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Abstract 
 

X-ray diffraction applied on crystals is of great interest in the context of crystallography, being able 
to provide answers about the molecular structure of crystals or the identification of unknown Nano-

powdered crystal substances. A 35 kV and 1 mA emission current X-ray machine analysing the 
lattice constant through two filters, a 2mm aperture and a Ni foil one, of an unknow sample 

resulted to be between (7.11 ± 0.06)Ȧm (1% error) and (7.16 ± 0.1)Ȧm (1% error), consistent with 

the FCC crystal KI at (7.05 ± 0.01) Ȧm (1% error) with a mean crystallize size of the powder at 
around (86.9 ± 0.9)Ȧm  (1% error). An extensive modelling simulation of the diffraction will confirm 
the identification of the sample as well as providing the information about the conditions required 

for crystals to be BCC or FCC and why CsCl, NaCl and Kcl are classified as Simple Cubic 
structures. 

 
1. Introduction 

 
Crystals, due to their natural regularity and 
symmetry have been scientifically investigated 
for centuries [1]. Although the conclusions 
obtained about their structure could not be 
validated until the discovery of X-rays in the 
late 19th century when, after accepting their 
electromagnetic radiation form [2], started to 
be used as a technique to determine the 
structure of crystals from an atomic and 
molecular view. Being able to differentiate 
between simple cubic, body centred cubic and 
face centred cubic structures as shown further 
on.    
 
The introduction of X-ray crystallography, the 
study of crystals through X-ray diffraction, was 
based (and still is) on the electromagnetic 
properties of the X-rays which, in the form of 
waves, reach the atoms that form the crystal 
and because of their electrons, the atoms 
scatter a portion of the X-ray’s intensity as 
secondary circular waves through elastic 
scattering. Since atoms are placed in order as 
arrays, a group of waves will be produced 
adding them constructively in certain directions 
as described by Bragg’s law [3] (equation 1). 
 
   2𝑑𝑠𝑖𝑛(𝜃) = 𝑛𝜆                (Eq. 1) 
  
Where n is any integer multiple of the 
wavelength, λ, of the beam, presenting an 
order of magnitude equal to that of the  

 
difference between planes, d, and θ is the 
incident angle that produces the scattering.  

 
For instance, the introduction of this method 
demonstrated the existence of ionic 
compounds, later studied on this report, 
suggesting that not all crystals were formed by 
covalently bonded molecules, revealing this 
way some fundamental laws for material 
sciences [4], a mixture of physics and 
chemistry. 
 
Since the periodicity of crystals offer a stronger 
signal than non-crystalline samples, this 
method is usually applied only on the first 
ones. Their composition out of many repeated 
unit cells, in three different directions (h,k,l), 
known as Miller indices [5], present a Fourier 
transform condition denoting the intensity 
peaks, Bragg peaks,  corresponding to the 
exponentially growing reflections observed in 
the diffraction image as the scatters increase. 
So, each particular plane formed by the Miller 
indices (h,k,l,) will have a specific Bragg angle 
of diffraction. This constructive-like 
interference [6] supports the advantages of 
limiting this method to crystalline substances 
only rather than on non-crystalline ones.  
 
In this report, we demonstrate how the use of 
X-ray diffraction analyses the structure of an 
unknown powdered sample based on the 
density of its electros [7], formed by an ionic 
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bound between a metal or NH4 group with a 
halogen. By studying its intensity peaks, 
produced through a nickel, Ni, foil filter on the 
detector, as a function of the Bragg angle, will 
help discover the values of the lattice 
parameter experimentally, then checked 
through theoretical methods involving the 
Nelson-Riley function and a modelled system 
to reaffirm the results obtained and so, confirm 
the identity of the crystal sample. 
 
In addition to this study, and in order to provide 
a wider insight on the analysis of the different 
cubic structures for crystal compounds, 
considering a set of atoms placed in the unit 
cell, the structure factor equation (Eq. 2) will 
be used to construct a spreadsheet modelling 
the characteristics of the selected structures 
and substances theoretically.  
 

  
The structure factor shows that intensities of 
X-rays diffracted by a crystal depend on the 
magnitude depending on the X-ray wavelength 
which direction specifies the h,k,l plane of 
atoms, q, the positions of atoms in the unit cell 
of the crystal, Ri and the strength of scattering 
from individual atoms, Ai. 
 
This structure factor equation shows that 
intensities of diffracted X-rays depend on 
magnitude from the wavelength on their 
specific (h,k,l)planes as well as depends on 
the position of the atoms and the strength of 
scattering from each one of them. These 
conditions show the main restrictions to model 
an accurate crystal powder diffraction 
simulation as shown in the results section 
(page: 4). 

2. Results 
EXPERIMENT 

 
An X-ray PHYWE detector with a Cu x-ray 
tube operating at 35 kV and emitting a current 
of 1 mA was used throughout the progression 
of the experiment.  
 
