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ABSTRACT

This is intended as a survey article covering recent-developments in the
graphs containing @ spanning cycle.

area of hamiltonian graphs, that is,
This article also contains some material on related topics such as trace-
able. hamiltonian-connected and pancyclic graphs and digraphs. as well as

an extensive bibliography of papers in the area.

0. INTRODUCTION

The hamiltonian problem; determining when 2 graph contains a spanning
Named for Sir William

cycle has long been fundamental in graph theory.
blem traces its origins t0 the 1850s. Today, how-

Rowan Hamilton, this pro
ever, the flood of papers dealing with this subject and its many related
problems is at its greatest; supplying us with new results as well as many

new problems involving cycles and paths in graphs.

To many, including myself, any path or cycle question is really a part <
this general area. Although it is difficult to separate many of these ideas,
for the purpose of this article, T will concentrate my efforts on results ar
problems dealing with spanning cycles (the classic hamiltonian problem) .
ordinary graphs. I shall not attempt to SuIvey digraphs, the traveling sales-
man problem (see inst

ead [107]), or any of its related questions. However, 1

" shall mention a few related results. 1 shall further restrict my attention pri-
marily to work done since the late 1970s; however, for completeness, 1 shuil
include some earlier work in several places. For an excellent general intro~
duction to the hamiltonian problem, the -reader should see the article by
J.C. Bermond [23]. Those not familiar with this topic or with graphs in gen-
eral are advised t0 begin there. Further background and related material
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can be found in the following related survey articles: [31], [24], [108], [163],
[51], [19], and [124].

This article concludes with a rather extensive list of references. I have
also tried to include the Math Reviews reference whenever possible. I hope
this will be of use to those interested in research problems in this field.

Throughout this article we will consider finite graphs G = (V, £). We re-
serve n to denote the order (|V/|) of the graph under consideration and g the
size (|E|). A graph will be called hamiltonian if it contains a spanning
cycle. Such a cycle will be called a hamiltonian cycle. If a graph G contains

- a spanning path it is termed a traceable graph and if G contains a spanning
path joining any two of its vertices, then G is hamiltonian-connected. It G
contains a cycle of each possible length [, 3 < | < n, then G is said to be
pancyclic. These are clearly closely linked ideas and by no means does this
list exhaust the related concepts.

There arm\Tmr[;lIere special attention
here—both for their contribution to the overall theory and for their affect
on the development of the area. In many ways, these four results are the
foundation of much of today’s work.

Beginning with Dirac’s theorem [53] in 1952, the approach taken to de-
veloping sufficient conditions for a graph to be hamiltonian usually in-
volved some sort of edge density condition; providing enough edges t0
overcome any obstructions to the existence of a hamiltonian cycle. Dirac
saw a natural method for supplying the necessary edges, using the mini-
mum degree 8(G).

Theorem 0.1 [53]. If G is a graph of order n such that §G) = n/2, then G
is hamiltonian. - T

Dirac’s theorem was followed by that of Ore [132]. Ore’s theorem relaxed
Dirac’s condition and extended the methods for controlling the degrees of
the vertices in the graph.

Theorem 0.2 [132). If G is a graph of order » such that deg' x+degy=zn
for every pair of nonadjacent vertices x,y € V, then G is hamiltonian.

This relaxation stimulated a string of subsequent refinements (see [44] Of
[23] for more details), culminating in the classic work of Bondy and Chvétal
[33] concerning stability and closure. In [33], as in Ore’s [132] motivating
work, independent (mutually nonadjacent) vertices whose degree sum is at
least n are fundamental. The following notation will be useful:

) 4
o(G) = min{E deg v;|{v1,v2,...,vi} is independent in G (k = 2)}-
i=1

In [33], Bondy and Chvital extended Ore’s theorem in a very useful way:
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ertices whose degree sum is at
damental hamiltonian result is

A graph G of order n is hamiltonian if, and only if,

C.(G)is hamiltonian.

Theorem 0.3 provides an interesting relaxation of Ore’s condition. Now
we no longer need to verify that each pair of nonadjacent vertices has degree
sum at least n, but rather, only enough pairs to ensure that the closure is
recognizable as being hamiltonian. Since the closure is hopefully a denser
graph, your chances should improve. However, the number of edges actually
added in forming the degree closure can vary widely. It is easy to construct
examples for all possible values from 0 to () — ¢. Thus, we might receive
no help in deciding if the original graph is hamiltonian, or the degree closure

may be the complete graph.

This idea led naturally to the following definition. Let P be a property

defined for all graphs or order n and let k be an integer. Then P is said to
be k-degree stable if, for all graphs G or order 7, whenever:G + uv has
property P and deg u + deg v = k, then G has property P. Among the re-

sults established in [33] were the following:
(i) The property of being hamiltonian is n-degree stable.

(ii) The property of being traceable is n — 1-degree stable.
(iii) The property of containinga C; (5§ < 5 = n)is (2n — 1)-degree stable.-

For other work related to the idea of closure, see [3], [11], [60], [141,142],

- 11701
. ne fourth fundamental result took a different approach. Let Bo(G) de-

aote the independence number of G, that is, the size of a maximal inde-
“dent set of vertices in G. '

Theorem 0.4 47}, If G is a graph with connectivity & such that Bo(G) £ Kk,
then G is hamiltonian. o

In the following sections, we shall see that each of these results has in-

spired many others.

1. GENERALIZATIONS OF THE FUNDAMENTALS

B

Many generalizations of Theoremé‘(’).l—OA have been found. Haggkvist and
Nicoghossian [86] sharpened Dirac’s theorem by incorporating the connec-
...ity of the graph into the degree bound.

Theorem 1.1 [86]. If G is a 2-connected graph of order 7, connectivity k
and minimum degree 8(G) = i(n + k), then G is hamiltonian.
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This result itself was recently generalized in [16].

Theorem 1.2 [16]. If G is a 2-connected graph of order » and connectivity
k such that 03(G) = n + k, then G is hamiltonian.

A natural direction, taken by Bondy [32], was to further increase the
number of vertices involved in the independent set.

Theorem 1.3 [32]. If G is a k-connected graph of order n = 3 such that
0441(G) > 3(k + 1)(n — 1), then G is hamiltonian.

Degree sum conditions like those of Theorems 0.2 and 1.3 do have a
major shortcoming, however; they apply to very few graphs. Thus, it is
natural to consider variations on such conditions, with the hope that these
variations will be more applicable.

Along these same lines, Bondy and Fan [34] provided an Ore-type result
for finding a dominating cycle, that is, a cvcle that is incident to every edge
of the graph. Harary.and Nash-Williams [89] showed that the existence of a
dominating cycle in G is essentially equivalent to the existence of a hamil-
tonian cycle in the line graph of G, denoted L(G).

