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Higgkvist conjectured in 1976 that every 2-connected k-regular bipartite graph
G on at most 6k vertices is hamiltonian. Chetwynd and Haggkvist have shown that
G is hamiltonian if G has at most 4.2k vertices. The upper bound on |V(G})| was
subsequently improved to 5k — 12 and then 5k — 8 by Ash and Min Aung, respec-
tively. We shall essentially verify Haggkvist’s conjecture by showing that every
2-connected k-regular bipartite graph on at most 6k-38 vertices is hamiltonian.
€ 1994 Academic Press, Inc.

1. INTRODUCTION

After many contributions of various authors on regular hamiltonian
graphs, Jackson [J] showed that every 2-connected k-regular graph on at
most 3k vertices is hamiltonian. Zhu er al. [ZLYa] improved the bound to
3k + 1 for graphs other than the Petersen graph and obtained in [ZLYb]
the best possible bound of 3k + 3 under the additional assumption that
k = 6. (Hilbig has independently obtained the same result in [Hi].) Bondy
and Kouider [BK7] gave a simple proof for the result in [ZLYa].
Higgkvist considered strengthenning the connectivity hypothesis and
conjectured that every m-connected (m>3) k-regular graph on at most
(m+ 1) k vertices is hamiltonian. Jackson and Jung [see JLZ] have inde-
pendently found counterexamples to this conjecture for all m>=4. The
conjecture is still open, however, for m=3. Zhu and Li [ZL] have given
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a partial solution to this conjecture by showing that every 3-connected
k-regular (k > 63) graph on at most 22k/7 vertices is hamiltonian.

It is natural to try to obtain analogous results for regular bipartite
graphs. R. Haggkvist has made the following conjecture.

Conjecture [H]. Every 2-connected k-regular bipartite graph on at
most 6k vertices is hamiltonian,

The sharpness of the bound 6k, if it is true, can be shown by the graph
obtained from three copies of K, , and two vertices a and b by deleting a
matching of | k/3 ] edges in each of two of the K ,’s and a matching of
k — 2| k/3 ] edges in the other K, , and adding edges between 4, b and the
vertices adjacent to the matchings so that the graph obtained is bipartite
and k-regular. This graph is 2-connected k-regular bipartite on 6k + 2
vertices and it is nonhamiltonian.

Some partial solutions have been obtained by various authors.
Chetwynd and Haggkvist showed in [CH] that every 2-connected
k-regular bipartite graph on at most 4.2k vertices is hamiltonian if & > 300.
Ash proved in [A] that every 2-connected k-regular bipartite graph on at
most 5k-12 vertices is hamiltonian. Then Min Aung [MA] improved the
bound to 5k-8.

By the following theorem, we essentially prove Higgkvist’s conjecture on
regular bipartite graphs.

THEOREM 1. Let G be a 2-connected k-regular bipartite graph on
2n < 6k — 38 vertices. Then G is hamiltonian.

2. NOTATIONS AND PRELIMINARY LEMMAS

Notation and terminology not given here can be found in [BM].

Throughout this paper we shall use G to denote a finite simple bipartite
graph with bipartition V(G)= A u B. For any vertex ae A, and subsets
A'cA and B < B, let Ng(a)={be B:abe E(G)} and e(A’,B)=
|{abe E(G):ae A’ and be B'}|. Let P=wu uyuy---u,,_,u, be a path and
C=u uuy---u,u, be a cycle (the subscripts of u; in such a cycle will be
reduced moduio m throughout). For any W = V(P) (respectively V(C)), let
WH={u,  ;u;eW}and W~ ={u,_,:u,e W} and let W+ =(Ww+U-)*
and W~/ =(W~Y~ 1)~ for any j> 2. For any u, and u;, let

Plu,, uj]=P(ui—]’uj+l)=uiui+l "'uj=C[ui9 ujjzc(ui—la uj+l)

and
P lu,ul=wu,_--u;=C [u, u].
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A segment Plu;, u;] (respectively C[u;, u,]) is said to be a W-segment if
u, , u . €W and {u,u,, ., ..,u,}nW=g. The segment Plu,,u]
(P[u;, u,,], resp.) is also called a W-segment if {u,, u,, .., u,} " W= and
u €W, u, g, i, )" W= and u, _, € W, resp.).

LemMa 2.1. Let P=w u, --u,, be a path in G.

(i) Choose ae A— V(P) and be B— V(P). Suppose there does not
exist an integer i, | <i<m—1, such that u,e N(a) and u,, e N(b). Then
e({a, b}, V(P))<|P|/2+ 1 with equality only if u, € N(b) and u,, € N(a).

(i) Choose a,, a,e A— V(P). Suppose there exist exactly g integers i,
I1<i<m—2, such that u,e Na\) and u;,,eN(a,). Then e({a,,a,},
V(P) < |V(P)r Bl + 1 + g with equality only if {u,,u,} " N{a,)# & and
{tpy_(, Uy} N Nla,)# .

Proof. (i) By the hypothesis of (i),
INp(B)| SIV(P)n Al = {u;y i u;€ Np(a), 1 <i<m—1}].

Thus we have e({a, b}, V(P))<1+|V(P)n 4| with equality only if
u,, € N(a). By symmetry we also have e({a, b}, V(P))< 1+ |V(P)n B| with
equality only if u, € N(b). Summing these last two inequalities gives (i).

(ii) We have
[{ti42: 1, 2€ Nay) and u, ¢ N(a,)}| <|V(P) Bl —|Np(a))l +r,
where r=1if e(a,, {u,,_y, u,,}) =1 or r=0 otherwise. This gives
INp(ay)] —g<|V(P)n Bl — [Np(a))| +r.

Thus e({a,,a,}, V(P)) < |V(P)n Bl +r +q with r=1 only if
e(a,, {u,,_,,u,})=1. The lemma follows by symmetry. ||

LemMMa 2.2, Let P=u,u,---u, be a path in G and X< V(P). Put
Y=X*"nX"—-X, W=XuXtuX", T=V(P)- W, x=|X|, y=1Y| and
t=|T|. Choose ae A—(V(P)— W) and be B— (V(P)— W) and suppose
that for each W-segment S= P[u;, u;] of P there does not exist an integer
h, i<h<j such that u,e N(a) and u,,,eN(b). Then e({a, b}, T)<
(t+x—y+d)/2, whered=0if u,,u, e W,d=1 if exactly one of u, and u,,
isin Wand d=2 if u,, u,, ¢ W.