The machine was calibrated using a LiF crystal 
that was hit with X-rays at a set of different 
changing angles ranging from 8 to 45 degrees 
in intervals of 0.1 degrees at a speed of 1 
second per interval. Analysing this scattering 
from the crystal with a 2mm aperture filter and 
with a Ni foil filter on the MEASURE software, 
allowed the plot of the following graph (Figure 

1), showing the proper calibration by spotting 
two peaks at 20.4 and 22.7 degrees 
respectively as it should be expected for this 
crystal sample. 
 

 
Figure 1: Graph displaying the counts against angle theta 
of diffraction on the LiF crystal ensuring the proper 
calibration of the X-ray machine spotting the peaks at the 
expected 20.4 and 22.7 angles. 

 
The two filters used in the calibration, and on 
the rest of the experiment, give a better 
appreciation of the radiations involved since 
the 2mm aperture filter produces a higher 
number of records featuring alpha and beta 
radiation while the Ni foil filters the beta 
radiation and simply registers alpha 
interactions. These conditions, which compare 
by their difference in ratio angles (1.1 ratio of 
separation) and beta interactions producing 
half the intensity the alpha particles produce, 
will be used on the analysis to find the lattice 
parameter of the studied unknown sample 
where only the K(alpha) X-ray wavelength will 
reach the results this report is expecting to 
discern at 154 pm. 
 
In order to proceed with the experiment and to 
obtain a sample to study, the grinding of an 
unknown crystal sample manually, during 20 
minutes, reduced it to a finer powdered state 
and then was compressed on a metal holder 
with the help of a spatula to provide a 
smoother surface, reducing undesirable X-ray 
scattering while enabling a bigger amount of 
Bragg reflections to be observed thanks to the 
higher amount of particles randomly oriented. 
 
Placing this sample as close as possible the 
filter on the calibrated X-ray machine and then 
measuring over the same range of angles as 
with the calibration method, but in intervals of 
15 seconds per 0.1 degree rotated. The 
observations from this sample, studied through 
the 2mm aperture filter and the Ni foil filter, are 
shown in the figure 2, where it is perceptible 

(Eq. 2)  
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the differences that each filter present as 
discussed before.  

 

 
Figure 2: Showing the Brag peaks of the unknown crystal 
sample on the range from 8 to 45 degrees using both, 
the 2mm filter and the Ni foil filter, making observable the 
comparisons between both of them, the Ni filter shifted 
on a ratio of 1.1 against the 2mm one as well as 
presenting a lower intensity due to the filtration of beta 
particles which have half the intensity of alfa particles. 

After acquiring the information of each of the 
points describing the graph above, a simple 
MATLAB program (code showed on the 
appendix) could be constructed to select the 
different peak intervals (fig. 12 and 13 on the 
appendix) and then use those intervals to find 
with the “Curve Fitting Tool” application, using 
the Gaussian equation (Eq. 3) to fit their curve, 
the exact angle at which each Bragg peak is 
placed on the graph and, consequently, its 
error. 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑒𝑞. =  𝑎1 · 𝑒−(
𝑥−𝑏1

𝑐1
)

2

+ 𝑑        (Eq. 3) 
 
Where a1 is the intensity, b1 is the angle at 
that point, c1 is a given value by the app which 
will then be used to find the FWHM and d is 
the background. 
 
Proceeding on finding the identity of the 
sample studied, and once all data collection 
has already been performed, a series of 
equations are used to go from those Bragg 
peaks found to the experimental lattice 
parameter. 
 
From each of the two data sets, from the Ni foil 
filter and the 2mm aperture one, the theta 
values and their errors are given so they are 
first transformed from radians to the degrees 
scale and the square of their sinus is 
calculated. This allows to plot a graph where 
this sinus squared is presented against the 
non-decimal multiplier N, as seen in figure 3 
and 4, which has been calculated after 
multiplying the ratio of the sinus square by 
some integer that provides a closer integer 
value for every ratio value so it can then be 

used to find the Miller indices (h,k,l) since ℎ2 +
𝑘2 + 𝑙2 = 𝑁, tables 1 and 2 on the appendix 
followed with the error calculation at each step. 

 

 
Figure 3: Graph plotting sin square of theta as a function 
of the exact integer N from the observations with the Ni 
foil filter on the X-ray machine. Features a line of best fit 
that is consistent with the errors found. 

 

 
Figure 4: Graph plotting sin square of theta as a function 
of the exact integer N from the observations with the 
2mm aperture filter on the X-ray machine. Features a line 

of best fit that is consistent with the errors found. 

 
The lattice parameter depends only on the 
K(α) values so the graph from the Ni foil filter 
are the ones used to calculate its value since, 
as explained before, this foil filters the beta 
counts. Using the JLineFit software is an 
efficient method to find the gradient of the 
graph which will give the data to calculate the 
lattice parameter, a, from the equation 4.  
 

