# THE BURAU REPRESENTATION IS UNITARY 

CRAIG C. SQUIER ${ }^{1}$


#### Abstract

A slight modification of the Burau representation of the braid group is shown to be unitary relative to an explicitly defined Hermitian form. This gives a partial answer to the problem of identifying the image of the Burau representation and provides a tool for attacking the question of whether or not the Burau representation is faithful.


In [2, problem 14, p. 217], Birman asked for a characterization of the image of the Burau representation

$$
\beta: B_{n} \rightarrow \mathrm{GL}_{n-1}\left(\mathbf{Z}\left[t, t^{-1}\right]\right)
$$

of the braid group $B_{n}$. We contribute the following partial answer to Birman's question, where, for $M$ a matrix over $\mathbf{Z}\left[t, t^{-1}\right], M^{*}$ denotes the conjugate-transpose of $M$ and the conjugate of $p(t)$ in $\mathbf{Z}\left[t, t^{-1}\right]$ is defined to be $p\left(t^{-1}\right)$.

Theorem. There exists a nonsingular $(n-1) \times(n-1)$ matrix $J_{0}$ over $\mathbf{Z}\left[t, t^{-1}\right]$ such that for each $w$ in $B_{n}$ it follows that $\beta(w)^{*} J_{0} \beta(w)=J_{0}$.
(See $\S \S 1$ and 2 below for notation.) View $\mathbf{Z}\left[t, t^{-1}\right]$ as a subring of $\mathbf{Z}\left[s, s^{-1}\right]$ where $s^{2}=t$. Over $\mathbf{Z}\left[s, s^{-1}\right]$, a change-of-basis replaces $J_{0}$ by a matrix $J$ which is Hermitian: $J=J^{*}$. Thus, in the new basis, the Burau representation is unitary relative to the Hermitian form $J$. (Below, we actually deal with $J$ first and derive the theorem as stated as a corollary.) Finally, we note that for each of the standard generators $\sigma_{i}$ of $B_{n}, \beta\left(\sigma_{i}\right)$ is a unitary reflection. (See $\S 3$ for details.)

An important open question is whether or not the Burau representation is faithful. This is known for $n \leqslant 3$ [4] (also see [2]). It seems likely that the results presented here will help answer this question for $n \geqslant 4$.

In §1 we establish some conventions about matrices and in §2 we describe the Burau representation. In $\S 3$ we prove the theorem and justify the remarks following its statement above. Finally, in $\S 4$ we offer two conjectures which, taken together, would imply that the Burau representation is faithful.

1. Preliminaries. Let $\mathbf{Z}$ denote the ring of (rational) integers, let $t$ be an indeterminate and let $\mathbf{Z}\left[t, t^{-1}\right]$ denote the ring of Laurent polynomials with coefficients in $\mathbf{Z}$. We consider infinite-dimensional matrices $A=\left(a_{i j}\right)$ with entries in $\mathbf{Z}\left[t, t^{-1}\right]$

[^0]and indexed by $(i, j)$ in $\mathbf{Z} \times \mathbf{Z}$ such that each row and column of $A$ contains only finitely many nonzero entries under usual matrix addition and multiplication. Let $s$ be an indeterminate which satisfies $s^{2}=t$. We view $\mathbf{Z}\left[s, s^{-1}\right]$ as a sub-ring of $\mathbf{Z}\left[t, t^{-1}\right]$ and also consider matrices over $\mathbf{Z}\left[s, s^{-1}\right]$.

Let $I$ denote the identity matrix and for $(i, j)$ in $\mathbf{Z} \times \mathbf{Z}$ let $e_{i j}$ denote the matrix whose ( $i, j$ ) entry is 1 and all of whose other entries are 0 . We use summation notation $\Sigma$ indexed implicitly by $\alpha$ in $\mathbf{Z}$. For example, $I=\Sigma e_{\alpha \alpha}$.

We also consider row and column vectors indexed by $\mathbf{Z}$ with finitely many nonzero entries. Let $e_{i}$ denote the column vector whose $i$ th entry is 1 and all of whose other entries are 0 .