Proof. Let r=|X"* nX|. We shall call a W-segment S= P[u,, 4], an
(A, B)-segment if u,e A and w;eB. We define (B, 4)-segment, (A4, A)-
segment, and (B, B)-segment in a similar way. Let / be the number of the
W-segments and /,, (respectively, /z,) the number of (4, B)-segments
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(respectively, (B, A)-segments). Let F (respectively f) be the set
(respectively, the number) of the subpaths u,u,,  u, . ;u, 3 of P such that
U, €X*—Xand u,,,e X — X

Then by Lemma 2.1(i), e({a, b}, S)<|S]/2+ 1 if S is an (4, B)-segment;
e({a, b}, S)<|S|/2if Sis a (B, A)-segment; and e({a, b}, S)<(|S| + 1)/2 if
S is an (A, A)-segment or (B, B)-segment. It follows that

! -1
e({a, b}, T)gfi..i%“i__&‘;_

It is clear that /IS x—y—f—r+d—- 1.

Let S=P[u;,,u;] be a W-segment with wu, e B(resp. 4) and §'=
Plu;,u;] the W-segment with Plu;, ,,u, ;1 T =& Then if
Plu; \,up 110Xt nX=F and P[u;, , u,_,] has no subpath in F, we
have u; e B(resp. A). So between any two (A, B)-segments, if there is no
vertex of X+ n X between them, then there exists either a (B, 4)-segment
or a subpath in F between them. This gives [ z</g,+f+r+ 1.

Therefore, we have

t+x—y+d

e({a, b}, T)< 5

LEMMA 2.3. Suppose G is outerplanar. Then \E(G)| <2 |A| + |B| —2.

Proof. This is an easy application of Euler’s Formula. |

LEmMmA 2.4 [AJ]. Suppose G is 2-connected, has minimum degree k,
|A] <3k —3 and |B| <3k —3. Let C be a longest cycle in G. Then each
component of G-C has at most two vertices.

It follows from Lemma 2.4 that in order to prove Theorem 1, we only
need to solve the case when each component of G-C has at most two
vertices. To do this we use the Hopping Lemma described in the next
section.

3. THE HoPPING LEMMA

The Hopping Lemma was first introduced by Woodall [W]. The
following variation was developed by Ash [A] for use in bipartite graphs.
Let C=v,v,v5---v,,v, be a longest cycle in C chosen such that

(1) the number of components of G-C is as small as possible, and

(2) subject to (1), a smallest component H of G-C is as small as
possible.
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Let v be a vertex of H. Define the sets X;{v) and Y,(v) recursively by
putting Yo(v)= and for i> 1, X,-(v)=NC(Y,-_,(v {v}) and Y(v)=
{v,eV(C)v;_y, 0,1 €X,(0)}. Let Xy=Uiny Xi(v), Y, =5, Yilo), x, =
|X,| and y,=1Y,].

Suppose there exist vertices ae A — V(C) and be B— V(C) such that
either @ and b are isolated vertices of G-C, or V(H)={a, b}.

LemMa 3.1 [A, Lemma 4.3]. For each ve {a, b} we have

(i) NY,)cX,, and
(i1) no vertex of G-C is joined to two vertices of X} or two vertices
of X .

DeriniTiON.  Choose a,,a,e A V(C) and b, b,€ Bn V(C) such that
ab,, a,b,e E(G). If

Clay, b)) {a,, b} #D#C(by, a,) N {a,, by},

then we say that a, b, and a,b, are a pair of crossing chords of C.

LEMMmA 3.2 [A, Lemmas 4.4, 49, 4.16]. (i) X, nY,=g=X,nY,.
(i) ri=1X X, |<landr,:=|X; nX, <1
(i) Foreach Te{X},X,}and We {X}, X, } there are no crossing
chords of C between T— X, and W—X,.
(iv) Ifabe E(G) then e(X], X} )=0=e(X_, X;)andr, =r,=0.
In proving Lemma 3.2, Ash used a similar inductive technique to [W]
using the following inductive statement.

LemMa 3.3 [A, statements D(i,j) and D(i,j) from Lemma 4.4,
4.15). For all i, j=1 there do not exist two disjoint paths P, =uu,---u,
and Py=u, , u, - u; such that

(i) uy,u,. €X,(a)and uy, use X;(b),
(i) if u,e Y,(a) for some h<i and u ¢ {u,, us} then u,_ ,,u .,
€ Xy(a),
(iii) if u.e Y,(b) for some h<j and u ¢ {u,, u,, | then u;_,,u,
€ X,(b), and
(iv) either V(P,)u V(P,)=V(C), or ab¢ E(G) and V(P,)u V(P,)=
—{ay, b,} for some a,e A—Y, |(a),bje B—Y,; (b), a;b, € E(G).

We shall need a slight strengthening of Lemma 3.2(iii). (Note that since
N(Y,) = X, and N(Y,)< X, the conclusion of Lemma 3.2(iii) is equivalent
to the statement that there are no crossing chords of C between
T—X,—Y,and W—-X,-Y,.)
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LemMa 34. For each Te {X], X, } and We {X}, X, } there are no
crossing chords of C between T—Y, and W—X,-Y,.

Proof. Suppose a,,a,eX}-Y,, b,,b,eX, —X,— Y, and that a,b,
and a,b, are crossing chords of C. We may assume that a,, a,, b, and b,
occur in this order on C. Choose i and j such that a;, a; € X;(a) and b/,
b €X,;(b). Note that b #a, since b,¢ X, and that a,,a,, b, b, are
not in Y,uY, by hypothesis. Putting P;=C[bh),a;] and P,=
Clbt, by]b,a,Cla,, b,] bya,Cla,,a; ] we contradict Lemma 3.3. We
obtain similar contradictions for the other cases of the lemma. [

4. DISTRIBUTION OF EDGES IN NONHAMILTONIAN
BIPARTITE GRAPHS

We shall adopt the definitions and terminology of Section 3.

LEMMA 4.1. Suppose there exists a path P=u,u,---u,, in G such that
V(P)=V(C) and for some f, g, | < f< g<m:
(1) w,ueX,u, 1 ¢Y,,
(ii) U U, €Xp up €7,
(iii) if u e Y (a) for some i’ then u,_,,u,. € X(a),
(iv) if u,e Y,(b) for some j' then u, ,,u,, € X;(b).