Theorem 1.4 [34]. Let G be a k-connected (k = 2) graph of order n. If any
k + 1 independent vertices x; (0 < i < k) with N(x;) N N(x;) = & (0
i = j < k) satisfy 0%+1(G) = n — 2k, then G contains a dominating cycle.

This result has the immediate corollary that if G is k-connected with
8(G) = (n — 2k)/(k + 1), then G has a dominating cycle. This proves 2
conjecture of Clark, Colburn, and Erdds [48]. Fraisse [73] had independently
proved this conjecture; however, his result is slightly weaker than that of
Bondy and Fan. ’

Bondy [32] also gave a sufficient condition for G to contain a cycle ¢

-with the property that G — V(C) contains no clique K;. When k =1, this

result corresponds to Ore’s theorem. Veldman [162] further generalized this
idea. A cycle C is said to be D,-cylic if and only if every connected sub-
graph of order A has at least one vertex in common with C. This idea also
generalizes the idea of a dominating cycle. Veldman [162] generalized
Theorem 1.1 as well as others to D,-cycles.

Another very interesting approach was introduced by Fan [59]. He
showed that we need not consider “all pairs of nonadjacent vertices,” but
only a particular subset of these pairs.

Theorem 1.5 [59]. If G is a 2-connected graph of order » such that
min{max(deg u,deg v)|dist(u,v) = 2} =

n
.2’

then G is hamiltonian.

!
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Independent sets are not the only ones that have been useful in conjunc-
tion with generalized degrees. The collection of all pairs of vertices (or all
t-sets of vertices) provides yet another generalization of Dirac’s Theorem;
one with a more combinatorial flavor. ’

Theorem 1.9 [61}. IfGisa 2-connected graph of sufficiently large order n
such that deg(S) = n/2 for every set S of two distinct vertices of G, then G

is hamiltonian.

A similar result holds for sets of more than two vertices (see [61]); how-
ever, at this time the best known lower bound is n/2 + c(k), where c(k) is
a constant that depends upon k, the number of vertices in the set.

A direct generalization of Ore’s theorem was provided in [81]. We say
that G satisfies IC(G) = k if for any set of ¢ independent vertices xy, - . ., Xi:
N N@)| = kA (4, t,)-pair A, B is a pair of sets of independznt vertices
satisfying |4| = t:, |B| = and A N B = .

Theorem 1.10 [81]. Let G be a graph of order n satisfying IC2(G) = k,
(k = 2). Further, let £, and t, be positive integers satisfying 2 < f +

t, < k + 1. If for every (1, t2)-pair 4 and B, deg(A) + deg(B) = n, then G -

is hamiltonian.

Many other results have. been discovered in the last few years using
generalized degree (neighborhood union) conditions. For a survey of such
results see [108]. .

By varying the typical degree sum approach to that of adjacent vertices
rather than nonadjacent vertices, Brualdi and Shanny [42] obtained a
hamiltonian result about the line graph, L(G), of the given graph.

Theorem 1.11 [42]. If G is a'graph of order n = 4 such that for any edge uv
in G, degu + degv = n, then G contains a dominating circuit, hence

L(G) is hamiltonian.

Veldman [161] further developed this idea. His work can be viewed as yet
another form of generalized degree. We follow his notation here. Call tw0
subgraphs H; and H of G close in G, if they are disjoint and there is an
edge of G joining a vertex in H, and a vertex of H,. If H, and H; are dis-
joint, but not close, then they are said to be remote. The degree of an edge ¢
of G is the number of vertices of G close to e when e is viewed as a sub-
graph of order two. We denote the edge degree as deg(e). Clearly, this i
nearly the generalized degree of an adjacent pair of vertices.

Theorem 1.12 [161]. Let G be a k-connected graph (k = 2) such that -
for every k + 1 mutually remote edges €o, €1, -« €k of G, 3k, deg(e:) >
%k(n — k), then G contains a dominating cycle.
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Denote by «(G), the number of components of a graph G. Using this
parameter, Chvétal [46] introduced the following concept: We say that Gis
t-tough if for every vertex cut-set S, w(G — 8) < ||/t Chvatal showed that
if G is hamiltonian, then ¢ = 1. He also conjectured that if G was 2-tough,
then G was hamiltonian. Thomassen and others have produced examples of
nonhamiltonian graphs with ¢ > 3/2, while in [58] it is shown that there are
nonhamiltonian graphs with toughness arbitrarily close to two. Molluzzo’
[126] also studied toughness. Note that recognizing toughness has recently
been shown to be an NP-complete problem [17]. This had been a long-
standing open problem.

Toughness, when combined with other conditions, can be used to ob-
tain both new results and improvements of existing results. (See also [25]

and [99].)

Theorem 1.17 [98]. Let G be a 1-tough graph of order n = 11 such that
02(G) = n — 4. Then G is hamiltonian.

Theorem 1.18 [18]. Let G be a 2-toug' ~raph of order n such that
03(G) = n. Then G is hamiltonian.

Further generalizations of Theorem 1.17 ca~ be found in [147] and gener-
alizations of Fan’s theorem with regard to 0. ghness can be found in [15].
For a more complete survey of results relating toughness and hamiltonian
properties, see [19]. '

Turning to work related to Theorem 0.4, we find that in [36] it was
shown that a 2-connected graph with Bo(G) < 2 is either pancyclic, or one
of the graphs C, or Cs. Amatr, Fournier, Germa, and Haggkvist [7] showed
that if G is k-connected with Bo(G) = k + 1, then for every maximum
length cycle Cof G, G — V(C) is complete. More recently, Benhocine and
Fouquet_l[Zl],_consid_er_ed hamiltonian line graphs in this context.

Theorem 1.19 [21]. f G isa 2-connected graph and Bo(G) = k(G) + 1
then L(G) is pancyclic unless G is one of Cs,Cs, Cs, C1, the Petersen grap
or the graph of Figure 1.
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Many results related to Theorems 0.1-0.2 have been found for digraphs.
[n 1981, Bermond and Thomassen [24] gave an outstanding survey of these
,nd many other results on cycles in digraphs. I shall now briefly mention
come subsequent work related to our four fundamental theorems.

If D is a digraph and S C V(D), we say that S is Bo-independent if
the digraph induced by S, denoted D[S], contains no arcs; we say that S is

,-independent if D[S] contains no cycles; we say that S is B ,-independent
B, < B and if D is the digraph
obtained from a graph G by replacing each edge of G by a directed 2-cycle,
then Bo = B1 = PB2. Thus, each parameter may be considered a directed

| snalogue of the undirected independence number Bo.

