þ=5;
(iv) dðn; kÞ ¼ n=2þ 3k�9

4

� �
, for 2ðnþ 2Þ=5 � k � n=2;

(v) dðn; kÞ ¼ n� 2, for n=2 < k � 2n=3; and
(vi) dðn; kÞ ¼ n� 1, for 2n=3 < k � n:

Ng and Schultz [198] showed that k-ordered graphs must be ðk � 1Þ-connected.
The degree conditions of the above results are enough to accomplish this level
of connectivity. It is natural to ask if strengthening the connectivity conditions
would allow us to lower the degree conditions. In [73] this question was
investigated.
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Theorem 17 [73]. Let G be a graph on n vertices with r2ðGÞ 	 n. Let k � n=176 be
an integer. If G is b3k=2c-connected, then G is k-ordered hamiltonian.

The connectivity bound is best possible, as illustrated by the following graph
G2. Let L2, M2, R2 be complete graphs with jR2j ¼ bk=2c, jM2j ¼ 2bk=2c � 1,
jL2j ¼ n� jM2j � jR2j. Let G0

2 be the union of these three graphs, adding all
possible edges containing vertices of M2. Let xi 2 L2 if i is odd, and let xi 2 R2
otherwise. Add all edges xixj whenever ji� jj 62 f0; 1; k � 1g, and the resulting
graph is G2. The degree sum condition is satisfied and G2 is ðb3k=2c � 1Þ-con-
nected. But there is no cycle containing the xi in the proper order, since such a
cycle would contain 2bk=2c paths through M2.

A slight improvement is possible when considering only minimum degrees.
Again, the connectivity bound is best possible.

Theorem 18 [73]. Let G be a graph on n vertices with minimum degreedðGÞ 	 n=2.Let
k � n=176 be an integer. If G is 3bk=2c-connected, then G is k-ordered hamiltonian.

We note also that a consequence of a result of Bollobás and Thomason [39]
implies that every 22k-connected graph is k-ordered. Thus, connectivity alone will
suffice. They naturally raise the following question.

Question 2. What is the least connectivity f ðkÞ so that any f ðkÞ-connected graph is
k-ordered?

A natural variation of k-ordering would be to consider ordered edge sets, and
in fact, even more can be said. We say L is a ðk; t; sÞ-linear forest if L is a sequence
L ¼ P 1; P 2; . . . ; P t ð1 � t � kÞ of t disjoint paths, s of them being singletons such
that jV ðLÞj ¼ k. A graph G is ðk; t; sÞ-ordered if for every ðk; t; sÞ-linear forest L in
G, there exists a cycle C in G that contains the paths of L in the designated order.
Further, if the paths of L are each oriented and C can be chosen to encounter the
paths of L in the designated order and according to the designated orientation on
each path, then we say G is strongly ðk; t; sÞ-ordered. If C is a hamiltonian cycle
then we say G is ðk; t; sÞ-ordered hamiltonian and strongly ðk; t; sÞ-ordered hamil-
tonian, respectively. Note that saying G is ðs; s; sÞ-ordered is the same as saying G
is s-ordered. The following two results were shown in [70].

Theorem 19 [70]. For k 	 1 and 1 � t � k, if G is a (strongly) ðk; t; sÞ-ordered graph
on n 	 k vertices with dðGÞ 	 nþk�tþs

2 , then G is (strongly) ðk; t; sÞ-ordered hamil-
tonian.

Theorem 20 [70]. If s ¼ t ¼ k 	 3 or 0 � s < t < k, and G is a graph of order
n 	 max f178t þ k; 8t2 þ kg with

r2ðGÞ 	
nþ k � 3 if s ¼ 0
nþ k þ s� 4 if 0 < 2s � t
nþ k þ t�9

2 if 2s > t

8<
: ;

then G is strongly ðk; t; sÞ-ordered.
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Finally, Ellingham, Zha and Zhang [94] took a different approach. Define a
2-trail as a trail that uses every vertex at most twice. Thus, spanning 2-trails
generalize hamiltonian paths and cycles. They prove the following three results,
each of which is sharp.

Theorem 21. ð1Þ If r3ðGÞ 	 n� 1, then G has a spanning 2-trail, unless G ¼ K1;3.

(2) If r3ðGÞ 	 n, then either G has a hamiltonian path or a closed spanning
2-trail.

(3) If G is 2-edge connected and r3ðGÞ 	 n, then G has a closed spanning 2-trail,
unless G ¼ K2;3 or K�

2;3 (the 6 vertex graph obtained from K2;3 by subdividing one
edge).

3. Density

By density we mean conditions that force the existence of a sufficient number of
edges to imply the desired result. Since most hamiltonian results are of this type, I
shall restrict attention in this section to results involving size, degrees, or neigh-
borhood conditions. Degree conditions are the classic approach to hamiltonian
problems and neighborhood unions are a form of generalized degree condition.
Early results of this type are discussed in a number of the previously mentioned
surveys.

We shall consider several strengthenings of classic results as well as density
conditions that imply new strong hamiltonian properties or generalizations of old
properties. The first such generalization we consider is due to Brandt [53]. He
defines a graph to be weakly pancyclic if it contains cycles of every length from the
girth to the circumference. Brandt then showed the following.

Theorem 22. If G is a nonbipartite graph of order n and size q > bðn� 1Þ2=4þ 1c,
then G is weakly pancyclic.

Note that such graphs contain triangles. Brandt, Faudree and Goddard [55]
then considered degree conditions for weakly pancyclic graphs.

Theorem 23 [55]. (a) Let G be a 2-connected nonbipartite graph with
dðGÞ 	 n=4þ 250. Then G is weakly pancyclic unless G has odd girth 7, in which
case it has every cycle from 4 up to its circumference except for the 5-cycle.
(b) Every nonbipartite graph with dðGÞ 	 ðnþ 2Þ=3 is weakly pancyclic (and has

girth 3or 4).

Brandt [52] also considered other degree conditions for weakly pancyclic
graphs.

Theorem 24. Let G 6¼ C5 be a nonbipartite triangle-free graph of order n. If
dðGÞ > n=3, then G is weakly pancyclic with girth 4 and circumference
minf2ðn� aðGÞÞ; ng, (where aðGÞ is the independence number of G).
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Brandt [53] also conjectured the following.

Conjecture 4. Every nonbipartite graph of order n and size at least ðn� 1Þðn� 3Þ=
4þ 4 is weakly pancyclic.

Bollobás and Thomason [40] came very close to solving this conjecture. In
fact, their work actually shows that a minimal counterexample to Brandt’s
Conjecture has small order (� 132).

Theorem 25 [40]. Let G be a nonbipartite graph of order n and size at least
bn2=4c � nþ 59. Then G contains a cycle of length ‘ for 4 � ‘ � cðGÞ.

Xiong [243] also considered weakly pancyclic line graphs (although using the
term subpancyclic) satisfying a degree condition for adjacent pairs.

In a very different strengthening of Dirac’s Theorem, Kaneko and Yoshimoto
[167] show small subsets of vertices can be distributed along a hamiltonian cycle.
Here distC means the distance along the cycle C.

Theorem 26. Let G be a graph of order n with dðGÞ 	 n=2 and let d be a positive
integer with d � n=4. Then for any vertex subset A with at most n=2d vertices, there
exists a hamiltonian cycle C with distCðu; vÞ 	 d for any u; v 2 A.

This result is sharp in that the bound on the cardinality of A cannot be in-
creased. With this interesting result in hand, we raise a natural problem.

Problem 1. What other density conditions allow the distribution of ‘‘small’’ sets of
vertices along a hamiltonian cycle? Are there density conditions that do not allow
such a distribution, except possibly on a constant number of vertices?

Another generalization of hamiltonian graphs is the idea of cyclable sets. A
subset S of V ðGÞ is called cyclable in G if all the vertices of S belong to a common
cycle in G. Clearly, if V ðGÞ is cyclable, then G is hamiltonian. Also, if G is
hamiltonian, then S is cyclable for any S � V ðGÞ. If S is a subset of V ðGÞ, we let
G½S� denote the subgraph induced by S and aðS;GÞ be the independence number
of G½S�. A number of set restricted density results imply cyclability. The first
extends the well-known Chvátal-Erd}os Theorem [80].

Theorem 27 [130]. Let G be a k-connected graph ðk 	 2Þ and S a subset of V ðGÞ. If
aðS;GÞ � k then S is cyclable in G.

The next result is due independently to Bollobás and Brightwell [33] (as a
corollary to a more general result) and Shi [226] (stated as a lemma). It uses the
classic Dirac-type density condition for the subset S of V ðGÞ. Let dðS;GÞ be the
minimum degree in G of a vertex of S.

Theorem 28. Let G be a 2-connected graph and S a subset of V ðGÞ. If dðS;GÞ 	 n=2
then S is cyclable in G.
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Ota [201] made the natural extension to degree sums of pairs of nonadjacent
vertices in S, denoted r2ðS;GÞ.

Theorem 29. Let G be a 2-connected graph of order n and S a subset of V ðGÞ. If
r2ðS;GÞ 	 n, then S is cyclable in G.

This was further pushed to sums of three vertices in [127], extending an earlier
result of Flandrin, Jung and Li [126].

Theorem 30 [127]. Let G be a 2-connected graph of order n and S a subset of V ðGÞ.
If deg xþ deg y þ deg z 	 nþ jNðxÞ \ NðyÞ \ NðzÞj for any three independent ver-
tices x; y; z 2 S, then S is cyclable in G.