Leat X=X, uX,, W={ueV(P)y {u,u,_,u,  }nX£B}), T=V(P)—W
and t = |T|. Then

+xa—ya+xb_yb+2
2 .

t
e({uf+15ug+l}’ T)S

Proof. Let iand j be integers such that u, u, € X,(a) and u,, u,, € X;(b).
Let S= P[u,, u,] be a W-segment on P and choose u,€S— {u,}. If Sc
Pluy,uc], u,eN(u,,,) and wu,,,€N(us,,) then the paths Q,=
Pluy, up] upttg o Plugyy, up] and Qo=P~ [y uy ] tpyytipo Plup,y, ugd
contradict Lemma 3.3. We obtain a similar contradiction if Sc<
P[ug+2’ um]’ uhEN(uf+l) and uh+1eN(ug+l) or if SEP[”f—#—Za ug]’
Upi1€N(ury ) and u, € N(u, . ). Applying Lemma 2.2 to each of the paths
Plu,,uc], Plus,,,u,] and P[u,,,, u,] and Lemma 3.2(i), we obtain

P+ X,— Yot x,—y,+2
e({uf+l’ug+]}’ < 3 2 L . |
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DErINITION.  For ve{a b} let Z{"'=X}—-Y,Z2")=X,—Y, and
Z,=2PuZ ") Let E,=(V(C)~X,—Y,—Z,)NnA, E,=(V(C)—X,—
Y,—Z,)nB, |E,|=e¢,and |E,|=e,. Let R,=A— (V(C)u {a}), R,=B—
(V(C)u {b}), r,=IR,| and r,=[R,|.

By Lemma 3.2(ii), e,=n—r,—1l—x,—y,—|Z |+ |Z,nX,|=n—
ra—1—xy—y,—2x,—y)+ri+rande,=n—r,—1—x,— y,— |Z,| +
1Zyn Xl =n—r,—1—x,—y, = 2(xp—ys) +ri+r;.

LEMMA 4.2. There exist vertices a,eZ\"),a,eZ"), boeZ{*) and
boe Z\ ) such that either

e(Za_ {a()’ aé)}a Eb)s(xu_ya_ 1)(eb+xb—yb+2)
or
e(Z,— {bo, o}, EN)<(xp—ypy— e, +x,— y,+2)

Proof. Let Z\" ' ={a;:1<i<x,—y,}, Z\" ' ={b;: 1<j<x,— y,} and
let g, respectively b/, be the first vertex of Z{™’, respectively Z}~’, which
precedes a,, respectively b,, on C. We may suppose that the labelling has
been chosen such that the number of edges from {a;, a/} to E, and from
{b,,b/} to E, decreases as the subscripts increase. Thus the lemma will
follow if we can show that

e({a;,a;}, Ey)+e({b, b/}, E)<ey+X,—y,+2+e,+x,—y,+2 (41)

for some i, je {1, 2}. Consider the following two cases which depend on the
distribution of a,, a,, b,, and b, around C.

Case 1: b,eCla,,a,] and b,eCla,,a,] for some i, je{l,2}.
Suppose first that b =a, . Applying Lemma 4.1 to the path P=C[a,, a; ]
withu, :=a,,u;,,:= ay,u,,,:= b;, and u,, := a;, and also to P~ with
uyi=ay, usy,:=bj, u,, = a,, and u, := a, we deduce that (4.1) is
valid. Hence we may assume henceforth that b/e C(a,, b;) and, by
symmetry, that a,e C(b,, a,), b/ e C(a,, b;) and a} € C(b,, a,).

Choose an (X,u X,)-segment S=C[v,, v,]. Suppose S€Cla;,b; ] If
there exists a vertex v, € S— {v,} such that v, e N(b;) and v, , € N(a,) then
the path P=C"[a;, b;]1b,v,C [v,,a,]a vy, ,Clv,,,, b, ] satisfies the

hypotheses of Lemma 4.1 with uy := a7, u, = bj,u, 1= a5, u, ;= b~
and T:= E,UE,u {a,,b;}. Also the path P~ satisfies the hypotheses
of Lemma 4.1 with u, := b, , u;, :=ay, Uy, :=b;,u,:=a; and T:=

E,UE,u{a,,b;} and the roles of 4 and B reversed. Hence

e({a,, a5, b,b}}, E,UE)<e,+e,+2+x,—y,+x,— yp+2, (42)

Y
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and (4.1) holds. Thus we may assume that such vertices v,, v,,, do not
exist and similarly that there does not exist v,e S— {v,} with v, e N(a,)
and v, € N(b;). Obtaining analogous results for C[b;, a5 ], Cla;, b; ]
and C[b;, a; ] and applying Lemma 2.2 to each of the four segments of
C between a,, b, a;, and b, gives

e({ay,a5,b,,b,}, E,UE,)<e,‘+e,+x,—y,+x,—y,+4. (4.3)
Applying a similar argument to a, a5, b and b5 gives
e({ay, a5, b1, b3}, E,VE,)<e,+e,+X,— yot X, =y +4. (44)

Adding (4.3) and (4.4), we deduce that (4.1) is valid.

Case 2: by, byeC[ay, a,]. Choose i, je {1,2} such that b, precedes
b, on Cla,,a,] and let S=C[v,,v,] be an (X,u X,)-segment on C.
Suppose S< C[a;, b ] If there exists a vertex v,eS— {v,} such that
v,€ N(b,) and v, , , € N(a,) then similar to the way from which we have got
(4.2) in Case 1, we deduce that

e({a;,a}, b

b EqUE)<e,+ey+2+x,— yo+x,— yp+2

and hence (4.1) hold. Thus we may assume that such vertices v,, v,,, do
not exist. Similarly, if S< C[b;, a; ], then we may assume that there does
not exist v,eS—{v,} with v,eN(a,) and v,,,e€N(b;). Applying
Lemma 2.2 to the paths C[a;, b7 ] and C[b, a; ] gives

3

et e+ X, — Vot Xxp—yp+2

e({a;, b}, E,U E,) < 5 (4.5)
By symmetry, we may also assume that
— - 2
e({a), b)) E,UE,) St @t e Ve Bom b2y

2

If x,-y,=2=x,—y,, then adding (4.5) and (4.6), we deduce that the
lemma holds with a,:= a,,a;:= a3, bo:= b;, and by := b;. Hence we
may suppose that x,— y,>3. We next show that we may assume that
either

e({b3,b’3}, E)<e,+x,—y,+2. 4.7)
or
e({ay,a}}, Ey)<ep+x,— yp+2. (4.8)

is valid. Consider the following two subcases.