Thomassen [154] gave examples of nonhamiltonian 2-connected digraphs
with B2(D) = 2 and nonhamiltonian 3-connected digraphs with g, =3
and Bo = 2. Thus, the Erdds—Chvital theorem does not completely gener-
alize to digraphs. The following problem was posed by Jackson [96]:

Problem. Determine if for every integer m, there exists an integer
(smallest) fi(m) (i = 0, 1, or 2) such that every fi(m)-connected digraph D
with B:(D) < m is hamiltonian. - -

Jackson [96] and Jackson and Ordaz [97] have investigated this problem:

Theorem 1.20 [96].

1. Let D be a digraph with B2(G) = r. If k(D) = 2(r + 2)!, then D

is hamiltonian.
2. Let D be a digraph such that V(D) can be covered with m complete

symmetric subgraphs. If k(D) > m(m — 1), then D is b onian.

A digraph is said to be 2-cyclic if any two of its vertices are ~rntained in
a common cycle.

Theorem 1.21 [97]. IfDisa k-connected digraph and
1. ifk = 2B(D) — 1, then D is 2-cyclic;
_ifk = 3, and Bo(D) < 2, then D is 2-cyclic;

2
3. ifk = 15 and Bo(D) < 3, then D is 2-cyclic;
4. if k=1 and Bo(D) =1, then D contains cycles of length [ for

3<l<m
5. if k = 3 and B,(D) < 2, then D contains cycles of i lengths /,

2<l=n
Jackson and Ordaz [97] also posed several more problem:

Problem.

1. Does there exist an integer k such that every k-connec e digraph D
with Bo(D) =-2 is hamiltonian?
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2. Does every k-connected digraph D with B¢(D) < k + 1 have a hamil- !
tonian path? 3

Conjecture [97]. Given any integer m, there exists a smallest integer gm)
such that every g(m)-connected digraph D with B¢(D) < m is 2-cyclic.

In a yet unpublished manuscript, Haggkvist (private communication)
proved a Dirac type result on digraphs, namely, that there exists a positive
constant ¢ such that every digraph of order n with minimum in- and
outdegree at least (% — ¢)n is hamiltonian. Further, he showed that there
exist infinitely many digraphs with minimum in- and outdegree at least
( + c)n that are not hamiltonian. A basic unsolved problem in this area is
to find the best result of this type.

In [30], it is shown that for every positive constant &, every sufficiently
large tournament with minimum in- and outdegree at least (3 + &n con-
tains the kth power of a hamiltonian cycle.

2. RANDOM GRAPHS AND THE USE OF PROBABILITY

In this section we shall see that probabilistic methods are very useful in
studying hamiltonian graphs (and many other graph properties). It is not

my purpose to introduce the reader to random graph techniques. For those

not familiar with these ideas, see [28]. t

We shall use Pr(X) to denote the probability of event X. If 2, is a model

of random graphs of order n, we say almost every graph in ., has property 2

Q if Pr(Q) — 1 as n — . Note that this is equivalent to saying that the
proportion of all labeled graphs of order 7 that have Qtendstolasn — ©-

These are two fundamental models for defining probability measures o1
the set of all 2 subgraphs (here M = (2)) of an n vertex complete graph-
Both of these models have been extensively studied.

* (The edge density model) Suppose that 0 < p < 1.Let G,,pdenoted .

graph on 7 vertices obtained by inserting any of the M possible edges
with probability p.

* (The fixed size model) Suppose that N = N(n) is a prescribed func-
tion of 7 that takes on values in the set of positive integers. Then
there are S = (%) different graphs with N edges possible on the vertex

set {1,2,...,n}. We let G, v denote one of these graphs chosen unl-

formly at random with probability 1/S.

The first major advance in this area was achieved independently bY
Pésa [136] and Korshunov [103], when they proved the following result:

Theorem 2.1 [136,103]. There exists a constant ¢ such that almost every
labeled graph on 7 vertices and at least cn log n edges is hamiltonian.
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It is also clear that if G is a hamiltonian graph, then its minimum degree

§(G) = 2. Thus, we see that

Pr(G,, i is hamiltonian) =< Pr(&(G,, ".’) = 2).

¥ Komlos and Szemeredi [102] and Korshunov [104] were the first to link the
threshold for 8(G) = 2 with the threshold for G being hamiltonian. It was

known that
Pr(8(Gum) 22 —> 1 if, and only if,
w(n) = 2M/n — log n — loglogn —> «.

They showed that this necessary condition was also sufficient to ensure
that almost every G, u and G,,, is hamiltonian.

Theorem 2.3 [102,104]. Suppose w(n) — ® asn —> @, and let

p= %{log n + log log n + w(n)}

and

i

L(n) [%{log n + loglogn + w(n)}J.

Then almost every G, , is hamiltonian and almost every G,, . is hamiltonian.
In fact, they showed an even more direct relationship.

Theorem 2.4 [102,104]. Assume that a random labeled graph is con-
structed as follows: the first edge is chosen at random, the second edge is
chosen at random from the remaining (3) — 1 possibilities, etc., until a
graph with minimum degree 2 is formed. Then the probability that the
resulting graph is hamiltonian approaches 1 as n — . :

Theorem 2.4 provides us with an “almost sure decision rule” to decide if
a graph is hamiltonian: Simply check whether it contains vertices of de-
gree 0 or 1. The number of times we will be wrong is negligible for large n.

Related investigations were made by Shamir [144], Bollobas [27], Bollobas,
Fenner, and Frieze [29] and Frieze [75]. The algorithmic aspects of these
improvements will be discussed in Section 4.

Bollobas et al. [29] used the following strengthening of Theorem 2.3 due
to Komlos and Szemeredi [102] to produce their algorithmic work.
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Theorem 2.5 [102]. For L(n) = (n/2)(logn + log log n + ¢)

if ¢, —> —;

0,
lim Pr(G,,. is hamiltonian) = e, ifc, —> ¢
n—>ee

1, ifc, —> .

ForV, = {1,2,....n},letv €V, independently make m random (but not
ncessarily distinct) choices cw, i) €V i=12,....,m. This is done inde-
pendently for each v € V,. Then consider the multigraph

D(n,m) = (V,, E(n,m)), where
E(n,m) = {vcwi)|vEV,1= i <m,andv # c(vi)}.

(That is, we ignore the orientation on the edges (v,c(v, 1)), but we do not
coalesce multiple edges or remove 1oops. Then with this in mind, Fenner
and Frieze [66] accomplished a major step when they verified these graphs
are almost always hamiltonian. Their proof was the first example of the
“coloring technique” that has proved most useful in this area.
Theorem 2.6 [66]. For m = 23, limu-e Pr(D(n, m) is hamiltonian) = 1.

They further conjecture the naturally anticipated fact that this can be
improved to m = 3. Frieze [75] was able to improve this to m = 10 as well
as improve the time of the algorithm used to produce the cycle (see Sec-
tion 4 for more details).