The next result of Broersma, Li, Li, Tian and Veldman [61] extends the
hamiltonian work in [20]. Here jðS;GÞ is the minimum cardinality of a set of
vertices separating two vertices of S and rtðS;GÞ is the degree sum in G of any t
nonadjacent vertices of S.

Theorem 31. Let G be a 2-connected graph of order n and S a subset of V ðGÞ. If
r3ðS;GÞ 	 nþminfjðS;GÞ; dðS;GÞg, then S is cyclable in G.

While in [145] 3-connected graphs were studied.

Theorem 32. Let G be a 3-connected graph of order n and S a subset of V ðGÞ.
(a) If r4ðS;GÞ 	 nþ 2aðS;GÞ � 2, then S is cyclable.
(b) If r4ðS;GÞ 	 nþ dðS;GÞ and deg v 	 n=2 for every v 2 S � N ½w�, where w 2 S

and degw ¼ dðS;GÞ, then S is cyclable in G.
(c) If r2ðGÞ 	 n=2þ dðGÞ, then G is hamiltonian.

Recently, a bipartite version for cyclable sets was also found.

Theorem 33 [2]. Let G ¼ ðX [ Y ;EÞ be a 2-connected balanced bipartite graph of
order 2n and S is a subset of X . If deg xþ deg y 	 nþ 1 for every nonadjacent pair
x 2 S, y 2 Y , then S is cyclable in G.

Polický [206] defined xðu; vÞ as the number of components of G½NðuÞ� con-
taining no neighbor of v. He then proved the following result.

Theorem 34. In a graph G of order n, if deg uþ deg vþmaxfxðu; vÞ;xðv; uÞg 	 n
for each pair of nonadjacent vertices u and v, then G is hamiltonian.

Stacho [217] gave a sufficient condition of degree sum type for a graph to be
hamiltonian. This condition generalizes several old results. The condition is: Let G
be a connected graph with degree sequence d1 � d2 � � � � � dn. Suppose that
whenever i � n=2, i 6¼ j, di � i and dj � j� 1 all hold, then at least one of four
properties for the pair ðdi; djÞ also holds. The four conditions are based on
Polický’s parameter for the number of components not containing a neighbor of a
vertex v. They are technical and not presented here.
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Stacho further exploited the Polický parameter to study cycles through spec-
ified vertices [219] and a closure type result for long cycles [218].

In [98], Enomoto, Kaneko and Tuza conjectured that if rkðGÞ 	 n or
aðGÞ < k, then V ðGÞ can be covered by k � 1 cycles, edges or vertices. Note that
when k ¼ 2 this conjecture is answered by Ore’s Theorem [199]. The case k ¼ 3
was shown by Enomoto, Kaneko, Kouider and Tuza [97]. In [179], this conjec-
tured was settled in general.

Theorem 35. Let G be a graph of order n and let X � V ðGÞ. If rkðX ;GÞ 	 n or
aðX ;GÞ < k, then X can be covered with k � 1 cycles, edges or vertices.

It is worth mentioning that a weaker statement: If dðGÞ 	 n=k, then G can be
covered by k � 1 cycles, edges or vertices, was previously considered. It clearly
generalizes Dirac’s Theorem for k ¼ 2. The case k ¼ 3 was shown by Enomoto,
Kaneko and Tuza [98] and for every k 	 2 by Kouider [178].

Bondy [41] showed that all graphs satisfying Ore’s condition are either pan-
cyclic or isomorphic to Kn=2;n=2. Aldred, Holton and Min [5] relaxed Ore’s con-
dition by considering graphs with r2 	 n� 1.

Theorem 36. If G satisfies r2ðGÞ 	 n� 1, then G is pancyclic unless G is isomorphic
to one of the following graphs:
(a) a graph of order n consisting of two complete graphs joined at a vertex,
(b) a subgraph of the join of a complete graph of order ðn� 1Þ=2 and an empty graph

of order ðnþ 1Þ=2,
(c) Kn=2;n=2,
(d) C5.

Brandt and Veldman [58] considered deg xþ deg y 	 n for every adjacent pair
x; y in G. They showed that if G satisfies the degree condition on edges then the
circumference of G is precisely n� sðGÞ, where sðGÞ ¼ maxf0;maxSðjSj�
jNðSÞj þ 1Þg, where the inner max ranges over all nonempty sets S of independent
vertices of G with S [ NðSÞ 6¼ V ðGÞ.

A graph is pancyclic modulo k if it contains cycles of all lengths modulo k.
Dean [89] asked the following question:

Question 3. Which graphs are pancyclic modulo k?

Dean [89] showed that every 3-connected planar graph (except K4) with
minimum degree at least k is pancyclic modulo k.

Density conditions in G certainly effect the line graph LðGÞ. In [239], van
Blanken, van den Heuvel, and Veldman considered f ðnÞ as the smallest integer
such that for every graph G of order n with minimum dðGÞ > f ðnÞ, then LðGÞ is
pancyclic whenever LðGÞ is hamiltonian. They were able to provide results
showing that f ðnÞ ¼ Hðn1=3Þ.

Another interesting Ore-type result involving even more structure than a
hamiltonian cycle was found by Mao-cheng, Li and Kano [190]. Here a ½k; k þ 1�-
factor means a factor where each vertex has degree k or k þ 1.
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Theorem 37 [190]. Let k 	 2 be an integer and G a graph of order n 	 3 with
dðGÞ 	 k. Assume that n 	 8k � 16 for even n and n 	 6k � 13 for odd n. If
r2ðGÞ 	 n, then for any given hamiltonian cycle C, G has a ½k; k þ 1�-factor con-
taining C.

This result extents a similar Dirac-type result in [241].
Turning to regular graphs, a number of results appeared attempting to

strengthen or generalize Jackson’s classic result [155] that every 2-connected
k-regular graph on at most 3k vertices is hamiltonian.

Theorem 38 [147]. Let G be a 2-connected k regular graph on at most 3k þ 3
vertices, Then G is hamiltonian or G is the Petersen graph or the Petersen graph with
one vertex replaced by a triangle.

The following conjecture would improve Jackson’s Theorem for 3-connected
graphs.

Conjecture 5 [157]. For k 	 4, every 3-connected k-regular graph on at most 4k
vertices is hamiltonian.

This conjecture is a special case of a conjecture of Häggkvist (see [157]) which
was shown not to hold in general. A number of others have considered the
question of dominating cycles in regular graphs. For more information on this see
[59].

Turning to neighborhood conditions, I would advise the reader new to these
conditions to begin with [185] and [137]. I will try not to repeat earlier results
mentioned in these two papers.

In [120] independence number is tied to neighborhood union conditions. Here
we let dkðGÞ ¼ minj [u2S NðuÞj, where the minimum is taken over all k element
subsets S of V ðGÞ.

Theorem 39. Let r 	 1 and m 	 3 be integers. Then for each nonnegative function
f ðr;mÞ there exists a constant C ¼ Cðr;m; f Þ such that if G is a graph of order n
ðn > r; n > mÞ with drðGÞ 	 n=3þ C and at most f ðr;mÞ independent vertices, then

(a) G is traceable if d1ðGÞ 	 r and G is connected;
(b) G is hamiltonian if d1ðGÞ 	 r þ 1 and G is 2-connected;
(c) G is hamiltonian-connected if d1ðGÞ 	 r þ 2 and G is 3-connected.

Similar results are also shown for claw-free graphs in [120].
Song [227] considered a Fan-like neighborhood condition.

Theorem 40. Let G be a 2-connected graph of order n 	 3 with connectivity k. If
there exists an integer t such that for any distinct vertices u and v, distðu; vÞ ¼ 2
implies that jNðuÞ [ NðvÞj 	 n� t, and for any independent set S of cardinality
k þ 1 we have that maxfdeg u j u 2 Sg 	 t, then G is hamiltonian.

Broersma, van den Heuvel and Veldman [64] sharpened earlier results with the
following theorem.
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Theorem 41. If G is a 2-connected graph of order n such that jNðuÞ [ NðvÞj 	 n=2
for every pair of nonadjacent vertices u and v, then either G is hamiltonian, the
Petersen graph, or belongs to one of three families of exceptional graphs with
connectivity 2 (see Figure 1).

Clearly a consequence of the last theorem is that if G is 3-connected and
satisfies the neighborhood condition, then G is hamiltonian or the Petersen graph.
This result verifies a conjecture of Jackson [156] concerning 2-connected graphs
and a conjecture of Chen concerning 3-connected graphs.

Chen and Schelp [77] extended many known results with the following idea.
A sequence of real numbers c1; . . . ; ckþ1 is called an Hk-sequence if
c1jS1j þ c2jS2j þ � � � þ ckþ1jSkþ1j > n� 1 for any independent set S of order k þ 1,
where Si ¼ fv 2 V ðGÞj jNðvÞ \ Sj ¼ ig.

Theorem 42. A sequence c1 � 1; c2; . . . ; ck; ckþ1 � 2 is an Hk sequence if the fol-
lowing two conditions are satisfied.

(1) For each collection of indices i1; i2; . . . ; il; . . . (allowing repetitions)

X
il

ðil � 1Þ � k � 1 implies
X
il

ðcil � 1Þ � 1:

(2) ci þ 2ckþ2�i � 5 for 2 � i � k � 1:

Subsequently, Ainouche and Schiermeyer [12] further generalized this work.
For an independent set S � V ðGÞ of t þ 1 vertices define the t þ 1 neighborhood
intersections Si ¼ f v 2 V ðGÞ � S j jNðvÞ \ Sj ¼ ig, 1 � i � t þ 1. Let jSij ¼ si.