582b/62/2-5
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Subcase 2.1: bye C[a,, a,]. Proceeding as in the proof of Case 1, we
have

e({apap by, by}, E,;2UE)<e,+ey+X,— Yo+ Xy— ¥, + 4

for some fe {1,2} and ge {1, 3}. Thus the lemma is valid unless g=3 and
(4.7) holds.

Subcase 2.2: byeCla,, a,]. Choose {f, g h}=1{1,2,3} such that
b, b, and b, occur in this order on C[a,, a,]. Applying the argument
used to deduce (4.5) and (4.6) to {a,,a,,b,, b,} and {a}, a3, b}, b, },
respectively, gives

e, te,+x,—y,+x,—y,+2
2

e({a29 bg}a lsuL)E|[))s

and

e,te,+ X, —y,+x,—y,+2
5 .

e({a’l’ b.,g}’ Ea Y Eb)g

Adding, we obtain
e({allﬁa2’bg’b’g}9 EaUEb)Sea+eb+xa_ya+xb_yb+2

and either (4.8) is valid, or Lemma 4.2 holds, or g=3 and (4.7) is valid.

We now return to the prood of Case 2.

Suppose x,— y,=2. If (4.8) holds then the lemma is true with a, := q,
and ag:= a,. On the other hand, if (4.8) is false then (4.7) holds. Using
(4.5), (4.6) and the falseness of (4.8), we also deduce that

e({b;, b}, Ey<e,+x,— y,+2.

Combined with (4.7) this implies that the lemma is valid with b, := b; and
by := b,

Hence we may assume that x,— y_, > 3, and also by the argument used
to deduce (4.7) and (4.8) that either

e({a;, a3}, Ey)<ep+x,— yp+2, (4.9)
or
e({b,, b}}, E)<e,+x,— y,+2, (4.10)

is valid.
By (4.5) and (4.6), either (4.8) or (4.10) holds. Thus by symmetry we
may assume that (4.10) is valid. Now if (4.7) holds then the lemma is true
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with by := b; and b := b;. Thus we may suppose that (4.7) is false, and
hence that (4.8) is valid. Furthermore, since (4.7) is true under the
hypothesis of Subcase 2.1, we have b;e C[a,, a,] and we define f, g, h as
in Subcase 2.2.

Suppose (4.9) is false. If aye€ C[b,, b,] then we may use the proof of
Case 1 to deduce that

e({ars alrs bs’ b;}, EaUEb)<8a+eb+xa_ya+xb——yb+4

for some r, s€ {1, 2,3}. This contradicts the facts that (4.7) and (4.9) are
false and hence a;e C(b,, b,]. Let {r,s, t} ={1,2, 3} such that a,,4a,,qa,
occur in this order on C[b,, b,]. Applying the argument used to deduce
(4.5) and (4.6) to a,, a;, b, b, and a,, a;, b,, by, respectively, we deduce
that

e,teptXx,— Vot x,—yp+2
2

e({as3 bg}9 Eau E‘b)S

and

— - 2
e({a, by}, E,u By <ot et e Jed BT I T C
Adding, we contradict the facts that (4.7) and (4.9) are false. The only
alternative is that (4.9) is true.
Now the truths of (4.9) and (4.8) imply the truth of the lemma with
ay:=ay and ag:= a5. |}

LeMMA 4.3. For each Te {Z' Y, Z\7’} and We {Z\*), Z{'} we have
e(T9 W—Xa)gz(xa_ya)+(xb_yb)_2'

Proof. It follows from Lemma 3.4 that G[Tu W— X,] is outerplanar.
The lemma now follows by Lemma 2.3. ||

COROLLARY 44. e(Z,, Z,—X,)<8(x,— y,)+4(x,— y,)—8.

We shall show in the next section that Lemma 4.2 and 4.3 are sufficient
to prove Theorem 1 unless ab ¢ E(G) and there is a large disparity between
x,— ¥, and x,— y,. The remaining results of this section are used to
handle this special situation. Since most of these results apply equally well
when ab € E(G) we take opportunity to state them to cover both cases. To
this end we let Z{t¥=Z"*2_y* if ab¢ E(G) and Z{*V = if
abe E(G). We define Z{~* similarly. We shall assume henceforth that
a;,a,,..and b, b,, ... are arbitrary labellings of X, and X, respectively.
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LEMMA 4.5. Suppose there exists age Z'Y) and an X,-segment S=
C[b;, b;] such that age C(b;, b;) " N(b,) " N(b)). Choose a,e Z'" — {a,}.
(i) Ifa,eClb,, a,] then
Clag, a,1n(Zy 0 Zy ) Nay) =&
=Cla;, b1 (Z} U Z{" ) N(ay);
(i) If a,e Clag, b;] then
Cla,, a0l (20 Z?”)“ N(a))=
= Clb;, a, 10 ((Z§) = {ag NV (Z{— {ag, ag*})) n N(ay);
(ili) If a; € C[b,, b;] then
CLb/ b, 1n(Zy v Zy ) N N(ay) = &;
(iv) Suppose T=C[b,, b,] is an X,-segment and a, € C(b,, b,). Then

either b, or b, is not adjacent to a,. Furthermore, if {b}? b;?}c
ZPI O Z then either {b,, b}?} or {b,, b, ?} is disjoint from N(a,).

Proof of (i). Suppose ve Clay, a;1N(Z{ 0 Z )N N(a,) and let u
be the vertex of X, which follows v on C. If ve C[a,, b;) then put P, =
Clb;,a; Jand P,=C[u, b;] b,ayClay, v] va,Clay, a, 1. lfve C[b,, a;?]
then put Py=C[u,a; ] and P,=C"[b;,a,] aph;C[b;,,v]va,Cla,;,ay ]
If v=a; then put P,=Clu,ay ] and P,=C"[a[,b;]1b;a0C[ay,b; ] In
each case the paths P, and P, contradict Lemma 3.3. We obtain a similar
contradiction if ve C[a,, b,1n(Z{’ 0 Z{T>) n N(a,).