Let R(n, r) denote the random regular graph chosen uniformly from the
set of r-regular graphs on ¥,. Bollobas [26] and Fenner and Frieze [67] inde-
pendently proved that there is a constant ro such that for any r = 7o,

Illi_)rronn Pr(R(n,r) is hamiltonian) = 1.

In [67], it was shown that ro = 796, while in [75], this was improved 10
ro = 85. Again, Frieze conjectures that the best value actually is ro = 3-

One might hope that the problem of finding hamiltonian cycles in ran-
dom bipartite graphs is casier then in G, ,. However, this is not the case.
Progress was made by Frieze [76]. Here we let G, p denote a random br-
partite graph with n vertices in each partite set and probability p that any
edge is in Ga,»; p-

Theorem 27 [76]. Letp = ((logn + loglogn + ¢,)/n). Then the prob&
bility that G, ; is hamiltonian tends to e ¥ asc,—>c.

As with random graphs, the obstacle to be overcome in random bipartif¢
graphs turns out to be the existence of vertices of degree at most 1.

'
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Turning to digraphs, we note that the analogous problem seems harder, es-

ccially in view of the fact that the useful work of Pésa [136] (see Section 4
for more details) does not have directed analogues. But despite this prob-
lem, McDiarmid [122,123] was able to show that the probability that a ran-
dom digraph D, , is hamiltonian is not smaller than the probability that
G, is hamiltonian. Using this fact he deduced the following result:

Theorem 2.8 [122,123]. Ifp = (1/n) (1 + ¢) (log n) then

Pr(D,,, is hamiltonian) — {(1): EZ Z g’.

Other interesting results are due to Robinson and Wormald [140], who
roved that the probability that a cubic graph is hamiltonian is at least .
0.974. They also showed that almost every cubic bipartite graph is hamilto-
nian. However, Richmond, Robinson, and Wormald [137] showed that at
times hamiltonian cycles are rare.

Theorem 2.9 [137]. Almost every cubic planar graph is nonhamiltonian.

3. FORBIDDEN SUBGRAPHS

A new approach to the hamiltonian problem, although not new to graph
theory in general, began with a rather innocent observation due to Good-
man and Hedetniemi [77]. Before exploring this approach, some terms will
be helpful. Given graphs Fy, Fs, ..., Fi, we say that G is {F\, F2, ..., Fi}-
free if G contains no induced subgraph isomorphic to any F; (1 < i < k).

In considering graphs that are free of some set of graphs, we are restrict-
ing our attention to a class of graphs defined with specific structural limita-
tions. Thus, we may be able to avoid the pure density-type arguments seen
earlier. Our hope, of course, is to find conditions that will work on graphs
not previously covered by density results. In fact, what we tend to obtain
are results that apply when the graphs are either dense or very sparse.

Central to most forbidden subgraph results to date is the complete bipar-
tite graph K, ; (sometimes called a claw) or graphs very closely related to
K, (see Figure 2). Some other graphs that have proven to be useful are
shown in Figure 3.

We are now ready to state Goodman and Hedetniemi’s result.

Theorem 3.1 [77]. If G is a 2-connected {K 3, Z:}-free graph, then G is
hamiltonian.

The proof of Theorem 3.1 is very simple and in fact it is easy to show
that the only graphs satisfying its hypothesis are complete graphs, complete
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graphs with a matching removed, or a cycle. Goodman and Hedetniemi
pointed out that this seemed to be the first result that actually applied t0

a cycle.
In 1979, Oberly and Sumner [131] really opened the door to this ap-

proach, by relating forbidden subgraphs with another property, local con-
nectivity. We say a graph G is locally connected, if for each vertex %, the
subgraph of G induced by N %) 1s a connected graph.

Theorem 3.2 [131l. A connected, locally connected, K, s-free graph of
order n = 3 is hamiltonian.

Further, Oberly and Sumner made the following interesting conjecture:

Conjecture. If G is a connected, locally k-connected, K, x+2-free graph
of order n = 3, then G is hamiltonian.

The work of Oberly and Sumner spurred further investigations of the
same type. Attempts were made to broaden the sets of graphs that were for”
bidden. See Figures 2 and 3 for some of the graphs that have been used-

Theorem 3.3 [54]. Let G be a graph of order n = 3 that is {K),3, F}-re€
Then, ,

@ ifGis connected, then G is traceable;
(i) if G is 2-connected, then G is hamiltonian.
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This result was followed by other extensions of Theorem 3.1.

Theorem 3.4 [79]. If G is a 2-connected {K| 3, Z,}-free graph, then either
G is pancyclic or G is a cycle.

Since I and A4 are induced subgraphs of F, every I-free or A-free graph is
also F-free. Thus, the following corollary of Theorem 3.3 is obtained:

Corollary 3.5. Let G be a 2-connected K ;-free graph.

() If G is Ifree, then G is hamiltonian.
(ii) If G is A-free, then G is hamiltonian.

Zhang [168] considered degree sums in claw free graphs. In particular, he
showed that if G is a k-connected, K, ;-free graph of order n such that
1(G) = n — k, then G is hamiltonian. '

Broersma and Veldman [41] introduced a relaxation of the forbidden sub-
graph condition by allowing certain of the forbidden graphs to exist, pro-
vided their adjacencies outside their own vertex set are of the “proper
type.” We say a subgraph H of G satisfies property ¢(u, v) if

(N@w) N N@) - V(H) # &.

Thatis, u, v € V(H) and u and v have a common neighbor in G outside of
H. Using this idea, they obtained generalizations to several results, includ-
ing Theorem 3.1._ The vertices a, b,, and b, are as in Figure 3.

Theorem 3.6 [41]. Let G be a 2-connected K 1,3-free graph.

(i) If every induced Z, of G satisfies ¢(a, b,) or ¢(a, b,), then either G is
pancyclic or G is a cycle.

(ii) If every induced Z, of G satisfies ¢(ay, b,) or ¢(a,, b2), then either G
is pancyclic or G is a cycle.

The nonhamiltonian K, ;-free graph of Figure 4 has the property that ev-
ery induced Z, satisfies ¢(a,, b,) or ¢(ay, b,); hence, in Theorem 3.6, “and”

bt vm——

T % — oy

cannot be replaced by “or.” Broersma and Veldman also obtained a gener-
alization of Corollary 3.5(i) using these ideas. They also used some other
related graphs (see Figure 3) to obtain the following result:

Theorem 3.7 [41]. Let G be a 2-connected K, ;-free graph. If every in-
duced subgraph of G isomorphic to P; or P; satisifies &(a, b)) or ¢(a,b,) or
(¢(a,c)) and ¢(a,c,)), then G is hamiltonian.

An immediate corollary of Theorem 3.7 was originally obtained in [78].