For a Laurent polynomial $p=p(t)$ define $\bar{p}$ by $\bar{p}(t)=p\left(t^{-1}\right)$ and if $A=\left(a_{i j}\right)$ is a matrix define $\bar{A}$ by $\bar{A}=\left(\bar{a}_{i j}\right)$. Let $A^{\prime}$ denote the transpose of $A$ and finally define $A^{*}=(\bar{A})^{\prime}$. We will also use similar definitions for matrices defined over $\mathbf{Z}\left[s, s^{-1}\right]$.
2. The Burau representation of $B_{n}$. We view the braid group abstractly as having generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and relations all appropriate

$$
\begin{equation*}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j| \geqslant 2 \tag{1}
\end{equation*}
$$

According to [1], $B_{n}$ may be viewed as the subgroup of the automorphism group of the free group $F_{n}$ on $x_{1}, x_{2}, \ldots, x_{n}$ generated by the automorphisms

$$
\sigma_{i}\left(x_{j}\right)= \begin{cases}x_{i} x_{i+1} x_{i}^{-1}, & j=i  \tag{2}\\ x_{i}, & j=i+1 \\ x_{j}, & \text { otherwise }\end{cases}
$$

Let $F$ denote the free group on $\left\{x_{j} \mid j \in \mathbf{Z}\right\}$ and for $i \in \mathbf{Z}$, let $\sigma_{i}$ be the automorphism of $F$ defined by (2). Let $B$ denote the group of automorphisms of $F$ generated by $\left\{\sigma_{i} \mid i \in \mathbf{Z}\right\}$. An easy consequence of [1] is that $B$ has presentation with the given generators and all relations (1) above.

Let $Z$ denote the infinite cyclic group with generator $t$, let $z: F \rightarrow Z$ denote the homomorphism defined by $z\left(x_{i}\right)=t$ and let $K$ denote the kernel of $z$. Since each $\sigma_{i}$ satisfies $z \sigma_{i}=z, B$ preserves $K$. Thus $B$ acts on $K / K^{\prime}$ where $K^{\prime}$ denotes the commutator subgroup of $K$. Now (see [3]), $K / K^{\prime}$ may be identified with the free $Z\left[t, t^{-1}\right]$-module on $\left\{e_{j} \mid j \in \mathbf{Z}\right\}$ where $e_{j}$ denotes the image of $x_{j+1} x_{j}^{-1}$ in $K / K^{\prime}$. In this notation, $B$ acts on $K / K^{\prime}$ as follows:

$$
\sigma_{i}\left(e_{j}\right)= \begin{cases}t e_{i}+e_{i-1}, & j=i-1  \tag{3}\\ -t e_{i}, & j=i, \\ e_{i}+e_{i+1}, & j=i+1 \\ e_{j}, & \text { otherwise }\end{cases}
$$

Thus, in the notation of $\S 1, \sigma_{i}$ is given by the matrix

$$
\begin{equation*}
\beta\left(\sigma_{i}\right)=I+t e_{i i-1}-(1+t) e_{i i}+e_{i i+1} \tag{4}
\end{equation*}
$$

Equation (4) is the usual form of the Burau representation. We also consider a slight modification of (4): let $P=\Sigma s^{\alpha} e_{\alpha \alpha}$ with $s^{2}=t$ as in $\S 1$ and let $\beta_{i}=P^{-1} \beta\left(\sigma_{i}\right) P$. Then easily

$$
\begin{equation*}
\beta_{i}=I+s e_{i i-1}-\left(1+s^{2}\right) e_{i i}+s e_{i i+1} \tag{5}
\end{equation*}
$$