Proofs of (i1) and (iii)). We proceed as in (i).

Proof of (iv). If a,e C[b;, a,] then (i) implies that either b, or b, is not
adjacent to a,. Similarly, if a, € C[a,, b,] then (ii) implies that either b, or
b, is not adjacent to a,. Finally, if a, € C[b,, b;] then (iii) implies that b,
is not adjacent to a,. A similar proof holds for the second assertion
of (iv). |

Let

F*'={ageZ\* ) a,e C(b;, b)) N(b,) " N(b,)
for some X,-segment C[b,, b,]}

and define F{~ analogously.

COROLLARY 4.6. |F)|<1 and |F\7<1.

Proof. |F'¥’| <1 follows immediately from Lemma 4.5(iv). We can
deduce |F7)| <1 by symmetry. ||
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LEMMA 4.7. Let S=C[b;, b;] be an X,-segment. Then either
i) CBS,b)NZPANb)=@, or
(i) CbS,b)nZPNb)=@, or
(i) C(b;", b)NZ) N (N(b,)u N(b;))=F'*.

Proof. Suppose the lemma is false. Then there exist distinct vertices
a,,a,€C(b;, b} Z* such that a, e N(b,) and a,e N(b;). If a, precedes
a,on C[b;, b;] then P, =C[b",a; Jand P,=C~[b;,a,] a,b,C™[b,, b;]
b,a,Cla,, a; ] contradict Lemma 3.3. We obtain a similar contradiction if
a, precedes a; on C{4,,5,]. |

LEMMA 48. Let |F'*)| = f. Then
ZH—F), Zy— X, )<5(xa= Y, = f)+ (xp— o) + 71— 4

Proof. For b,e Z{*), let b} be the first vertex of Z,~’ which follows
byon C. Let Zy={b,eZ," . Nb)nZ T ' nC(b¥, b,) ¢ F'*} and Z;=
{b¥eZ\:b,¢Z,}. Thus |Z,|+|Z}|=x,—y,. Let Z}=2Z,—Z, - Z}. Tt
follows from Lemma 4.7 that the only vertices of Z; which can be adjacent
to a,e Z{*) — F'* are the ones belonging to an X,-segment C[b,, b,] with
a,e C[b;,b"]. Thus

e(Z—F ) ZHNK|Z) —F ) +r <x,— y,~f+ry,
a b a

where the term r, is included since a vertex a, in (Z{Y)—F*)nX, is
joined to two vertices a,; and a;} which may both belong to Z;. Since by
Lemma 3.4 there are no crossing chords between Z{*’ and Z,— X, or
between Z{*) and Z; — X, we may use Lemma 2.3 to deduce that

e(Z(a+)—F(+)’ ley‘Xa)Sz(xa_ya—f)+ IZ“ -2
and
e(ZH = F), Z3— X)) < 2xa— ya— f)+1Z3 - 2.
Hence,
e(ZEz+)_F(+)a Zb_Xa)
=e(ZW—F, Z}uZILZ}-X,)
< 2(xa_ya_f)+ IZ;‘ +2(xa-ya_f)+ Izil +xa_ya_f+rl_4
SS5(xa=ya— )+ xp—y)+ri—4 1
LEMMA 49. Suppose F'*'={a,} and that there are exactly t
X,-segments S=C[b,;, b;] such that aye N(b;)~ N(b,)~ C(b;, b;). Then

e(Z(a+)’ Zb—Xa)gs(xa_ya)-’_xb_yb+t+rl_4'
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Proof. Let H be the graph obtained from G by deleting the 7 edges ayb;
where S=C[b,, b;] is an X,-segment on C such that a,e N(b;) " N(b;) n
C(b,, b;). It can easily be seen that C is a longest cycle of H such that the
number of components of H-C is as small as possible and that the sets X,
and X, generated by ¢ and b on C in H remain the same as in G. In addi-
tion, the set F'*’ is empty in H. So applying Lemma 4.8 to H we deduce
that there are at most 5(x,— y,)+ X, — y,+r, —4 edges from Z{*) to
Z,— X, in H. Thus in G we have

eZ, Zy—X,)<5(x,— y )+ x,— yp+t+r,—4. |}

LEmMA 4.10. Choose distinct a,, a;€ Z'*' and suppose ve Cla,, a;]1n
Ne(a)"nNe(a)t nE,. Then e(v, Z,) < 2.

Proof. Let P=C [a;,v"]v"a,Cla;,v Jv a;Cla;, a;]=u uyu;z---u,,.

If v is adjacent to two vertices of P[a;, v* 1N Z}*), say u, and u,, then
Ur U, €X, and the paths P, = Plu,,u;]Jusou, P [u,, us, ] and
P,=P[u,,,,u,] contradict Lemma 3.3. Thus e(v, P[a, ,v* 1N Z;") < 1.

Similarly for all {T,, T,} = {P[a;,v* ], P[v*,a; ]} and all {W,, W,} =
{Z{),Z7)} we have e(v, T,nW,)<1 and if e(v, Tyn W,)=1 then
e(v, T, W,)=0. The lemma now follows. |

For each a4, a,e Z(*), let D(i, j)=Cla,,a,]nNe(a,)” nNe(a)t nE,
and DY) =}, ; D(i, j). Define D'~ analogously using Z{ .

LemMMma 4.11.  Suppose ab¢ E(G) and F'*)={a,}. Let S=C[b,, b;] be
an X,-segment on C such that age N(b,)n N(b,)nC(b;,b;). Let T=
C[b,, b,] be an (X,0 X,)-segment on C such that b,, b,e Z,. Choose
a,,a,eZY)—F'*). Then

(i) e({a;,ar}, TOE)SITANE,|+|D'*V'nT|.
(i) e({ag,a,}, T)S|TB|+|D'AT]|.
Proof of (i). Without loss of generality we may suppose T'< C[a,, a,].
Applying Lemma 2.1(ii) to C(b,, b;), we have
e({a;, a,}, TNE)S|TNE|+|D'""'nT|+1

with equality only if bg”eN(al) and b, ?€ N(a,). We shall assume that
equality occurs and use Lemma 4.5 to obtain a contradiction. There are
three cases depending on the distribution of a4, @, and § on C.