Corollary 3.8 [78]. If G is a 2-connected K, ;-free graph of diameter at
most 2, then G is hamiltonian.
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Broersma and Veldman [41] conjectured the following generalization of
Corollary 3.5(ii) and Theorem 3.3.

Conjecture.

1. Let G be a 2-connected K 5-free graph. If every induced A of G satis
fies ¢(a1,az), then G is hamiltonian. .

2. Let G be a 2-connected K ;-free graph. If every induced F of G satis-
fies (¢(a1,a2) and ¢(a1,as)) or (¢(ai,az) and ¢(az,as)) or (Pp(as,a3)
and ¢(a,, as)), then G is hamiltonian.

FIGURE 4
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Recently, a different relaxation has been explored by Flandrin and Li [69]

Theorem 3.9 [69]. Let G be a 2-connected graph of order n = 16 and

‘.,, minimum degree 8. If 6 = (n/3) and if for any two nonadjacent vertices u

and v, the number of induced subgraphs isomorphic to K, ; containing u

- and v is less than 8 — 1, then G is hamiltonian.

[n [70], Flandrin and Li showed that if G is 2-connected and
4n
o3(G) = 3 + [N@) N N(w) N N(w),

then G is hamiltonian. This bound was reduced to n + [N@w) N N(w) N
N(w)| in [68]. :

Matthews and Sumner [120, 121] studied hamiltonian properties of graphs
obtained from K ;-free graphs.

Theorem 3.10 [121}. Let G be a 2-connected, K, ;-free graph with
5(G) = (n — 2)/3, then G is hamiltonian.

Matthews and Sumner also made the following conjecture:

Conjecture [120]. If G is a 4-connected K, ;-free graph, then G is hamil-
tonian.

It is interesting to note that we can reduce the connectivity from 4 to 2,
when we have a reasonable neighborhood union condition present.

Theorem 3.11 [63]. If G is a 2-connected K s-free graph of order p = 14
and § = {x, y}, where x and y are nonadjacent vertices of G, and for each
such §,deg § > (2n — 2)/3, then G is pancyclic,

Conjecture [63]. If G is a 3-connected K 3-free graph of order n such that
deg S > (2n — 5)/3, where S is any set of two nonadjacent vertices, then G
is hamiitonian.

Another problem in this area arose from consideration of the famous re-
sult of Fleischner [71], showing that the square of any 2-connected graph is
hamiltonian. (Recently, Riha [138] has obtained a short proof of this re-
sult). The typical example that shows that the connectivity cannot be low-
ered in Fleischner’s theorem is provided by S(K ), the subdivision graph
of the claw (see Figure 5), whose square is not hamiltonian.

In [80], it was conjectured that the square of any connected S(K, 3)-free
graph must be hamiltonian. This conjecture was verified by Hendry and




138 JOURNAL OF GRAPH THEORY

FIGURE b

Vogler [91]. We conclude this section with the following powerful result of

Fleischner [72] concerning the square of a graph:

Theorem 3.12 [72]. For a connected graph G,

(i) G? is hamiltonian if and only if G? is vertex pancyclic, and
(ii) G? is hamiltonian-connected if and only if G is panconnected.

4. ALGORITHMS

Despite the fact that the hamiltonian problem is NP-complete, algorithms
of a probabilistic nature and algorithms for special classes of graphs have
been developed. As was mentioned in Section 2, Pdsa [136] was the first t0

B suggest an algorithm that converges almost surely for a graph of order 7

and size cnlog n, ¢ = 3. The ideas behind his theoretic work suggested 2
probabilistic algorithm for determining the existence of a hamiltonian cycle.
Tests of this algorithm were first performed by McGregor (see [100]) on
graphs of order up to 500 and by Thompson and Singhal [156] on graphs of
order up to 1000. The ideas behind Pésa’s work have been refined in [29]

and [75] to obtain improvements in time complexity. Here we naturally

only consider graphs with minimum degree at least 2.

The fundamental idea behind Pésa’s algorithm is a path t;anSformation
operation often called a rotation. It works as follows: Given a path P =

V1, V2, - -

.,v; and an additional edge e = vv; (1 = i<k —2), wecan

create a new path, also of length k — 1, by deleting the edge vivi+ and in-
serting the edge e. Thus, define the path operation ROTATE (P,e) as

ROTATE (P,(:‘) = vl,vz,...,vi,vk,vk_l,...,v,-+1 .

The operation, ROTATE produces a new path with v; as its initia] vertex

and v;4; as its end vertex.

Pésa’s algorithm begins by selecting a vertex xo and trying to extend this

trivial path, call it P, by including any ‘
(namely, xo) of this path. At first this extension adds some neighbor, say Xy

unused neighbor of the end vertex

to P. We now repeat this step from X1 and continue extending P from the
nonfixed end vertex until we can no longer extend the path. At this point,

4

URL

either we have a hamiltonian par
nonfixed end vertex of the path.
exist an edge ¢ = viv; l=si=s
(P,e) to obtaiz & new path, say
rotating when vc are unable to €
tinue this process until a hamiltc
rotations exceeds some specifie:
called the extension-rotation app

Other early algorithms were d
[144]. In 1984, Bollobas et al. [.
finding hamiltonian paths. Thei
had time complexity O(n*™). It
technique. Recently, Frieze [75]
Pésa’s techniyacs can be used -
HAM 1, which satisfies

lim 7 ~TAM1 finds a!

Further, Luczai and Frieze (see

Frieze [75" = » has shown th
HAM 2, wh atisfies

lim Pr (HAM 2 finds a

for any constant 7 = 85.
Another recent development
used an edge coloring based alg
struct a hamiltonian path from

Theorem 4.1 [83]. Thereisar
ing: For any fixed probability p
{en)p + o(n).

Other special case algorithm:

5. MULTIPLE HAMILTONIAN

In trying to construct hamiltor
the transformation from a non
often many different spanning ¢
count the number of distinct ¢
Wwish to show the existence of
consider both of these questior

~We begin with results on ec
first such results is due to Nebe:
of graphs.




»wing powerful result of

pancyclic, and
—~2 .
5% is panconnected.

NP-complete, algorithms
|l classes of graphs have
6sa [136] was the first to
; for a graph of order n
soretic work suggested a
¢ of a hamiltonian cycle.
McGregor (see [100]) on
inghal [156] on graphs of
ave been refined in [29]
:xity. Here we naturally.
it 2.

is a path transformation
iows: Given a path P =
l<i=<k—2), we can
g the edge v;v;+; and in-
n ROTATE (P, e) as

—lyeres Vil -
th v, as its initial vertex

and trying to extend this
ighbor of the end vertex
lds some neighbor, say x,
ue extending P from the
i the path. At this point,

£ e m———

cither we have a hamiltonian path and we

UPDATING THE HAMILTONIAN PROBLEM 139

qonfixed end vertex of the path. Since 5(G)
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Theorem 5.1 [129]. IfGisa connected graph of order at least n = 6, then
there exists a hamiltonian cycle C of G? and a hamiltonian cycle C, of G°
such that C and C, are edge-disjoint.