Theorem 43 [12]. Let G be a 2-connected graph of order n. Then G is hamiltonian or
there exists an independent set X � V ðGÞ of cardinality t þ 1, 1 � t � jðGÞ such that

Xtþ1
i¼1

wisi � n� 1�
X
j>2

jNjðX Þj

K K K K           K

K K K

p q r

p q r

p + q + r = n - 2 P + q + r = n - 1

p + q + r = n

p, q, r at least 1 p, q, r at least 2

p, q, r at least 3

q                   rK p

Fig. 1. Three exceptional families of graphs
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where wi, 1 � i � t þ 1 are real numbers satisfying 0 � w1 � 1, and for
1 < i1 � i2 � . . . � im � t þ 1 and

Pm
j¼1 ij � t þ 1 we have

Pm
j¼1 ðwij � 1Þ � 1;

where NjðX Þ denotes the set of vertices whose nearest vertex in X is at distance j.

Song and Zhang [228] also improved several known results with the following
stronger theorem.

Theorem 44. Let G be a graph of order n 	 3 with connectivity k 	 2 and inde-
pendence number a. Let every independent set S of k þ 1 vertices satisfy one of the
following:

(1) there exists u 6¼ v in S such that deg uþ deg v > n or jNðuÞ \ NðvÞj 	 a;
(2) for any pair u 6¼ v in S, jNðuÞ [ NðvÞj 	 n� DðSÞ;
then G is hamiltonian.

Chen and Liu [76] considered arbitrary independent k-sets for their neigh-
borhood unions.

Theorem 45. Let k 	 1 be a fixed integer. In a ð4k � 4Þ-connected graph G of order
n 	 3, if jNðSÞj þ jNðT Þj 	 n for every two disjoint independent sets S and T of k
vertices, then G is hamiltonian.

In a different direction, Faudree and van den Heuvel [125] showed a weak-
ening of the classic Ore-type condition, along with a new structure assumption
was possible.

Theorem 46. Let G be a 2-connected graph of order n with r2ðGÞ 	 n� k and
suppose that G has a k-factor. Then G is hamiltonian.

Finally, Chen and Jacobson [74] provided an improved degree condition in
k-partite graphs.

Theorem 47. If G is a balanced k-partite graph of order kn such that for each pair of
nonadjacent vertices x, y in different parts, deg xþ deg y > k � 2

kþ1


 �
n for k odd

and deg xþ deg y > k � 4
kþ2


 �
n for k even, then G is hamiltonian.

4. More Than One Hamiltonian Cycle

The fundamental question that dominates this section is: When does a graph
contain more than one hamiltonian cycle? A natural extension of this type of
question is determining how many different cycles are possible. Another natural
question is: When can the edge set of a graph be decomposed into disjoint
hamiltonian cycles? We begin with the first question.

A classic result of Smith (see [238]) says that every edge of a 3-regular graph is
contained in an even number of hamiltonian cycles. Thus, every 3-regular ham-
iltonian graph contains a second (and a third) hamiltonian cycle. Thomason [231]
extended Smith’s result to all r-regular graphs where r is odd (in fact, to all graphs
in which all vertices have odd degree).
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Sheehan [223] conjectured that every hamiltonian 4-regular graph has a second
hamiltonian cycle. Since every r-regular graph (r even) is the union of pairwise
edge-disjoint spanning 2-regular graphs, Sheehan’s conjecture combined with the
results of Smith and Thomason implies that every hamiltonian regular graph,
except the cycle, has a second hamiltonian cycle. Thomassen [233] added the last
piece of the puzzle when m is sufficiently large.

Theorem 48 [233]. If G is hamiltonian and m-regular with m 	 300, then G has a
second hamiltonian cycle.

Thomassen’s proof uses a version of the Lovász Local Lemma [104] and is
related to his proof of another cycle result in [234]. Using a Theorem of Fleischner
and Stiebitz [129], Thomassen [234] verified that every longest cycle in a 3-con-
nected, 3-regular graph has a chord. Thomassen [234] also provided the following
general sufficient condition for the existence of a second hamiltonian cycle.

Theorem 49. Let G be a graph with a hamiltonian cycle C. Let A be a vertex set in
G such that A contains no two consecutive vertices of C and A is dominating in
G� EðCÞ, then G has a hamiltonian cycle C0 such that C0 � A ¼ C � A and there is
a vertex v in A such that one of the two edges of C0 incident with v is in C and the
other is not in C.

Refining Thomassen’s method, Horak and Stacho [152] obtained the following
extension.

Theorem 50. For any real number k 	 1, there exists f ðkÞ so that every hamiltonian
graph G with DðGÞ 	 f ðkÞ has at least dðGÞ � bDðGÞ

k c þ 2 hamiltonian cycles. In
particular, every hamiltonian graph with DðGÞ 	 f ðDðGÞ=dðGÞÞ has a second
hamiltonian cycle.

A graph is uniquely hamiltonian if it contains exactly one hamiltonian cycle. A
question related to Sheehan’s is the following:

Question 4. Does every uniquely hamiltonian graph have a vertex of low degree?

Entringer and Swart [100] constructed an infinite family of uniquely hamil-
tonian graphs with minimum degree three. However, it is not known if there exists
a uniquely hamiltonian graph of minimum degree four [see [158]]. Jackson and
Whitty [158] also showed that any uniquely hamiltonian graph contains a vertex
of degree at most ðnþ 9Þ=4 and if there is a unique 2-factor, then the graph
contains a vertex of degree 2. Bondy and Jackson [48] provided the best bound to
date.

Theorem 51. Every uniquely hamiltonian graph on n vertices has a vertex of degree
at most c log2 ð8nÞ þ 3 where c ¼ ð2� log2 3Þ

�1 � 2:41.

They further showed that every uniquely hamiltonian plane graph has at least
two vertices of degree less than four and conjecture the following.
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Conjecture 6. Every uniquely hamiltonian planar graph has at least two vertices of
degree two.

The hunt for additional hamiltonian cycles is certainly not a new pursuit. In
1957 Kotzig (see [50]) asked which 4-regular, 4-connected graphs have a de-
composition into two hamiltonian cycles. Independently, in 1971, Nash-Williams
[196] asked if every 4-regular, 4-connected graph has a hamiltonian cycle and if in
fact, it has two edge-disjoint hamiltonian cycles.

In 1956, Tutte [237] showed every 4-connected planar graph is hamiltonian.
Martin [191] and independently Grunbaum and Malkevitch [142] showed 4-reg-
ular, 4-connected planar graphs need not have two edge disjoint hamiltonian
cycles. Grunbaum and Malkevitch further asked if every 5-connected planar
graph has two edge disjoint hamiltonian cycles. Zaks [244] and Rosenfeld [211]
provided constructions yielding infinitely many examples of 5-connected planar
graphs (both regular and nonregular) in which every pair of hamiltonian cycles
have common edges.

Thomassen [235] considered the question of the number of hamiltonian cycles
in bipartite graphs. He once again applied the techniques of Thomason [231].

Theorem 52 [235]. Let C : x1; y1; x2; y2; . . . ; xn; yn; x1 be a hamiltonian cycle in a
bipartite graph G.

(a) If all the vertices y1; . . . ; yn have degree at least 3, then G has another hamil-
tonian cycle containing the edge x1y1.

(b) If all the vertices y1; . . . ; yn have degree d > 3 and if P1; P2; . . . ; Pq

ð0 � q � d � 3Þ are paths in C of length 2 of the form yi�1xiyi, then G has at
least 2qþ1�dðd � qÞ! hamiltonian cycles containing P1 [ . . . [ Pq.

Thomassen [235] also considered bipartite graphs of large girth. The following
is a counterpart to part (b) above.

Theorem 53. Let G be a bipartite graph of girth g and let C : x1; y1; x2; y2; . . . ;
xn; yn; x1 be a hamiltonian cycle in G. Assume that each vertex yj ð1 � j � nÞ has
degree 4. Let P1; P2; . . . ; Pq be a (possibly empty) collection of paths each of the form
yi�1xiyi. Let E be the set of edges in G each joining two vertices of P1 [ . . . [ Pq which
have degree 2 in P1 [ . . . [ Pq. Let c denote the number of components of
P1 [ . . . [ Pq [ E, put k ¼ jV ðP1Þ [ . . . [ V ðPqÞj. If g 	 k þ 5cþ 1, then the number
of hamiltonian cycles in G which contain P1 [ . . . [ Pq is at least ð3=2Þðg�k�5cÞ=8.

Thomassen [235] also posed a number of interesting problems. The first of
these centers on a reduction method for hamiltonian graphs. We denote by G=e
the graph obtained from G upon contracting the edge e.

Problem 2 [235]. Does every hamiltonian graph G of minimum degree at least 3
contain an edge e such that G� e and G=e are both hamiltonian?

If G has two distinct hamiltonian cycles and e is an edge which belongs to one
but not both, then e satisfies the question. Thus, Theorem 52(a) gives an affir-
mative answer to the problem for bipartite graphs. An affirmative answer for all
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graphs would prove the following conjecture by Thomassen [235]. Let PðG; kÞ
denote the chromatic polynomial of the graph G.

Conjecture 7 [235]. If G is a hamiltonian graph with n vertices then ð�1ÞnP ðG; kÞ is
positive for 1 < k < 2.