Case 1. a,eC[b;,a,]. Using Lemma4.5(i) and the fact that
b}*eN(a,), we have b,eC[b;, a,]. Since T C[a,,a,] it follows that
a,e C[b;, a,]. Now the fact that b, > € N(a,) contradicts Lemma 4.5(i).
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Case 2: a,eC[ay, b;]. We obtain a similar contradiction to Case 1
using Lemma 4.5(ii).

Case 3: a,eC[b;,b]]. The fact that b'’eN(a,) contradicts
Lemma 4.5(ii1).

Proof of (ii). Using Lemma 2.1(ii), we have
e({ag,a,}, T)S|TNB|+| DT +1

with equality only if b,e N(a,) and b,eN(a,) for {s,:}=1{0,1} and
T<Cla,, a,]. We shall assume that the equality occurs and use Lemma 4.5
to obtain a contradiction.

Case 1. a,eC[b;,a,]. I T<C[ag,a,] then by Lemma 4.5(i),
b,¢ N(a,) and if T< C[a,, a,] then by Lemma 4.5(i), b, ¢ N(a,).

Case 2: a,eC[aq, b;]. We proceed as in Case 1 using Lemma
4.5(ii).

Case 3. a,eC[b;,b;]. By Lemma 4.5(iii), b, ¢ N(a;). So we must
have b, € N(ay), b,€ N(a,) and T< C[ay, a,]. Then the paths C[b,, a; ]
and C[b,, a0) apb,C[b,, b,] bya,Cla,, ay ] contradict Lemma 3.3. |

5. PROOF OF THEOREM 1

We proceed by contradiction. Suppose the theorem is false and let G
be a counterexample. Let C be a longest cycle in G chosen such that the
number of components of G-C is as small as possible. By Lemma 2.4 each
component of G-C has at most two vertices. Choose ae 4 — V(C) and
be B— V(C) such that either a and b are isolated of G-C or, if every
component of G-C has exactly two vertices, then ab e E(G).

For ve {a, b}, construct the sets X,, Y,, and define r, and r, as in
Section 3 and sets Z,, E,, F**), F*~), D*), D) R,, R,, r,, and r, as in
Section 4. Let Z} =Z, — X,. Using Lemma 4.2 we may assume that there
exist vertices @, € Z{*) and a} e Z| ™’ such that

e(Za_ {al’ all}’ Eb)s(xa_ya_ 1)(eb+xb_yb+2)~ (51)

Also, since G is k-regular, and N(Y,) <X, and N(a)c X,u {b} by
Lemma 3.1(i), we have

e(X,, A=Y, —{a}))<x.b—(y,+ Dk+1=(x,—y,—1)k+1 (52)

with equality only if abe E(G). Since k>2 we deduce from (5.2)
that x,— y,> 1. Furthermore, if x,— y,=1, then |Z, =2 and there are
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at least two edges on C from Z, to X,. This contradicts (5.2). So we
have

Xg— Va2 2. (5.3)

Coam 1. If e(Z,,ZX)< p(x,— y)+q(x,— ys)—1 for some real
numbers p, q, and | then

L+ p+1—(q—2)xp— ys)
xa~ya+l '

nzk+x,+x,—3—p+

Proof. Using (5.1), we have
e(Z,, Ep) S(xg— yo— INes+ X5 — yp+2) + 2e,.
Using the hypothesis of Claim 1 and Lemma 3.1(ii), it follows that
e(Z,, Ey 0 ZF U RS (x,— yo— 1)ep+ X~ ¥y, +2)
+2e,+2r,+ p(x,— ya) +q(x,— yo) — L.

Since each vertex of Z, has degree & and at most r, +r, vertices of Z,
could be adjacent to b, this gives

eZ, X)) 2 (x,— yo— 12k — e, — (x5~ y3) — 2)
+ 2k —e,— (x5 — ) = 2ry— p(x,— y,)
—(g—=2)xp—ys)—ri—ro+1
Thus (5.2) implies that
0= (x,— Yot Dk —ey—(xy— ) =2) +3=2r, — p(x,— o)
—(@—2)xp—yp)—r, —ro+1.
Since e, =n—x,—x,— (xp— y,)—7r,— 1 +r, +r,, this gives
02 (x,—yat+t Wk+x,+x,—1—n—ri—r)+rx,—y,—1)+3
—P(xa— ) —(g=2)(xs—yp) —ri—ry+ 1.
Since r, +r, <2 by Lemma 3.2(ii), and r, >0 this gives

L+1+p—(9—2)(x,~ ys)
xa_ya+1 .

nzk+x,+x,—-3—p+ |

CLaM 2. ab¢ E(G).
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Proof. Suppose abe E(G). Then by Lemma 3.2(iv) we have
e(Z{,Z ")y =0=e(Z' ), Z,). Using Lemma 4.3, it follows that

e(za9 Z:) <4('xa— ya)+ 2(-xb— yb)

Using Claim 1 and the facts that x, > & — 1 and x, >k — 1, we deduce that
n>3k—-10. |

CLAM 3. x,— y, = (1/2)3k — 11 —n)(x, — yo.+ 1)+ (17/2).

Proof. Using Corollory 4.4, Claim 1, and the facts that x,>k and
x, =k, we have

17—2(xp— y»)

n=3k—11+
xa_ya+l

The claim now follows. |

Cramm 4. | D) <1 and |DV7) 1.
Proof. Suppose [D'?)| =d > 2. Using Lemma 4.10, we have
e(D'), Z, UE, UR)<d2+e,+r,).
Thus,
e(D, X, )2dk—2—e,—rp)
=dk+x,+x,+x,—yp+r,—2—r,—r,—r,+1—n)
22(x,— ¥s).
Combining with (5.2) gives
(X, A—(Y,u{a} uD )< (x,— pa— Dk —2(x,— 1,).

Using (5.1) and a similar argument to the proof of Claim 1 taking p=38,
g =4, and /=8 by Corollary 4.4 gives n =k + x,+ x, — 10. This contradicts
the hypothesis on n, since x, >k and x, > k. Thus |[D*’| < 1. By symmetry
we also have (D[ <1. |

CLalM 5. FWO U FC) £ 4

Proof. If F'")=@ =F'") then by Lemmad4.8 and the analogous
statement for Z{~'— F~) we have

e(Za’ Zb*) < lo(xa_ ya)+ z(xb_ yb)
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Applying Claim 1 and using the facts that x,>k and x,>k gives
n> 3k — 13, contradicting the hypothesis on n. |

CLaM 6. If F'"'=F, let t=0. If F'*) = {a,} then let t be the number
of X,-segments S=C[b,, b;] such that age N(b,) " N(b;) n C(b,, b,). Then

(i)
e(Z0, X,) 2 30~ )2k + X, + 3, — (X, — yo) — 12— 1)
—(Xp—yp)—t—2r,+4;
(i)
e(ZL), Xa) 2 (xa— )k +x,+ Xy + (Xp— p,) =6 —n)
—(xp—yp)—t—2r, +4.