This result strengthens the well-known results that G* is hamiltonian
and if n = 5, that G° has a 4-factor.

Other density conditions have been developed along the lines we investi-
gated in Section 1. Nash-Williams [128] generalized Dirac’s theorem to ob-
tain a result on multiple edge-disjoint hamiltonian cycles.

Theorem 5.2 [129]. If G is a graph of order n such that 8(G) = n/2, then
G contains |(5(n + a, + 10))/224] edge-disjoint hamiltonian cycles, where

0, if niseven;
a, = .
" 1, otherwise.

Jackson [94] investigated multiple hamiltonian cycles in regular graphs.

Theorem 5.3 [94]. If G is a k-regular graph of order n (n = 14) and k 2
(n — 1)/2, then G contains 3k — n + 1)/6 edge-disjoint hamiltonian cycles.

Note that Jackson’s Theorem provides a strengthening of Theorem 5.2in
the case of regular graphs. Jackson also conjectured that if G is a k-regular
graph on n vertices, where k = (n — 1)/2, then G contains k/2 edge-disjoint
hamiltonian cycles. That this conjecture cannot be extended to small k
(k = 4,5) has been shown by Zaks [165]. He demonstrated an infinite fam-
ily of 4-regular, 4-connected graphs in which any two hamiltonian cycles
shared at least & of their edges and he demonstrated a family of 5-regular:
5-connected planar graphs without two edge-disjoint hamiltonian cycles.
Such a family of 5-regular graphs was also found by Owens [133]. Owens
[133] also showed the existence for every r = 3, and every k,0 < k < nf2.
of an r-regular, r-connected graph that contains k edge-disjoint hamiltonian
cycles, but not & + 1 edge disjoint hamiltonian cycles.

Faudree, Rousseau, and Schelp [65] developed a degree sum condition
implying the existence of multiple hamiltonian cycles and in so doing pro-
duced another generalization of Ore’s theorem.

Theorem 5.4 [65]. Let G be a graph of order n = 3 and k be a positi¥e

integer. If the sum of the degrees of any pair of nonadjacent vertices is &

least n + 2k — 2, then for n sufficiently large (n = 60k will suffice), G
has k edge-disjoint hamiltonian cycles.

They further conjectured that the degree sum condition could be d¢
creased to “=n,” if an additional minimum degree condition was impOSed‘
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Let G be a graph of order n = 20 and let 6(G) = 5. If
deg x + deg y = n for any pair of nonadjacent vertices x and y, then G
contains at least two edge-disjoint hamiltonian cycles.

Faudree et al. [65] were also able to generalize another of Ore’s results (the

-k =1 case below) based on the size of the graph.

Theorem 5.6 [65]. Let k be a positive integer and G a graph of order n
and size ("3 ") + 2k.

1. If n = 6k, then G has &k edge-disjoint hamiltonian cycles.
2. Ifn = 6k?, then G has k edge-disjoint cycles of length /, for any integer /
in the range 3 to n.

The generalized degree condition discussed earlier has also been used to
obtain a result on multiple edge-disjoint cycles. In order to do this, several
additional conditions were necessary. The edge-connectivity, k:(G), of a
nontrivial graph is the minimum number of edges whose removal from G
results in a disconnected graph.

Theorem 5.7 [64]. Let k be a fixed positive integer. Then there is a
constant ¢ = c(k) such that if G is a graph of sufficiently large order n
satisfying

1. [N@) U N()| = ((2n + ¢)/3) for each pair u, v of nonadjacent vertices,
2. 8(G) = 4k + 1,

3. k(G) = 2k, and

4. k(G — v) = k for every vertex v,

then G contains k edge-disjoint hamiltonian cycles.

Any result that supplies sufficient conditions for a graph G to contain &k
edge-disjoint hamiltonian cycles and is based on a generalized degree condi-
tion like condition 1 must have these types of added restrictions. Examples
to show this are provided in [64]. However, at this time, only conditions 3
and 4 are known to be sharp.

A corresponding result using all pairs of vertices rather than nonadjacent
pairs of vertices would be interesting, but at this time remains unknown.
Also, extensions of Theorem 5.7 to the case of more than two vertices would
be desirable.

Bondy and Haggkvist [35] developed a generalization of the well-known
result of Grinberg [82].

Theorem 5.8 [35]. Let G be a 4-regular plane graph that is decomposable
into edge-disjoint hamiltonian cycles C and D. Denote by Fy,, Fi2, Fa, and
Fa, the sets of faces of G interior to both C and D, interior to C but not D,




f*
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{nterior to D but exterior to C and exterior to both C and D, respectively.
Then

g(Fn) = g(F») and g(Fn) = g(Fx)

where g:2f — N defined by g(X) = Zrex(d(f) — 2) where d(f) is the
number of edges in the boundary of f.

Note that Zaks [166] has another generalization of Grinberg’s theorem.

The question of counting the number of hamiltonian cycles has been
considered in several papers. Sheehan and Wright [146] counted hamilto-
nian cycles in dense graphs.

Theorem 5.9 [146]. Let G be an (n, g)-graph with A(G) = B, let H(G) be
the number of hamiltonian cycles in G, and let M = ((n — 1)1)/2 be the
number of hamiltonian cycles in K. Then, if

~Z——-—>a<oo as n—> o and B = o(n), then

H(G) -2

—_— > € as n —> ©.

M
Sheehan [145] also studied graphs with exactly one hamiltonian cycle.

Theorem 5.10 [145]. Let G be a graph of order n containing exactly onc
hamiltonian cycle. Then the maximum number of edges in G is (n*/4) + 1.

As usual, special classes of graphs also provide us with a chance t0
say more.

Theorem 5.11 [88].

1. For alln = 12, there exists a maximal planar graph of order with ex-
actly four hamiltonian cycles. .

2. Every 4-connected maximal planar graph on n vertices contains a!
least n/log, n hamiltonian cycles.

A. Thomason [153] provided the answer to several interesting problems.
Smith (see [159]) proved that in a cubic graph, the number of hamiltonian
cycles containing a given edge is even. Thomason [153] proved that if all ver-
tices of G, with the possible exception of two (say u and v), have odd de
gree, then the number of hamiltonian paths from u to v is even. Thomaso
also generalized in several ways the result of Kotzig (see [40]) that in 2 bi-
partite cubic graph, the total number of hamiltonian cycles is even.