Note that Theorem 52(b) gives a lower bound of 21�dd! on the number of
hamiltonian cycles in a bipartite graph where all vertices of one color
class have degree at least d. That this bound cannot be replaced by ðd!Þ2 can be
seen by taking a cycle x1; y1; x2; y2; . . . ; xn; yn; x1 and adding all edges of the form
xiyj. Note that n may be arbitrarily large here. This leads to the problem:

Problem 3 [235]. Does there exist a 4-regular bipartite hamiltonian graph with more
than 1010 vertices and less than 100 hamiltonian cycles?

The above question is answered affirmatively if 4-regular is replaced by
3-regular, thus leading one to suspect an affirmative answer.

Conjecture 8 [235]. There exists a function f ðgÞ tending to infinity as g tends to
infinity such that every bipartite hamiltonian graph of minimum degree 3 and girth g
has at least f ðgÞ hamiltonian cycles.

Finally, sufficiently strong conditions on minimum degree or girth may allow
the above bipartite results to generalize to nonbipartite graphs.

Problem 4 [235]. Does there exist a graph of minimum degree 1010 with precisely
one hamiltonian cycle?

We do not yet even know if there exist graphs of minimum degree 4 with
precisely one hamiltonian cycle.

All the above problems and conjectures deal with hamiltonian graphs. This
condition is not easily dropped as large girth in 3-connected cubic graphs need not
imply the graph is hamiltonian. But perhaps large cyclic connectivity is sufficient.
(The cyclic connectivity of a graph is the smallest number of edges that must be
deleted in order to obtain a graph with at least two components containing
cycles.)

Problem 5 [235]. Does there exist a natural number m such that every cubic graph
of cyclic connectivity at least m is hamiltonian?

Density conditions have also been used to obtain results on multiple edge-
disjoint hamiltonian cycles. Faudree, Rousseau and Schelp [123] gave an
Ore-type condition for the existence of multiple edge disjoint hamiltonian
cycles.

Theorem 54. Let k be a positive integer.

(a) If G is a graph of order n 	 60k2 such that r2ðGÞ 	 nþ 2k � 2, then G contains
k edge disjoint hamiltonian cycles.
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(b) If G has order n 	 6k and size at least n�1
2

� 

þ 2k, then G contains k edge

disjoint hamiltonian cycles.

Li and Zhu [189] also considered an Ore-type bound.

Theorem 55. If G is a graph of order n 	 20 with dðGÞ 	 5 and r2ðGÞ 	 n, then G
has at least two edge disjoint hamiltonian cycles.

Li [187] earlier had shown a more general result on edge disjoint cycles.

Theorem 56. Let k be a positive integer. If G is a graph of order n 	 8k2 � 5 with
r2ðGÞ 	 n and 2k þ 1 � dðGÞ � 2k þ 2, and if l1; . . . ; lk are integers with
3 � l1 � � � � � lk � n, then G contains edge disjoint cycles of lengths l1; . . . ; lk re-
spectively. In particular, G contains k edge disjoint hamiltonian cycles.

Egawa [93] greatly strengthened the earlier works on k edge disjoint hamil-
tonian cycles by providing a linear bound for Ore-type graphs.

Theorem 57. Let n; k 	 2 be integers with n 	 44ðk � 1Þ. If G is a graph of order n
with r2ðGÞ 	 n and dðGÞ 	 4k � 2, then G contains k edge disjoint hamiltonian
cycles.

Next, we say a graph is of Fan-type 2k if the distance distGðu; vÞ ¼ 2 implies
that maxfdeg u ; deg vg 	 n=2þ 2k, The motivation for this term is the result of
Fan[105], that says a 2-connected Fan-type 0 graph is hamiltonian.

In this spirit, Zhou [248] gave a sufficient condition for G to contain two edge
disjoint hamiltonian cycles.

Theorem 58 [248]. Let G be a 4-connected graph of order n that is Fan-type 2. Then
G contains two edge disjoint hamiltonian cycles.

Zhou [248] also conjectured the following extension, recently proved by Li
[186].

Theorem 59 [186]. Every 2ðk þ 1Þ-connected Fan-type 2k graph has k þ 1 edge
disjoint hamiltonian cycles.

Still open would be the question(s) of decomposing Fan-type 2k graphs into
other fixed cycle lengths, or the question of how many cycles may be present in a
2-factor of a Fan-type 2k graph.

Several other questions can now be considered. A natural one is that of
hamiltonian decompositions, that is, partitioning the edge set of G in hamiltonian
cycles (if G is 2d-regular) or hamiltonian cycles and a perfect matching (if G is
ð2d þ 1Þ-regular).

Perhaps the most general conjecture in this area is due to Nash-Williams
[195] (and strengthened by Jackson [154]). For early work in this general area
see [9].
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Conjecture 9. Every k-regular graph on at most 2k þ 1 vertices is hamiltonian
decomposable.

For questions of hamiltonian decomposition, various graph products have
received considerable attention. The typical question is:

Question 5. If G1 and G2 are hamiltonian decomposable, is the appropriate product
of G1 and G2 also hamiltonian decomposable?

Since various products are often known under different names, I shall define
the products in question. Each product graph has vertex set V ðG1Þ � V ðG2Þ.

The cartesian product G ¼ G1 � G2 has edge set

EðGÞ ¼ fðu1; u2Þðv1; v2Þ j u1 ¼ v1 and u2v2 2 EðG2Þ or u2 ¼ v2 and u1v1 2 EðG1Þg:

The direct product (or conjunction) G ¼ G1 � G2 has edge set

EðGÞ ¼ fðu1; u2Þðv1; v2Þ j u1v1 2 EðG1Þ and u2v2 2 EðG2Þg:

The strong product G ¼ G1 � G2 has edge set

EðGÞ ¼ fðu1; u2Þðv1; v2Þ j u1 ¼ v1 and u2v2 2 G2; or

u2 ¼ v2 and u1v1 2 EðG1Þ; or both u1v1 2 EðG1Þ and u2v2 2 EðG2Þg:

Finally, the lexicographic product (sometimes called composition, tensor or
wreath product) G ¼ G1½G2� has edge set

EðGÞ ¼ fðu1; u2Þðv1; v2Þ j u1v1 2 EðG1Þ; or u1 ¼ v1 and u2v2 2 EðG2Þg:

Notable advances on product decompositions include the following:

Theorem 60 [16]. The lexicographic product of two hamiltonian decomposable
graphs is hamiltonian decomposable.

This following conjecture is due to Alspach, Bermond and Sotteau [9] and is
suggested by Theorem 60.

Conjecture 10. If D1 and D2 are hamiltonian decomposable digraphs, then the
lexicographic product of D1 and D2 is hamiltonian decomposable in general.

The phrase ‘‘in general’’ above is necessary in the case that jV ðD2Þj ¼ 2 where
failure can occur (see [197]). Ng [197] considers this question in digraphs and
shows that the lexicographic product of hamiltonian decomposable digraphs is
hamiltonian decomposable when the first digraph has odd order and the second
has at least 3 vertices.

In 1978, Bermond [29] conjectured that the set of hamiltonian decomposable
graphs is closed under cartesian product. Although this conjecture is not com-
pletely settled, the following result of Stong [229] makes a major contribution.
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Theorem 61. Let G1 and G2 be two graphs that are decomposable into s and t
hamiltonian cycles, respectively, with t � s. Then G1 � G2 is hamiltonian decom-
posable if one of the following holds:

(1) s � 3t
(2) t 	 3
(3) the order of G2 is even, or
(4) the order of G1 is at least 6ds=te � 3.

It is easy to see that if G1 and G2 are both bipartite, then the direct product
G1 � G2 is disconnected. Hence, the set of hamiltonian decomposable graphs is not
closed under the direct product. Bosak [49] and Zhou [248] independently pro-
vided a case in which it is closed.

Theorem 62. Suppose both G1 and G2 are hamiltonian decomposable. If at least one
of them has odd order, then G1 � G2 is hamiltonian decomposable.

We say G is k-regularizable if multiple edges can be added to G (if necessary) to
make the resulting multigraph G� k-regular. Further, if at most one edge is added
between any pair of vertices, we say G is k�-regularizable, that is, provided the
resulting multigraph G� has at most two edges between any pair of vertices. Let H
be a 4�-regularizable connected spanning subgraph of a graph G. Then H� is
eulerian and is said to be a UOET graph if it admits an eulerian tour in which no
proper closed subtrail is of even length. Using these ideas Balakrishnan and
Paulraja [13] characterized those graphs G such that G � K2 has a hamiltonian
cycle.

Theorem 63 [13]. For any graph G, G � K2 is hamiltonian if and only if G has a
UOET-subgraph.

They also provided counterexamples to several conjectures of Jha [164]. These
include: If G is a nonbipartite hamiltonian decomposable graph of even order,
then G � K2 is hamiltonian decomposable, as well as then G � Cn is hamiltonian
decomposable.

For strong products, Zhou [248] provided the following:

Theorem 64. If both G1 and G2 are hamiltonian decomposable and at least one of
them has odd order, then G1 � G2 is hamiltonian decomposable.

This was improved recently in [106] where Fan and Liu show:

Theorem 65. The set of hamiltonian decomposable graphs is closed under
strong products, that is, if G1 and G2 are hamiltonian decomposable, then so is
G1 � G2.