Proof of (i). Choose a,, a,eZ{*’ and let S be an (X, U X,)-segment
on C. Using Lemma 2.1(ii), we have

e({a;,a,}, SNE)<SISNE|+ D) nS)+ 1.
Summing over all .S and using Claim 4 gives
e({ay,a,}, E))<e,+ 1+ {x,— y)+ (xp— ).
Hence,
e(Z, Ep) < 5(Xa— yalles+ 14 (x,— ya) + (x5 — yu)).
Using Lemmas 4.8, 4.9, and 3.1(ii), we obtain
e(ZJ), E,0ZF UR,) S 5(xa— yales+ 14 (xa— yu) + (x,— 1))
+5(x,—y)+(xp—yp)+t+r,+r —4

Thus since there is at most r, vertex in Z{*'n X, which is possible
adjacent to b,

e(Z), X2) 2 5(x, — ya)(2k — ey — (x,— ya) — (xp— y,) — 11)
—(Xp—yp)—t—r,—2r +4

3(xa = )2k + x5+ X, — (X, — ya)

—10—r —ry—n)—(x,~ ys)

—t=2r + 4+ ir(x,— y,—2).

and the claim follows by (5.3). |



HAMILTON CYCLES IN BIPARTITE GRAPHS 253

Proof of (ii). Trivially e(Z\*), E,) < (x,— y.) e,. Using Lemma 4.8, 4.9,
and 3.1(ii), we obtain

e(Z Ey U ZF UR,) S (X, — o) €+ 5(Xa— Ya)
+(xp—yp)+t+r,+ri—4
Thus
e(Z0), X,)2 (xa— yullk—e,—5) = (x,— yp) —t—r,—2r +4
=(x,— VK +x,+x,+ (X~ y,)—4—r,—r,—n)
—(xp=yo) =1 =2ri+4+r,(x,— y,— 1),

and the claim follows by (5.3). |}
The proof of Theorem 1 now splits into two cases depending on the size
of x,— y,.

Case I: x,—y,=3

Cramm 7. If F*Y)={a,}, then
ZH—) {ao} X
P %(xa_ya_1)(2k+xa+xb+(xb—yb)_z(xa_ya)_12—”)
_(xb‘yb)—2r1+4.

Proof. Choose a,,a,€Z\*)— {a,} and let S be an (X, U X,)-segment
on C. Using Lemma 2.1(ii) and Lemma 4.11(i), we have

e({a,,ay}, SNE)<|SNE|+ D' nS|+1,

with equality only if at least one end-vertex of S belongs to Z,. Since there
are at most 2(x,— y,) segments S with an end-vertex in Z,, this gives

e({a;, az}, Ey)<ey+14+2(x,— y,)
Thus,
e(Z —{ag}, Ep) <3x,— ya—1)e,+ 1+ 2(x,— 3,)).
Using Lemma 4.8 and Lemma 3.1(ii) gives

e(Z{ —{ao}, Ey2UZF O R) < j(xa— yo— D)y + 1+ 2(x,— y,))
+5(xa_ya_1)+(xb—yb)+rb+rl_4'



254 JACKSON AND LI

Thus,
e(Z,") —{ao}, X)) 2 5(x,— ya—1)(2k — e, — 2(x,— y,) — 11)
—(xy—yp)—r,—2r +4
=3(x,— ya— D2k +x,+ x5+ (x,— yp) — 2(xa— ¥a)
—10—r, —r,—n)
—(xp—yp) = 2r +4+4r,(x,— y,—3),

and Claim 7 is valid by the hypothesis of Case 1. §

CrLamM 8. Either FW'= or F'7 )=,

Proof. Suppose F'*)={a,} and F'~’= {a;}. Using Claim 7 and the
analogous claim for Z{~> — {ay}, we have

e(Z,—{ag, a5}, X,)
2 (= ya— D2k +x,+ x4 (x,— y,) = 2(x,— y,) = 12—n)
—2(xp— yp)—2r, —2r, + 8.

Combining with (5.2) and Claim 2 gives
02 (x,—yo— Ik +x,+ x5+ (Xp— yp) —2(x,— y,) — 12— n)
—2(x,—yy)—2r,—2r,+8.

Since x, >k and x, >k, we have

n>3k—12+(xb_yb)(1__2_~>_2(xa_ya)
xa_ya_l

Using Claim 3 and the fact that 3k — 11 —n = 8 gives

17 2
n>3k—12+(4(x,,—ya+1)+_>(1——_>—2(xa—ya)
2 xa_yu_l

15 33
e -
7 xa—y,,—1+2(x” Va)

=3k —18,
since x,— y, = 3. This contradicts the hypothesis that n <3k —19. |

Using Claim 8, Claim 5, and symmetry, we may assume that

F*'=1{a,} and F\") = . (5.4)
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CraM 9. x,—y,=3and x,— y,=k/2.