Sloane [148] asked if the ex-
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Sloane [148] asked if the existence of a pair of edge-disjoint hamiltonian

cycles in G implied the existence of another such pair. Thomason [153] an-

swered this positively. :

Theorem 5.12 [153]. In a 4-regular graph of order n = 3, the number of
pairs of edge-disjoint hamiltonian cycles in which two fixed edges lie in the
same cycle is even.

Nincak [130] proved that if G contains k edge-disjoint hamiltonian
cycles, then G contains at least k(2k — 1) hamiltonian cycles. Thomason
[153] showed the following:

Theorem 5.13 [153]. If a 2k-regular graph G of order n =3 has a decom-
position into k edge-disjoint hamiltonian cycles, then

1. each edge of G is in at least 3k — 2 hamiltonian cycles,

2. G has at least k(3k — 2) hamiltonian cycles, and

3. G has at least 3k — 2)(3k — 5)...(7)(4)(1) hamiltonian decomposi-
tions. : ,

Tomescu [157] considered this question for regular graphs.

Theorem 5.14 [157]. Let G be an m-regular graph of order 2m — k
(mk = 0 mod 2). . :

1. If k = 1 and m = 3k, then each edge of G is contained in at least
(m — 1)(m — 2)--+(m — k) hamiltonian cycles of G.
2. The graph G has at least 3(m!/(m — k — 1)!) hamiltonian cycles.

Finally, Horak and Tovérek [93] studied the number of hamiltonian cycles
in complete k-partite graphs. They obtained a recursive formula for such
graphs. Using this, they were able to show the following:

Theorem 5.15 [93]. Let G be a graph of order n with Bo(G) = m. If H(G)
is the number of hamiltonian cycles in G, then H(G) < 3k — m)!
Mk —m+1—1i).

Note that in a very recent paper, Cooper and Frieze [50] have investi-
gated the number of distinct hamiltonian cycles in a random graph.

6. HIGHLY SYMMETRIC GRAPHS

In 1968, Lovész [116] conjectured that every connected vertex-transitive
graph contained a hamiltonian path. This conjecture has been verified for
several special orders and classes, and except for a few notable exceptions,
such graphs contain a hamiltonian cycle. Babai (see [39] or [111]) proved this
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conjecture for graphs with prime order p > 2. This follows from the work
of Turner [158]. Babai [14] also showed that cor nected vertex-transitive
graphs of order n = 4 always contain a cycle of length at least (3m)"".
Alspach [4] showed that every connected vertex-transitive graph of order
2p contained a hamiltonian cycle, unless the graph is the Petersen graph.
Marusic [117] has shown that every connected vertex-transitive graph of
order p?, p*, 2p*, or 3p have a hamiltonian cycle; while Marasic and Parsons
[118] showed graphs of order 5p (and 4p) have a hamiltonian path.

Babai [13] raised the problem of constructing an infinite family of con-
nected vertex-transitive graphs that are nonhamiltonian. To date, only a
few such graphs have been found. The Petersen graph, the Coxeter graph,
and the two graphs obtained from these by replacing each vertex by a tri-
angle are the simplest such graphs. Thomassen (see [23]) conjectures that
there are only finitely many such graphs.

Lipman [111] took a different approach. He considered graphs with a cer-
tain automorphism group, rather than a certain order. Let Aut G denote
the full automorphism group of the graph G and let I" be a group of permu-
tations on V(G). We say I acts transitively if I' has only one orbit. Using
this approach Lipman was able to obtain a stronger general result.

Theorem 6.1 [111].

1. Let T < Aut G be transitive on V(G) and nilpotent. Then G has a
hamiltonian path.

2. If G is a connected vertex-transitive graph and |V(G)| = p’.p 2
prime, then G has a hamiltonian path.

Another interesting class of graphs are the generalized Petersen graphs.
GP (n,k), for n =2 and 1 <k < (n/2), with V = {uo, us,...,Un1, vo-
vy,...,un1} and all edges of the form u;u;s, uv; and vivi, for 0=
i < n — 1, where all subscripts are taken modulo n.

Robertson [139] proved that GP (n, 2) is hamiltonian unlessn = 5 mod 6.
Castagna and Prins [43] conjectured that all GP (n, k) were hamiltonian €x-
cept for those isomorphic to GP (n,2) forn = 5 mod 6. In [6], this conjec-
ture was verified, provided n is sufficiently large. Finally, Alspach [5)
succeeded in verifying the conjecture and extending the definition of
GP (n, k) to the nontrivalent case n = 2k, he showed that GP (n,n/2) 1s
not hamiltonian if and only if » = 0 mod 4 and n = 8.

Another related class of sparse regular graphs have proven to be a little
more difficult to handle. The odd graphs, Oy, have as their vertex set the
(k — 1)-element subsets of a (2k — 1)-element set (denote these subsets as
P._;(2k — 1)). Two vertices X and Y are adjacent in O, if X N'Y = ¢. The
odd graph O; is isomorphic to the Petersen graph.

The Boolean graphs, By, have vertex set V' = P12k — 1) U P2k — 1)
and X is adjacent to Y in By if X C Y. Thus, B, is the graph formed from
‘the middle levels of the Boolean lattice of a (2k — 1)-element set by ident
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fying the subsets as vertices with adjacency if and only if one set is 2 proper
qubset of another.

Several interesting problems have arisen on these two classes of graphs.
We say one of these graphs has a hamiltonian decomposition if its edge set
can be partitioned into hamiltonian cycles or hamiltonian cycles and a per-

fect matching.

Conjecture [125]. The graph O« (kK = 4yhas a hamiltonian decomposition.
cture (Erdos, see (52]). The graph B (k= 2)is hamiltonian.

k = 2)hasa hamiltonian decomposition.

Conje
Conjecture [55]. The graph Bx (

To date, the graphs 0., Os, and Og have been shown to have 2 hamil-
tonian decomposition (see [125)), while 0, and Og have been shown to be
hamiltonian (see [125] and {1197, respectively).

As for the Boolean graphs, B., B:, and B, are easily seen to have a
hamiltonian decomposition, while B was shown to have such a decomposi-
tion in [101]. the Boolean graphs Bs, Bs, B1. and Bg were all shown to be
hamiltonian in [55], while independently Dejter [52] showed Bg and By were

hamiltonian.
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R. Roth (personal communication) conjectures that each Bi (i = 1) is
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Ancit ot generalization along these lines is due to Chen and Lih [45].
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n-set as vertices and two vertices are joined by an edge if and only if the
corre :ponding k-subsets intersect in exactly ¢ elements. For special values
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Conjecture [45]. The graph G(n, k,t) is hamiltonian for any admissible
(n, k, t) except (5,2,0) and (5,3,1).
Heinrich and Wallis [90] proved the following:

1. The graph G (n, k,0) is hamiltonian if n = k + (k21 (2% — 1)).
2. The graph G (n, k,0) is hamiltonian for

@ k=1n=z=3
(b) k =2,n = 6;
) k=3n=T.