Kriesell [181] considered the hamiltonian question for the lexicographic
product of two graphs, where the graphs have broader conditions than those
stated above. In particular, he showed the following:

26 R.J. Gould



Theorem 66. (a) If G is 1-tough and contains a 2-factor and jEðHÞj 	 2 then G½H � is
hamiltonian.
(b) If G is 2-tough and jEðHÞj 	 2, then G½H � is hamiltonian.
(c) If G is connected and 2k-regular and jV ðHÞj 	 k, then G½H � is hamiltonian.
(d) If G is ð2k þ 1Þ-regular and connected and G has a 1-factor and jV ðHÞj 	 k þ 1,

then G½H � is hamiltonian.
(e) If G is connected and vertex transitive of degree k and jV ðHÞj 	 k=2, then G[H]

is hamiltonian.
(f) If G is connected and vertex transitive and jEðHÞj 	 2, then G½H � is hamiltonian.
(g) If G is cubic and 2-edge connected and jV ðHÞj 	 2, then G[H] is hamiltonian. If

G is 4-regular and connected and jV ðHÞj 	 2, then G[H] is hamiltonian.

Kriesell’s result suggests the following general problem.

Problem 6. What natural graph properties of G and H are sufficient to imply that
the product of G and H is hamiltonian.

The block-intersection graph for the Steiner System ðS;BÞ is the graph GðS;BÞ
with V ðGðS;BÞÞ ¼ B and where two vertices are joined by an edge if and only if the
corresponding blocks in ðS;BÞ have a common element. It has been shown
that graphs for a variety of designs including Steiner triple systems are hamilto-
nian (see [10] and [151]). Pike [203] showed the block-intersection graph of a
Steiner triple system of order n � 15 is hamiltonian decomposable. Further, he
conjectures:

Conjecture 11 [203]. If ðS;BÞ is a Steiner triple system, then its block-intersection
graph is hamiltonian decomposable.

A number of other special case conjectures are also worthy of mention here. A
graph Ok (called the odd graph) is a k-regular graph whose vertices are indexed by
the ðk � 1Þ-subsets of a ð2k � 1Þ-set and two vertices are adjacent if, and only if,
their indexing subsets are disjoint. For example, O3 is the Petersen graph.
Meredith and Lloyd [193] showed that O4, O5 and O6 are hamiltonian
decomposable. Further, they conjectured:

Conjecture 12. The odd graphs Ok are hamiltonian decomposable for k 	 4.

The boolean graphs Bk are k-regular bipartite graphs with the vertices of one
part indexed by the ðk � 1Þ-subsets of a ð2k � 1Þ-set and the vertices of the other
part indexed by the k-subsets. Adjacency is given by containment. Thus, Bk is
really the middle two levels of the boolean lattice.

Conjecture 13. The boolean graphs Bk are hamiltonian.

It is also interesting to note that for k ¼ 2m, m 	 1, if Ok has a hamiltonian
decomposition, then in fact, so does Bk (D. Duffus, personal communication).

Jaeger [159] proved that if G can be decomposed into an even number of
hamiltonian cycles, then its line graph LðGÞ is 1-factorable. He used the fact that ifG
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can be decomposed into two hamiltonian cycles, then LðGÞ can be decomposed into
three hamiltonian cycles. This leads to the following conjecture of Bermond [30].

Conjecture 14. If G has hamiltonian decomposition, then so does LðGÞ.

Recent results using regularity and line graphs are the following results of
Pike:

Theorem 67 [204]. If G is a 2k-regular graph that has a perfect 1-factorization, then
the line graph LðGÞ of G is hamiltonian decomposable.

Theorem 68 [205]. If G is a bipartite ð2k þ 1Þ-regular graph that is hamiltonian
decomposable, then LðGÞ is also hamiltonian decomposable.

5. Toughness

Let xðGÞ denote the number of components of the graph G. A graph G is t-tough
if jSj 	 t xðG� SÞ for every subset S of the vertex set V ðGÞ with xðG� SÞ > 1.
The toughness of G, denoted sðGÞ, is the maximum t for which G is t-tough
(taking sðKnÞ ¼ 1). Chvátal [78] introduced the idea of toughness. He also raised
a problem that has stirred interest ever since.

Problem 7. Does there exist a t0 such that every t0-tough graph is hamiltonian?

For a number of years the focus of the investigation was on 2-tough graphs. In
[96] it was shown that every k-tough graph of order n with n 	 k þ 1 and kn even
has a k-factor. Further, for every � > 0, there exists a ðk � �Þ-tough graph on n
vertices with n 	 k þ 1 and kn even which has no k-factor.

However, despite this supporting evidence, Bauer, Broersma, and Veldman[21]
were able to show that 2-tough was not enough. Recall a graph is traceable if it
contains a spanning path (hamiltonian path).

Theorem 69 [21]. For every � > 0, there exists a ð9=4� �Þ-tough nontraceable
graph.

This result calls into question the existence of any such t0 that will suffice.
There does not seem to be a natural candidate for t0 at the moment.

Despite this development, many other questions remain concerning toughness
and hamiltonian properties. One such problem concerns chordal graphs. Recall
that a graph is chordal if every cycle of length four or more has a chord. Chvá-
tal[78] produced ð3=2� �Þ-tough chordal graphs without a 2-factor, for arbitrary
� > 0. However, recently in [24] it was shown that every 3=2-tough chordal graph
has a 2-factor. Thus, the problem remains:

Problem 8. Is there a t0 such that every t0-tough chordal graph is hamiltonian?
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In [21], it was also shown that there exists a ð7=4� �Þ-tough chordal non-
traceable graph for every � > 0. However, an upper bound was provided by Chen,
Jacobson, Kézdy and Lehel in [75], which still leaves a considerable gap for
further investigation.

Theorem 70 [75]. Every 18-tough chordal graph is hamiltonian.

We note that far less toughness is needed for certain special classes of chordal
graphs. In [168] it was shown that 1-tough interval graphs are hamiltonian and in
[90] it was shown that 1-tough cocomparability graphs are hamiltonian. In [32] it
was also established that not all 1-tough chordal planar graphs are hamiltonian,
however they also established the following:

Theorem 71 [32]. Let G be a chordal, planar graph with sðGÞ > 1. Then G is
hamiltonian.

The condition that G is chordal is needed above since in [200], nonhamiltonian
maximal planar graphs G with sðGÞ > 3=2� � for arbitrarily small positive � are
constructed.

Recall a graph is split if it can be partitioned into an independent set and a
clique. In [180] it was shown that every 3=2-tough split graph is hamiltonian and
that there is a sequence of split graphs fGkg1k¼1 without 2-factors and with
sðGkÞ ! 3=2.

Jung [165] showed that the classic degree condition of Ore could be lowered
under a toughness assumption.

Theorem 72. Let G be a 1-tough graph on n 	 11 vertices with r2 	 n� 4. Then G
is hamiltonian.

In [117], a generalization of the weaker minimum degree condition was ob-
tained (see Theorem 8). Several other generalizations of Jung’s Theorem have also
been found. Bauer, Chen and Lasser [23] showed that if n 	 30, sðGÞ > 1, and
r2ðGÞ 	 n� 7, then G is hamiltonian. Fassbender [111] considered degree sums of
three independent vertices.

Theorem 73. If G is a 1-tough graph of order n 	 13 such that r3 	 3n�14
2 , then G is

hamiltonian.

Further, the following blend of Ore-type and Fan-type conditions appeared in
[22].

Theorem 74. If G is a 1-tough graph of order n such that r3ðGÞ 	 n and for all
x; y 2 V ðGÞ, distðx; yÞ ¼ 2 implies that maxfdegðxÞ; degðyÞg 	 ðn� 4Þ=2, then G is
hamiltonian.

In [166], the following was shown, generalizing earlier work of Dirac [92] that
cðGÞ 	 minf2d; ng and of Bauer, et al [19] that if n < ðt þ 1Þd þ t þ 1, then G is
hamiltonian.
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Theorem 75 [166]. If G is a 2-connected t-tough graph with minimum degree d, then
cðGÞ 	 minfðt þ 1Þd þ t; ng.

Also along these lines, Li [188] and Hoa [149] and [150] also provided bounds
on the circumference of 1-tough graphs. Wei [240] also showed the following:

Theorem 76. Let G be a graph and let

�rr3 ¼ minf
X3
i¼1

dðuiÞ � j \3i¼1 NðuiÞj : ui; i ¼ 1; 2; 3 is an independent setg:

Then if r3ðGÞ 	 n and �rr3 	 n� 4, then G is hamiltonian.

Hoa [148] used toughness and neighborhood conditions together to obtain the
following. Here NCtðGÞ ¼ maxf[t

i¼1NðviÞ j v1; . . . ; vt is an independent setg.

Theorem 77. Every 1-tough graph G of order n with r3ðGÞ 	 n contains a cycle of
length at least minfn; 2NCr3�nþ5g.

This implies results of Fassbender [111] and Flandrin, Jung and Li [126] as well
as others.

For a broader survey of toughness results see [18].

6. Random Graphs

In this section we present results concerning hamiltonian properties in random
graphs. For readers unfamiliar with this subject, I suggest [163] and the survey on
matchings and cycles in random graphs by Frieze [131] as starting points. I as-
sume a fundamental knowledge of the area and the models Gn;p (binomial random
graph on n vertices) and Gn;M (uniform random graph on n vertices). Other
models will be described as needed.

One general question that received considerable attention over the past decade
deals with hamiltonian properties of random regular graphs and digraphs. The
first major result here came in a series of two papers by Robinson and Wormald
[208] and [209], the first handling the cubic case, the second the general case.

Theorem 78. For every r 	 3, almost all r-regular graphs are hamiltonian.

Cooper, Frieze and Molloy [86] followed with the digraph case.

Theorem 79. For every fixed r 	 3, almost every r-regular digraph is hamiltonian.