Proof. Using Claim 7 and the analogous result to Claim 6(i) for Z(~)
gives

e(Za— {ao}, Xa)

1
2 E(xa—ya_ 1)(4k+2xa+2xb+(xb_yb)
—3x,— y,)—24—2n)

1
+§(2k+xa+xb—(x,,—ya)— 12 —n)
—Z(Xb—yb)—2r1—2r2+8

1
> 3 (xg— yo— )4k + 2x,+ 2x,+ (X, — y5)

=3 = $a) =25 =2)+ =205, = 3) + 4,

since x, =k and n < 3k — 13. Combining with (5.2) and Claim 2, we obtain

1
025(xa—ya—1)(2k+2xa+2x,,+(x,,~y,,)—3(x,,—ya)—25—2n)
2y pp) L4 a (5.5)
2 )

Since x, 2k and x, =k, this gives

3

2n>6k—25+(x,,—yb)<1——————
xu_ya—l

>—3(xa—ya)'

Suppose x,— y,—1>3. Then we may use Claim 3 and the fact that
3k —n—1128 to deduce that

1
2n>6k—25+<4(xa—ya+1)+—z><1————3——>—3(-’5a“ya)
2 xa—ya—l

49 99
Y7 U L a—
PRI CI TR T

= 6k — 37,
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since we are supposing that x,— y,— 1 = 3. This contradicts the hypothesis
on n and hence we must have x,— y,— 1 =2. Substituting into (5.5) gives

Xy —2y,

2n>6k—30—

Thus x,—2y,20 and x,—y,>=x,/22>k/2, completing the proof of
Claim 9. |

We can now complete the proof of Case 1. Using (5.4), Claim 7, Claim 9,
and the analogous result to Claim 6(ii) for Z! ', we have

e(Z,—{ap}, X)) =5k +4x,+4x,+2(x,— y,)— 32 —4n.
Combining with (5.2), Claim 2, and Claim 9 gives
4nz23k+4x,+4x,+2(x,— y,)— 32212k —32,
since x, 2k, x,=k, and x,— y,=2k/2 by Claim 9. This contradicts the
hypothesis on n and completes the proof of Case 1.
Case 2: x,—y,=2

Using (5.2) and the symmetry between Z'*' and Z! ), we may assume
that

k
e(X,, Z(a”)si. (5.6)
CramM 10. F{*)'={a,}.
Proof. Using Claim 6(i), we have
e(Xa, Z£+))>2k+xa+xb*‘14—’1—'(xb—yb)—t—2rl+4
>k—(x,—yp)—1t, (5.7)

since x, 2k, x, 2k, and n <3k — 12. On the other hand, using Claim 6(ii),
we have

(X, ZUN) 22k 4+ 2x, + 2%, + (X, — yp) — 12 20—t —2r, + 4
>(x,—y5)— 1, (5.8)

since x,>k, x, 2k and n<3k—5. Combining (5.6), (5.7), and (5.8), we
deduce that r>0. |1

Let Z(a+)= {ao, a, }.
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CLamm 11. x,—y,<k/2.

Proof. Let T be an (X,uX,)segment. Trivially we have
e(a,, T)<|Tn B|, and by Lemma 4.5(iv), e(a,, T)<|TnB|=2 if T is
also an X,-segment. Since there are at most 2(x, — y,)(X, v X,)-segments
which are not X,-segments, we have

elay, Esz0Zy O R,)<ep+4(x,— ya) + 1,
==X, =X, — (X, —y)—1+8+7r +r,.
Thus,
ela;, X)2k—ri+x,+x,—T—n+4(xy— y,)~ri—ra>x,~— s,

since x, 2k, x, 2k, e(a,,b)<r, and n<3k—10. The claim now follows
using (5.6). |

We can now complete the proof of Case2. Let 7 be an (X,u X,)-
segment. By Lemma 2.1(ii), Lemma 4.11(ii), and Claim 10, we have

e({ag, a,}, T)SITN B +|D'NT|+1,

with equality only if T is not an X,-segment. Summing over all T and using
Claim 4 and the fact that there are at most 2(x,— y,) (X,u X,)-segments
which are not X ,-segments gives

e({ag, a1}, Exw Z,)<ep+2(x,— yp) + 1D+ 2(x,— y,)
<ep+2x,— yp)+ 5.
Using Lemma 3.1(ii), we have
e({ag, a,}, E,0Z, UR,)<ey+2xy—ys)+ 541,
=n—X,—X,+ (X,— yp)+4d+r +r,.

Thus,

k
e({ao, a,}, Xa)>2k—"x+xa+xb—"“4_(xb—J’b)"1"2>'2'

by Claim 11 and the facts that x,>k, x,>k, e({ay,a,},b)<r,, and
n <3k —7. This contradicts (5.6) and completes the proof of Case 2 and
Theorem 1. |



258

[A]

[AJ]

[BK)
[BM]
[CH]
(J]
[JLZ]
[H]
[Hi]
[MA]
(W]
[ZL]

[ZLYa]

[ZLYb]

JACKSON AND LI

REFERENCES

P. AsH, “Dominating Cycles, Hamilton Cycles and Cycles with Many Chords in
2-Connected Graphs,” Ph.D. Thesis, Goldsmiths’ College, London, England, 1985.
P. AsH anD B. Jackson, Dominating cycles in 2-connected bipartite graphs, in
“Progress in Graph Theory” (J. A. Bondy and U.S.R. Murty, Eds.), pp. 81-87,
Academic Press, New York, 1984

J. A. BoNnDY AND M. KOulDER, Hamilton cycles in regular 2-connected graphs,
J. Combin. Theory Ser. B 44 (1988), 177-186.

J. A. Bonpy aND U. S. R. MurTY, “Graph Theory with Applications,” Macmillan,
New York, 1976.

A. CHETWYND AND R. HAGGKvisT, Hamilton cycles in regular bipartite graphs,
preprint, University of Stockholm.

B. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory
Ser. B 29 (1980), 27-46.

B. Jackson, H. L1, axp Y.J. ZHu, Dominating cycles in regular 3-connected
graphs, to appear.

R. HAGGKv1sT, Unsolved problems, “Proceedings of Fifth Hungarian Colloquim on
Combinatorics, 1976.”

F. HiLBiG, “Kantenstrukturen in nichthamiltonschen Graphen,” Ph.D. Thesis,
Technischen Universitdt Berlin, 1986.

MIN AUNG, Longest cycles in triangle-free graphs, J. Combin. Theory Ser. B 47
(1989), 171-186.

D. R. WoopaLL, The binding number of a graph and its Anderson number,
J. Combin. Theory Ser. B 15 (1973), 225-255,

Y. J. Znu anp H. L1, Hamilton cycles in regular 3-connected graphs, to appear.
Y. J. Znu, Z. H. Ly, anp Z. G. Yu, An improvement of Jackson’s result on
Hamilton cycles in 2-connected k-regular Graphs, 4nn. Discrete Math. 27 (1985),
237-248.

Y. ). Znu, Z. H. Ly, anp Z. G. Yu, 2-connected k-regular graphs on at most
3k + 3 Vertices to be hamiltonian, J. Systems Sci. Math. Sci. 6, No. 1 (1986), 36-49;
6, No. 2 (1986), 136-145.