Chen and Lih [45] settle their conjecture for the cases (n,k,k — 1),
(n,k,k — 2), and (n,k,k — 3), as well as for suitably large n when k is
given and ¢ equals 0 or 1. This is not strong enough, however, to help with
the odd graph conjecture.

Yet another interesting class of graphs defined from products are the hy-
percubes Hy, where H, = Hi-; X K, and where H, = K; (note that here X
denotes the usual Cartesian product). It has long been known that Hy is
hamiltonian, when k = 2. However, it was conjectured that the hypercubes
actually had a hamiltonian decomposition. That this is true is a conse-
quence of a more general result of Aubert and Schneider [12].

Theorem 6.2 [12]. Let C be a cycle and let G be a graph whose edge set
can be decomposed into 2 hamiltonian cycles. Then G X C (Cartesian
product) can be decomposed into 3 hamiltonian cycles.

Corollary 6.3 [12].
a. The graph C, X C, x C, is decomposable into 3 hamiltonian cycles.
b. The graph Kosr1 X Ko X Ko 18 decomposable into 3s hamiltonian

cycles.
c. The graph Ky, X K X Kj 18 decomposable into 3r — 2 hamiltonian

cycles.

Let S generate the group I Define the Cayley graph Cay,(T') as follows:
The vertex set IV corresponds to the elements of T’ and (x,xs) is an arc of
Cay,(I") with initial vertex x and terminal vertex xs whenever x € I' and
s € . Several natural problems concerning Cayley graphs have been studied.

Problems.

1. For what generating sets S does the group I' have a hamiltonian Cay-
ley graph?

2. Which groups T have the property that for all generating sets S for L
Cay,(T") contains a hamiltonian path?

A great deal of work has been done in this area. Witte and Gallian [163]
wrote an excellent survey article on this subject. The interested reader
should begin there.
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7. MISCELLANEOUS TOPICS

In this section I will consider several special hamiltonian problems. These
will by no means exhaust such topics or even the results known on these
topics. Rather, I hope merely to indicate the diversity of problems available
and the many possible questions still to be asked.

Hamiltonian properties of a variety of graph products have been studied
in detail. In particular, Teichert (see {149, 150,151, 152]) has studied these
properties in detail.

Other graph valued functions also can be studied. For example, powers
of graphs lend themselves naturally to hamiltonian problems since the
higher the power (up to the diameter), the more dense the graph becomes.
powers of graphs were studied by Paoli [134].

Given a connected graph G, if we consider the sequence of graphs

G, L(G), LX(G), L’(G), - --

where L(G) = L(L'"/(G)), then for G # P, the graphs in this sequence
eventually become hamiltonian. The minimum i such that LX(G) is hamilto-
nian is called the hamiltonian index of G. Clark and Wormald [49] suggest
studying not only the hamiltonian index, but similar concepts for edge-
hamiltonian and hamiltonian-connected line graphs.

Many results related to the hamiltonian index have appeared. Lai [106]
has most recently studied this topic. He also considered contractions and
their relation to hamiltonian line graphs in [105]. Zhan [167] provided a re-
sult on hamiltonian-connected line graphs.

Theorem 7.1 [167). If G is 4-edge connected, then L(G) is hamiltonian-
connected.

Another special class that has received considerable attention recently is
the following: A graph G is said to be hamiltonian-connected from a ver-
tex v, if a hamiltonian path exists from v to every other vertexw = V. In [51],
a recent survey of results on such graphs is given.

Another strong hamiltonian property involves the existence of cycles
through specified edges or vertices. Lovasz [114] conjectured that if Gis
k-connected (k = 2), F = {ey, ..., ex} are independent edges of G and G -
{eis. .. e is connected when k is odd, then G contains a cycle using all
the edges of F. In [115], he proved this conjecture for k = 3. Haggkvist and
Thomassen [85] proved a weakened form of this conjecture requiring the
graph to be (k + 1)-connected.

Theorem 7.2 [85].

(i) If L is a set of k independent edges in G such that any two vertices
incident with L are connected by k +1 internally disjoint paths,
then G has a cycle containing all edges of L.
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(i) If G is a (Bo + k)-connected graph, then any set of k independent
edges of G is contained in a cycle.

Conjecture {35]. IfGisa BO(G)-connected graph and L is a set of inde-
pendent edges such that G — L is connected, then G has a cycle contain-

ing all edges of L.

Thomassen [155] also showed that there exists a function f(k) such that
every strongly f (k)-connected tournament has a hamiltonian cycle through
any k specified edges.

Haggkvist [84] also studied a related problem. We say G is F-hamiltonian
( F-semihamiltonian) if

(@) Fis aset of independent paths, and
(ii) Fis contained in a hamiltonian cycle (path).

Theorem 7.3 [84]. Let F be a 1-factor of G.

(i) If G satisfies o2 = 71 + 1, then G is F-hamiltonian.
(ii) If G satisfies 02 = 11 — 1, then G is F-semihamiltonian.

Higgkvist [84] also studied the degree sum of pairs of edges (another
generalized degree approach) in relation to F-hamiltonian graphs. The
reader interested in this should also see Woodall [164]. Cycles and paths
through specified vertices have also been studied. Here I shall mention
only the following: Bondy and Lovész [38] proved that a (k + 1)-connected
nonbipartite graph contains an odd cycle through any k specified vertices.
Locke [112] showed that in an (r + 2)-connected graph G with 8(G) = d
and [V(G)| = 2d — 1, any path Q of length r and any vertex y not on Q
are contained in a cycle of length at least 2d — - In [56] the following

were shown:

Theorem 7.4 [56]. Let G be a k-connected (k = 2) graph with 8(G) z d
and order at least 2d. Let X be a set of k vertices of G. Then G has a cycle
C of length at least 2d such that every vertex of X is on C.

Theorem 7.5 [56]. Let G be a k-connected graph (k = 3) with 8(G) = d
and order at least 2d — 1. Letx and z be vertices of G and Y be a subset 0
'k — 1 vertices of G. Then G has an x — z path P of length at least 2d — 2
such that every vertex of Y ison P.

Tutte [160] showed that all 4-connected planar graphs are hamiltonian-
Tutte [159] also showed that some 3-connected planar graphs are non-
hamiltonian. Horton (see [39]) and Ellingham and Horton [57] have con”
structed nonhamiltonian bipartite cubic 3-connected graphs. Howevel, a

long-standing conjecture remains.
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Barnette’s Conjecture [see 39, p. 248]. Every cubic 3-connected bipartite
planar graph is hamiltonian.

In [92], some results lending support to Barnette’s conjecture are dis-
cussed. In particular, all such graphs of order at most 66 are shown to be
namiltonian. They also provide further references to related work.
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