Another interesting extension is finding hamiltonian cycles containing j
specified edges (such as matchings). Recently Robinson and Wormald [210]
strengthened their results on r-regular graphs by showing that a random r-regular
graph with j ¼ oð ffiffiffi

n
p Þ distinguished edges which are also provided with an ori-

entation, asymptotically almost surely has a hamiltonian cycle containing these
edges and respecting the orientations. Further, they showed that a random cubic
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graph has a hamiltonian cycle that contains the given edges and respects the given
orientations of those edges with probability ðe�2j2=3nÞ þ oð1Þ. They also obtain
analogs for values of r 	 3.

Recently, Kim and Wormald [169] also considered the following question.

Question 6. Given a set of randomly generated perfect matchings of an even number
of vertices, what is the probability that each of a prescribed set of pairs of those
matchings induces a hamiltonian cycle?

They select four perfect matchings of 2n vertices, independently at random.
Then they find the asymptotic probability that each of the first and second
matchings forms a hamiltonian cycle with each of the third and fourth matchings.
They generalize this to any fixed number of matchings, where a prescribed set of
matchings must produce hamiltonian cycles. They use this to show that a random
r regular graph, for fixed even r 	 4, asymptotically almost surely decomposes
into r=2 hamiltonian cycles.

In a related vein, let p be a permutation of the set ½n�. The undirected graph Gp

has vertex set ½n� and edge set Ep consisting of edges fi; jg such that pðiÞ ¼ j
or pðjÞ ¼ i. Then [k

i¼1 Epi is a 2k-regular multigraph. Frieze [132] showed the
following.

Theorem 80. If p1 and p2 are chosen independently and uniformly at random, then
Ep1 [ Ep2 is hamiltonian with probability tending to 1 as n tends to infinity.

For the directed version of this problem, Frieze [132] shows that three per-
mutations suffice and Cooper [83] shows that two permutations do not suffice.

A slightly weaker, but still interesting question is the following:

Question 7. Given a random graph or digraph, under what conditions can we find
multiple edge disjoint hamiltonian cycles?

In order to consider the question of edge disjoint hamiltonian cycles in random
graphs, we define the following. Let Gn;m;k denote the class of graphs with n
vertices, m edges and minimum degree at least k, with each graph being equi-
probable. Also, we say G has the property Ak if G contains bðk � 1Þ=2c edge
disjoint hamiltonian cycles, and if k is even, a perfect matching. In [34], Bollobás,
Cooper, Fenner and Frieze show the following.

Theorem 81. Let k 	 3. There exists a constant Ck � 2ðk þ 1Þ3 such that if
2m ¼ cn, c 	 Ck, then with probability tending to 1 as n tends to infinity G 2 Gn;m;k

has property Ak.

Earlier, Bollobás, Fenner and Frieze [36] established the threshold for the
stronger property A�

k . A graph G has property A�
k if G contains bk=2c edge

disjoint hamiltonian cycles and if k is odd, an edge disjoint perfect matching. In
[36] it is shown that for 2m ¼ nðlog n=ðk þ 1Þ þ klog log nþ dnÞ, the probability
G 2 A�

k approaches 0; e�hkðdÞ; or 1 respectively for dn approaching �1
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sufficiently slowly, constant d, or þ1 respectively. They also give an explicit
formula for hkðdÞ.

Also using the probabilistic method, Adler, Alon and Ross [3] showed that the
maximum number of directed hamiltonian paths in a complete directed graph
with n vertices is at least ðe� oð1ÞÞðn!=2n�1Þ.

Now let HðGÞ denote the number of hamiltonian cycles in G and let Gn;r

denote the random r-regular graph on n vertices and E the expectation.
Frieze, Jerrum, Molloy, Robinson and Wormald [133] considered r-regular

random graphs and showed that with high probability

HðGÞ 	 1

n

ffiffiffiffiffi
p
2n

r
ðr � 1Þ r � 2

r

r�2
r

" #n

:

Janson [160] found the expected number of hamiltonian cycles for the random
graph Gn;p and that the hamiltonian cycles have a log-normal distribution.
This varies from his findings for tournaments [162] where he showed the fol-
lowing.

Theorem 82. Let HðTnÞ be the number of directed hamiltonian cycles in the random
tournament Tn. Then

EðHðTnÞÞ ¼ ðn� 1Þ!2�n

and HðTnÞ is asymptotically normally distributed.

Using a more general theorem of Janson [161] we obtain the following result.

Theorem 83. Let r 	 3 be fixed. Then,

HðGn;rÞ
EðHðGn;rÞÞ

!d W ¼
Y

i odd
i	3

ð1� 2=ðr � 1ÞiÞZie1=i

where Zi 2 Poððr � 1Þi=2iÞ are independent Poisson random variables, and !d

denotes convergence in distribution.

Note that Theorem 83 may be extended to multigraphs as well. The interested
reader should see [163] for a more detailed discussion of this work.

Cooper [81], [82] considered another interesting variation. A given hamilto-
nian cycle H in a graph is called k-pancyclic if for each s, (3 � s � n� 1) we can
find a cycle C of length s using only the edges of H and at most k other edges.
Cooper [82] showed that the threshold p ¼ ðlog nþ log log nþ cÞ=n (the original
threshold for Gn;p provided in [177]) for being hamiltonian is also the threshold for
the existence of a 1-pancyclic hamiltonian cycle, while in [81] he showed this
threshold is also the threshold for a 2-pancyclic hamiltonian cycle.

Broder, Frieze and Shamir [66] considered a random graph G composed of a
hamiltonian cycle on n labeled vertices and dn random edges that ‘‘hide’’ the cycle.
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They ask the question: Is it possible to efficiently find a hamiltonian cycle in G?
Their solution is an Oðn3log nÞ-step algorithm and they show that this algorithm
succeeds almost surely.

Cooper and Frieze [84] continued the investigations of thresholds by consid-
ering the following model. The random digraph Dk�in;l�out has vertices 1; 2; . . . ; n
and each vertex v chooses independently and uniformly at random k arcs into v
and l arcs out of v. They show that with probability tending to 1 as n ! 1, the
random digraph D3�in;3�out is hamiltonian. While in [85] they show that with
probability tending to 1 as n tends to infinity, D2�in;2�out is hamiltonian while
D1�in;2�out and D2�in;1�out are not hamiltonian. In particular, this implies that
G4�out the underlying graph of D2�in;2�out is hamiltonian, continuing a long line of
results of this type. In particular, this improved upon the result of Frieze and
Łuczak [135] that G5�out is hamiltonian. Still open is the question of G3�out.

Palmer [202] considered another classic approach to the hamiltonian question,
namely the result of Chvátal and Erdös [80] that if the connectivity j is at least as
large as the independence number a, then G is hamiltonian. Palmer showed the
following.

Theorem 84. If G is a random graph with edge probability p given by p2n ¼ c log n,
then for constant c > 1, almost all graphs have j > a, and hence are hamiltonian.

As a consequence, an algorithm of Chvátal [79] for finding a hamiltonian cycle
almost always succeeds if c > 1.

Finally, Frieze, Karoński and Thoma [134] showed that the probability that
the sum of two random trees with 2n vertices contains a perfect matching and the
sum of five random trees of order n contains a hamiltonian cycle both tend to 1 as
n tends to infinity.

7. Forbidden Subgraphs

During the 1980’s a number of fundamental results were proved showing that, in
a 2-connected graph, when particular pairs of induced subgraphs were forbidden,
the graph was hamiltonian. Notable among these were the following results (see
Figure 2 for graphs and note that Z2 is obtained from Z3 by removing the vertex of
degree one).

Theorem 85 [91]. If G is a fK1;3;Ng-free graph, then

(a) if G is 2-connected, then G is hamiltonian;
(b) if G is connected, then G is traceable.

Other notable results similar to Theorem 85 are:

Theorem 86 [65]. If G is a 2-connected fK1;3; P6g-free graph, then G is hamiltonian.

Theorem 87 [141]. If G is a 2-connected fK1;3; Z2g-free graph, then G is hamilto-
nian.
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Theorem 88 [26]. If G is a 2-connected fK1;3;W g-free graph, then G is hamiltonian.

I should also point out that recently, in [51], a linear time algorithm for finding
a hamiltonian cycle in a fK1;3;Ng-free graph was given. This prompts the fol-
lowing question.

Question 8. Does a linear time algorithm for finding a hamiltonian cycle exist for
any of the other major families described by forbidden pairs, that is, in fK1;3; P6g-
free, fK1;3; Z3g-free, fK1;3;W g-free or even fK1;3; Z2g-free graphs?

Since the completion of the above theorems, this area has experienced a very
significant development in both theory and techniques. Far more results have
appeared than I will be able to discuss here. Hence, I will limit my presentation
mainly to characterizations, strong technique developments and significant open
problems and supporting results.

We begin with the work of Bedrossian [26] who characterized all pairs of
forbidden graphs which imply all 2-connected such graphs are hamiltonian. In his
proof Bedrossian used a nonhamiltonian graph of order 9 to eliminate some
possibilities. The four major graphs in his characterization were N ; P6; Z2 and W ,
as all others were induced subgraphs of one of these. Later, the following was
shown.

Theorem 89 [121]. If G is a 2-connected fK1;3; Z3g-free graph of order n 	 10, then
G is hamiltonian.

This result indicated that if one considers all sufficiently large graphs, some-
thing more can be said about the pairs. In [112] this was investigated (for graphs
of order n 	 10). We now summarize the combined results of [26] and [112]. We
include the proof as an indication of proofs of this type.