Clearly $\beta_{i}^{-1}=\bar{\beta}_{i}$ and the analogous property holds for $\beta\left(\sigma_{i}\right)$.
3. Proof of the theorem. We are ready to prove that each $\beta_{i}$ is unitary, relative to a Hermitian form which we now define. Let $J$ be the matrix

$$
\begin{equation*}
J=\left(s+s^{-1}\right) I-\sum\left(e_{\alpha-1 \alpha}+e_{\alpha \alpha+1}\right) \tag{6}
\end{equation*}
$$

and note that $J=J^{*}$. We prove that each $\beta_{i}^{*} J \beta_{i}=J$. Since $\beta_{i}^{-1}=\bar{\beta}_{i}$ we have $\left(\beta_{i}^{*}\right)^{-1}=\beta_{i}^{\prime}$ and so it suffices to prove that $J \beta_{i}=\beta_{i}^{\prime} J$ or, in turn, that $J\left(\beta_{i}-I\right)=$ $\left(\beta_{i}^{\prime}-I\right) J$. (Recall that $A^{\prime}$ stands for the transpose of $A$.) The reader can easily verify that both sides of this equality are given by

$$
\left(\begin{array}{ccc}
-s & s^{2}+1 & -s \\
s^{2}+1 & -s\left(s+s^{-1}\right)^{2} & s^{2}+1 \\
-s & s^{2}+1 & -s
\end{array}\right)
$$

centered at ( $i, i$ ) and surrounded by 0 's.
To prove the theorem (as stated) for $B$, let $J_{0}=P^{*} J P$. Then clearly $\beta\left(\sigma_{i}\right)^{*} J_{0} \beta\left(\sigma_{i}\right)$ $=J_{0}$. Also, restricting from $B$ to $B_{n}$ is easy: if $\mu<\nu$ let $E_{\mu, \nu}$ denote the span of $e_{\mu}$, $e_{\mu+1}, \ldots, e_{\nu}$ over $\mathbf{Z}\left[s, s^{-1}\right]$. Then each $\beta_{i}$ with $\mu \leqslant i<\nu$ preserves $E_{\mu, \nu}$ and hence respects the restriction of $J$ to $E_{\mu, \nu}$. Finally from (5) it is clear that each $\beta_{i}-I$ has rank 1 and thus $\beta_{i}$ is a unitary reflection. To emphasize this fact we note the formula

$$
\begin{equation*}
\beta_{i}(v)=v-\left(s^{2}+1\right) \frac{\left\langle e_{i}, v\right\rangle}{\left\langle e_{i}, e_{i}\right\rangle} e_{i} \tag{7}
\end{equation*}
$$

where for $v$ and $w$ in the linear span of $\left\{e_{i} \mid i \in \mathbf{Z}\right\}$ over $\mathbf{Z}\left[s, s^{-1}\right],\langle v, w\rangle$ denotes the Laurent polynomial $v^{*} J w$.
4. Two conjectures. A more conventional unitary representation of $B_{n}$ may be obtained by substituting for $t$ any complex number of norm 1 . Then $\bar{p}$ becomes the usual complex conjugate of $p$. Let $\tau_{k}$ denote a primitive $k$ th root of unity and let $\beta^{(k)}$ denote the representation obtained by substituting $-\tau_{k}$ for $t$. Also, let $B^{(k)}$ denote the quotient group of $B$ obtained by setting each $\sigma_{i}^{k}=1$ and let $N^{(k)}$ denote the kernel of the natural homomorphism $B \rightarrow B^{(k)}$. Here are two conjecures:
$(\mathrm{Cl}) N^{(k)}$ is the kernel of $\beta^{(k)}$.
(C2) The intersection of the $N^{(k)}$ 's is trivial.
These conjectures would clearly imply that the Burau representation is faithful and the theorem presented here should help to answer (C1).

## References

1. E. Artin, Theorie der Zopfe, Hamburg Abh. 4 (1925), 47-72.
2. J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J., 1974.
3. W. Magnus, Braid groups: a survey, Proceedings of the Second International Conference on the Theory of Groups, edited by M. F. Newman, Lecture Notes in Math., Vol. 372, Springer-Verlag, Berlin, Heidelberg and New York, 1973, pp. 463-487.
4. W. Magnus and A. Peluso, On a theorem of V. I. Arnold, Comm. Pure Appl. Math. 22 (1969), 683-692.

Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106


[^0]:    Received by the editors October 27, 1982 and, in revised form, June 24, 1983.
    1980 Mathematics Subject Classification. Primary 20F36.
    ${ }^{1}$ This research was supported in part by the National Science Foundation under Grant No. MCS8116327.