Theorem 90 ([26] and [112]). Let R and S be connected graphs ðR; S 6¼ P3Þ and G a
2-connected graph of order n. Then G is fR; Sg-free implies G is hamiltonian if, and
only if, R ¼ K1;3 and S is one of the graphs N, P6, W , Z2, or Z3 (when n 	 10), or a
connected induced subgraph of one of these graphs.

Fig. 2. Common forbidden graphs
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Proof. That each of the pairs implies G is hamiltonian follows from Theorems 85,
86, 89 and 88 and our remarks about induced subgraphs of forbidden graphs.

Now consider the graphs G0; . . . ;G6 of Figure 3. Each is 2-connected and
nonhamiltonian. Without loss of generality assume that R is a subgraph of G1.

Case 1. Suppose that R contains an induced P4.

Since G4, G5, and G6 are all P4-free, then S must be an induced subgraph of
each of them. But if S is an induced subgraph of G4, then either S is a star or S
contains an induced C4. However, G5 is C4-free, hence S must be a star. Since the
only induced star in G6 is K1;3, we have that S ¼ K1;3.

Case 2. Suppose that R does not contain an induced P4.

Then, using G0 we see immediately that Rmust be a tree containing at most one
vertex of degree 3 and sinceR contains no induced P4, we see thatR ¼ K1;3. Thus, for
the remainder of the proof we assume without loss of generality that R ¼ K1;3.

Fig. 3. 2-Connected nonhamiltonian graphs
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Now, S must be an induced subgraph of G1, G2, and G3 (each of which is claw-
free). The fact that S is an induced subgraph of G1 implies that S is a path or S is
K3, possibly with a path off each of its vertices. Suppose that S is a path. Since S is
an induced subgraph of G3 which is P7-free, we see that if S is a path, it is one of
P4, P5 or P6.

Hence, we now assume that S contains a K3, possibly with a path off each of its
vertices. Note that G3 is Z4-free. Further, any triangle in G2 with a path of length 3
off one of its vertices can have no paths off its other vertices (leaving Z3, Z2, Z1,
and K3). Again examining G2 we see it contains no triangle with a path of length 2
from one of its vertices and a path of length 1 from the other two vertices (leaving
B or W ). Now the graph G�

3 obtained by deleting the edges from the upper Km to
the lower Km of G3 is claw-free and contains no induced K3 with a 2-path off two
vertices. The only remaining possibility is a path of length 1 off each of the vertices
of K3, that is, the graph N . (

You may ask why pairs were considered instead of a single graph, but it is
an easy observation that P3 is the only nontrivial single graph that when
forbidden implies G is hamiltonian (see [112]). Faudree and Gould [112] went
on to characterize the forbidden pairs for several other strong hamiltonian
properties.

Theorem 91 [112]. Let R; S be connected graphs ðR; S 6¼ P3Þ and let G ðG 6¼ CnÞ be a
2-connected graph of order n 	 10. Then G is fR; Sg-free implies G is pancyclic if,
and only if, R ¼ K1;3 and S is one of P4, P5, P6, Z1 or Z2.

Theorem 92 [112]. Let R; S be connected graphs ðR; S 6¼ P3Þ and let G be a
3-connected graph. Then G is fR; Sg-free implies G is panconnected if, and only if,
R ¼ K1;3 and S ¼ Z1.

Recently, all pairs that imply all 3-connected graphs are pancyclic were given
in [139]. Here, Ni;j;k is a graph which consists of K3 and vertex disjoint paths of
length i, j, k rooted at its vertices and L, the graph which consists of two vertex-
disjoint copies of K3 and an edge joining them.

Theorem 93. Let X and Y be connected graphs on at least three vertices such that
X ; Y 6¼ P3 and Y 6¼ K1;3. Then the following statements are equivalent:

(a) Every 3-connected fX ; Y g-free graph G is pancyclic.
(b) X ¼ K1;3 and Y is a subgraph of one of the graphs from the family F ¼ fP7, L,

N4;0;0, N3;1;0, N2;2;0, N2;1;1g.

In each of the above pair results, the claw K1;3 must be one of the two graphs.
This led naturally to the question: If we consider triples of forbidden subgraphs
implying hamiltonicity, must the claw always be one of the three graphs? This was
answered negatively in [116] where all triples containing no K1;t with t 	 3 for
sufficiently large 2-connected graphs were given. Further, in [113] other forbidden
triples for sufficiently large graphs were investigated. Brousek [67] gave the
collection of all triples which include the claw that imply all 2-connected graphs
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are hamiltonian. While in [113], all remaining triples for all graphs were given,
thus completing the characterization in this case.

A graph G is said to be cycle extendable if any nonhamiltonian cycle can be
extended to a cycle containing exactly one more vertex, that is, C is extended to a
cycle C0 with V ðC0Þ ¼ V ðCÞ [ fxg for some vertex x not on C. We say G is fully
cycle extendable if G is cycle extendable and every vertex of G lies on a triangle.
This concept was introduced by Hendry [146]. In that paper he also showed the
following:

Theorem 94 [146]. If G is a 2-connected graph of order n 	 10 that is fK1;3; Z2g-
free, then G is cycle extendable.

The cycle extendable pairs were also characterized.

Theorem 95 [112]. Let R, S be connected graphs ðR; S 6¼ P3Þ and G a 2-connected
graph of order n 	 10. Then G is fR; Sg-free implies G is cycle extendable if, and
only if, R ¼ K1;3 and S is one of C3, P4, Z1 or Z2.

More information on forbidden subgraphs and cycle extendability can be
found in [124].

The property of being hamiltonian connected has proven to be more elusive.
Shepherd [224] considered 3-connected claw-free graphs.

Theorem 96 [224]. If G is a 3-connected fK1;3;Ng-free graph, then G is hamiltonian-
connected.

However, no complete characterization of pairs for hamiltonian-connected
graphs is known. The next result is from [112].

Theorem 97. Let R, S be connected graphs ðR; S 6¼ P3Þ and let G be a 3-connected
graph. If G is fR; Sg-free implies G is hamiltonian-connected, then R ¼ K1;3 and S
satisfies each of the following:

(a) DðSÞ � 3.
(b) The longest induced path in S is at most a P12.
(c) S contains no cycles except for C3.
(d) All triangles in S are vertex disjoint.
(e) S is claw-free.

(Note. there are only a finite number of possible graphs for S).
Besides the progress made in characterizing pairs and triples for various

hamiltonian properties, a new and powerful tool for dealing with hamiltonian
problems in claw-free graphs was developed by Ryjác̆ek [212]. This tool has not
only allowed people to attack new questions, but also provided ways to prove a
number of the previously established results in much simpler ways.

For a vertex x such that G½NðxÞ� is connected, a local completion of G at x
means the graph obtained by replacing G½NðxÞ� by a clique on NðxÞ. Ryjác̆ek [212]
then showed the local completion was well defined and if G was claw-free then the
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resulting graph was claw-free. With this result, a closure operation was now
possible. This graph is called the closure of G and is denoted clðGÞ. (Note this
graph is different from the well-known degree sum closure due to Bondy and
Chvátal [45] or any of several other closures that have been developed. For more
information on closures, see [63], [62] and [214].) Ryjác̆ek’s main result is:

Theorem 98 [212]. Let G be a claw-free graph. Then

(a) the closure clðGÞ is well-defined,
(b) there is a triangle-free graph H such that clðGÞ ¼ H ,
(c) cðGÞ ¼ cðclðGÞÞ, where cðGÞ is the circumference of G.

Now, for a class C we say that C is stable under closure (or simply stable) if
clðGÞ 2 C for every G 2 C. Ryjác̆ek [212] then had proved the following impor-
tant result.

Theorem 99. The length of a longest cycle and hamiltonicity are stable properties in
the class of claw-free graphs.

The question remained as to the stability of other hamiltonian type properties.
Several of these were studied in [57] where it was shown that in the class of k-
connected claw-free graphs, pancyclicity, vertex pancyclicity and cycle extenda-
bility are not stable for any k. Further, traceability is stable (even for k ¼ 1) and
homogeneous traceability is not stable for k ¼ 2 although it is stable for k ¼ 7.

Several interesting conjectures thus remain. For example: The property of
being hamiltonian-connected is stable in the class of claw-free graphs. This con-
jecture was recently proved by Brandt [54] for k ¼ 9. However, the question
remains as to the minimum possible k.

Theorem 100 [54]. Every 9-connected claw-free graph is hamiltonian connected.

Also, still remaining is the following problem.

Problem 9. Determine the smallest integer k for which the property of being
homogeneously traceable is stable in the class of k-connected claw-free graphs.

By modifying the closure idea, it was shown in [37] that stability can be
obtained. Their idea was to do a local completion only when a vertex was locally
k-connected rather than just locally connected, that is, when G½NðxÞ� is k-con-
nected. With this modified closure, denoted clkðGÞ, they were able to show the
following:

Theorem 101. Let G be a claw-free graph. Then

(a) clkðGÞ is uniquely determined;
(b) G is hamiltonian connected if and only if cl3ðGÞ is hamiltonian connected, and
(c) G is homogeneously traceable if and only if cl2ðGÞ is homogeneously traceable.

Further, they made the following conjecture.
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Conjecture 15. Let G be a claw-free graph. Then G is hamiltonian connected if and
only if cl2ðGÞ is hamiltonian connected.

In [213] it was shown that every claw-free graph with a complete closure
contains an ðn� 1Þ-cycle. The following was also conjectured:

Conjecture 16. Let G be a claw-free graph of order n whose closure is complete and
let c1 and c2 be fixed constants. Then for sufficiently large n, the graph G contains
cycles Ci for all i with 3 � i � c1 and n� c2 � i � n.

In [128], nonhamiltonian closed claw-free graphs with small clique cover-
ing number were studied. Ryjác̆ek [212] also applied his closure to show the
following:

Theorem 102. Every 7-connected claw-free graph is hamiltonian.

This still leaves open the fundamental conjecture ofMatthews and Sumner [192].

Conjecture 17. Every 4-connected claw-free graph is hamiltonian.

In [60] it was shown that this conjecture holds in the class of hourglass-free (2
triangles sharing a single vertex) graphs. Further, it was shown that a weaker form
of the conjecture holds, namely one with hamiltonian replaced by a connected
spanning subgraph in which each vertex has degree two or four.

The Matthews-Sumner conjecture is equivalent to an earlier conjecture due to
Thomassen [232].

Conjecture 18. Every 4-connected line graph is hamiltonian.

Besides Brandt’s result (Theorem 100), the following results have been
shown.

Theorem 103 [245]. Every line graph of a 4-edge connected graph is hamiltonian.

Theorem 104 [184]. Every 4-connected line graph of a planar graph is hamiltonian.

Recently, Kriesell [182] showed the next result.

Theorem 105. (a) Every 4-connected line graph of a claw-free graph is hamiltonian
connected.
(b) Every 4-connected hourglass-free line graph is hamiltonian connected.

Conjecture 18 is still unsolved even when restricted to classes such as 5 or
6-regular graphs. Saito (see [183]) considered graphs of small diameter and made
the next conjecture.

Conjecture 19. Every 3-connected line graph of diameter at most 3 is hamiltonian
unless it is the line graph of a graph obtained from the Petersen graph by adding at
least one pendant edge to each of its vertices.
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As evidence of this conjecture, Kriesell [183] showed that every 3-connected
line graph of diameter at most 3 has a hamiltonian path.

8. Special Topics

In this section we consider a few special problems that do not fit directly into the
other sections. We begin with the following idea. Let Gc denote a graph G whose
edges are colored in an arbitrary way. A properly colored cycle in Gc is a cycle in
which adjacent edges have different colors. Such cycles are termed alternating
cycles. In particular, we are interested in alternating hamiltonian cycles.

Bollobás and Erd}os [35] considered this problem in colored complete graphs
Kc

n , that is, a complete graph colored with c colors. Let DðGcÞ denote the maxi-
mum degree in Gc in any one color. Bollobás and Erd}oos [35] made the following
conjecture.

Conjecture 20. Every Kc
n with DðKc

nÞ � bn=2c � 1 contains an alternating hamilto-
nian cycle.

This conjecture, if true, would provide a sharp bound, as can be seen by letting
n ¼ 4k þ 1. Then there clearly exists a K2

n so that both its monochromatic sub-
graphs are regular of degree 2k. However, such a graph is clearly not alternating
hamiltonian, as n is odd.

Bollobás and Erd}os [35] were able to show that if DðKc
nÞ < n=69, then it

contains an alternating hamiltonian cycle. This was later improved by Chen and
Daykin [69] who showed DðKc

nÞ � n=17 worked and then by Shearer [222] who
showed DðKc

nÞ < n=7. The best known result is the recent improvement due to
Alon and Gutin [7].

Theorem 106. For every � > 0 there exists an n0 ¼ n0ð�Þ so that, for every n > n0,
every Kc

n satisfying

DðKc
nÞ � ð1� 1=

ffiffiffi
2

p
� �Þn

contains an alternating hamiltonian cycle.

Another somewhat unexpected result is due to Barr [17].

Theorem 107. Every Kc
n without monochromatic triangles contains an alternating

hamiltonian path.

The 2-color version of this general question has been considered separately.
Manoussakis (see [215]) posed the problem of finding a polynomial algorithm for
finding a longest alternating cycle in a 2-edge colored complete graph. This was
recently answered affirmatively in [15]. Earlier, Saad [215] proved the existence of
a randomized polynomial algorithm for the problem. A natural problem now
presents itself and was given in [27].
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Problem 10. Determine the complexity of the alternating hamiltonian cycle problem
for c-edge colored complete graphs when c 	 3.

Clearly we can ask a similar question in other important classes of graphs. A
related problem is due to Bang-Jensen and Gutin [14].

Problem 11. Determine the maximum bounds t1 and t2 such that Kc
m;m satisfying

DðKc
m;mÞ � t1 and DðKc

m;mÞ � t2 is alternating hamiltonian and even-pancyclic, re-
spectively.

For a more complete treatment of this general area see [14].
Next, suppose G is a weighted graph, that is, each edge e of G is assigned a

nonnegative number wðeÞ, called the weight of e. Let the weighted degree
degw x ¼

P
wðeÞ, where the sum is taken over all edges incident to x. Bondy and

Fan [46] gave a Dirac-type result for weighted graphs.

Theorem 108. Let G be a 2-connected weighted graph such that degw x 	 r for
every vertex x of G. Then, either G contains a cycle of weight at least 2r, or every
cycle of maximum weight in G is a hamiltonian cycle.

Note that this result is no longer valid if we permit negative weights. To see
this, subdivide each edge of K2;3 m 	 1 times and weight each edge of the resulting
graph with �1.

Bondy and Fan [46] also raised several natural questions about extending their
result. These questions were all answered negatively. However, with some mod-
ification of the type of conclusion desired, further results are possible. For ex-
ample, Bondy, Broersma, van den Heuvel and Veldman [44] were able to show the
following.

Theorem 109. Let G be a 2-connected weighted graph such that rw
2 ðGÞ 	 s. Then G

contains either a cycle of weight at least s or a hamiltonian cycle.

Bondy and Fan also conjectured that weighted versions of the results of Erd}oos
and Gallai [103], who proved that every graph of order n contains a path of length
at least 2q=n and, provided q 	 n, a cycle of length 2q=ðn� 1Þ existed.

Frieze, McDiarmid and Reed [136] proved that every weighted graph contains
a ‘‘heavy path’’.

Theorem 110. Let G be a weighted graph of order n. Then G contains a path of
weight at least 2wðGÞ=n.

Bondy and Fan [47] provided the following theorem on heavy cycles.

Theorem 111. Let G be a weighted 2-edge connected graph of order n. Then G
contains a cycle of weight at least 2wðGÞ=ðn� 1Þ.

Bollobás and Scott [38] provided extensions of the theorems of both Dirac and
also Erd}oos and Gallai to digraphs. Finally, a weighted extension of a result of
Enomoto was found in [247].
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9. Suppose G is Hamiltonian

In 1982, Mitchem and Schmeichel [194] suggested that the degree bounds in
theorems guaranteeing pancyclicity or bipancyclicity (that is, a bipartite graph
containing all even cycles from 4 to the order of the graph) could be lowered if
hamiltonicity were assumed. This is clearly a strengthening over simply assuming
G is 2-connected. As it turns out, Faudree, Häggkvist and Schelp [122] had
already asked a question of this type.

Theorem 112 [122]. If G is a hamiltonian graph on n vertices with
q > bðn� 1Þ2=4c þ 1 edges, then G is either pancyclic or bipartite.

Then, in 1981, Amar, Flandrin Fournier, and Germa [11] showed the fol-
lowing:

Theorem 113. Let G be a hamiltonian, nonbipartite graph of order n 	 162. If
dðGÞ 	 ð2nþ 1Þ=5, then G is pancyclic.

Hakimi and Schmeichel [220] showed that the edge density could be reduced
even more by considering a consecutive pair of vertices.

Theorem 114. If G is a hamiltonian graph of order n 	 3 and if x and y are adjacent
vertices on a hamiltonian cycle in G such that deg xþ deg y 	 n, then G is pancyclic,
bipartite, or missing only an ðn� 1Þ-cycle.

While Entringer and Schmeichel [99] gave a purely bipartite version of the
Faudree, Häggkvist and Schelp [122] result.

Theorem 115 [99]. Let G be a hamiltonian bipartite graph on 2n vertices and
q > n2=2 edges. Then G is bipancyclic.

This result was followed by several others of this type. Shi [225] showed
that if G is a graph of order n 	 40 and deg xþ deg y > 4n=5, then either G
is pancyclic or bipartite. This result is also best possible as can be seen by
taking five k-sets of independent vertices and cyclically joining all vertices in
one set to all in the next set. This graph has degree sum 4n=5 but lacks
triangles.

Zhang [246] showed the following variation in which it suffices to consider one
vertex and all its nonneighbors. He also considered a bipartite version.

Theorem 116 [246]. If G is a hamiltonian graph of order n and there exists a vertex
x such that deg xþ deg y 	 n for each y not adjacent to x, then either G is pancyclic
or Kn=2;n=2.

Theorem 117 [246]. If G ¼ ðX [ Y ;EÞ is a hamiltonian bipartite graph with
jX j ¼ jY j ¼ n > 3 and there exists a vertex x 2 X such that deg xþ deg y 	 nþ 1
for each y 2 Y not adjacent to x, then G is bipancyclic.
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Tian and Zang [236] considered a bipartite variation using the hamiltonian
assumption.

Theorem 118. If G is a hamiltonian bipartite graph on 2n vertices where n 	 60 and
dðGÞ > 2n=5þ 2, then G is bipancyclic.

Finally, these ideas have recently been extended to weakly and semipancyclic
graphs in [115] and [138]. We close by posing the following more general problem.

Problem 12. Given a result that assumes G is 2-connected and has properties
P1; . . . ; Pk to obtain property P, when does the assumption of hamiltonicity instead of
2-connectivity allow us to lessen the other assumptions and obtain the same result?
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