  𝑆𝑖𝑛2(θ) =
𝜆2

4𝑎2 · 𝑁   (Eq. 4) 

 

Where, as observed on the graph, the 𝑆𝑖𝑛2(θ) 
are the y-axis values, the N is the x-axis 

values and the 
𝜆2

4𝑎2 is the gradient that will be 

used to find a, the lattice parameter, by 
rearranging the wavelength, λ, and the rest of 
constants as seeing on the next equation 5. 
 

   𝑎 =  √
𝜆2

4·𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
               (Eq. 5) 
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And the error explained on equation 14 on the 
appendix. 
 
This process gives a result for the lattice 

constant of (7.11 ± 0.06)Ȧm, armstrongs 
meter, (1% error) which by comparing the 
lattice constant table [8] and checking the 
substances’ lattice constants the (7.05 ± 
0.01)Ȧm (0.1% error) KI is the only substance 
consistent with our results since it agrees with 
the consistency check, equation 6 conditions 
where X1 is the calculated value, X2 is the real 
value and ΔX1 and ΔX2 are their respective 
errors. 

 |𝑋1 − 𝑋2| < 3√𝛥𝑋1
2 + 𝛥𝑋2

2       (Eq. 6) 

 
To provide a more accurate analysis of the 
results, the Nelson-Riley (NR) function shows 
the value of the lattice parameter, a, as the 
intercept of plotting the NR function, equation 
7, (where the error comes from the derivative 
of the NR function over the derivative of theta 
times the error on theta) against the apparent 
value of a for each specific Bragg peak, figure 
5, from following Bragg’s law, equation 1, 

where d is √
𝑎2

𝑁
.  

 

 𝑁𝑅 =  
1

2
(

cos(𝜃)2

sin(𝜃)
·

cos(𝜃)2

𝜃
)      (Eq. 7) 

 

 
Figure 5: Graph plotting the apparent values of the lattice 
parameter on the y- axis against the results obtained 
from the NR function for each Bragg peak. Includes error 
bars and a line of best fit to determine the accuracy of 
the results. The bigger error bars approximate the best fit 
line to a straight line [9] which also shows a method with 
less accuracy. 

Using the JLineFit software this time to 
calculate the intercept of the graph shows a 
result for the lattice parameter of (7.16 ± 
0.1)Ȧm (1% error) which is more consistent 
with the substance NH4I with a lattice 
parameter of (7.24 ± 0.01)Ȧm (0.1%) [8]. 
 

This Nelson-Riley function process is a 
straighter forward method to find the result of 
the lattice parameter but, as seeing on the 
figure 5, presents a bigger inaccuracy than the 
standard method described to find the first 
result. 
 
Since both experimental methods show a 
higher consistency with two different 
substances then a theoretical approach must 
be considered. Crystals can be mainly divided 
in simple cubic, body centred cubic (BCC) and 
face centred cubic (FCC) structures. The 
presence of an odd multiplier to find N on our 
data analysis classifies our unknown sample 
as a face centred cubic crystal [11] and the 
structures of the KI and NH4I substances 
detected on our processes are FCC and BCC 
structure respectively [11] what eliminates 
NH4I from the possibility of being the unknown 
sample and leaving us with the discovery of KI 
as the identity of the crystal investigated. 
 
To find a better understanding of X-ray 
crystallization, after finding the identity of the 
sample studied, it’s crystallized size can be 
calculated since the size of the crystallites in 
the powder provoke the Bragg peak. And to do 
so, the Scherrer equation (Eq. 8) can be used 
to estimate the mean crystallized size, L, 
where the wavelength, λ, the cosine of theta is 
in degrees and the full width at half maximum 
(FWHM) of the Bragg peak, is represented as 

β. β is the result of calculating  2√2ln (2) · 𝑐1 

where c1 is the value given from the “Curve 
Fitting Tool” application in MATLAB for each 
Bragg peak as seeing on equation 3. 
 

  𝐿 =  
0.9𝜆

2𝛽cos (𝜃)
              (Eq. 8) 

And the error is shown in the appendix, 
equation 17. 
 
Calculating the mean for each value of L and 
the standard deviation over the square root of 
the number of events to find the error leads a 
result for the mean crystallize size of the 
powder of (86.9 ± 0.9)Ȧm  (1% error) from the 
Ni filter study and a result of (83.9 ± 4.5)Ȧm 
(6% error) from the 2mm aperture filter study. 
These results are consistent with the 
expectations we could have since the studied 
sample is composed of nano crystals what 
makes the order of magnitude match as well 
as couple with the approximately 1 armstrong 
meters, Ȧm, of distance between atoms. 
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MODELLING  
 

• KI 

 
Based on a theoretical approach, the studied 
sample, identified as a KI substance with a 
face centred cubic structure, presents 8 atoms 
with atomic numbers 19 and 53 for the K and I 
elements respectively since the metal, K, is a 
cation while the halogen, I, is an anion. This 
information can be used to model where the 
Bragg peaks are going to be spotted as a 
function of normalised intensity versus the 
angle theta. 
 
For each of the 8 atoms from the h, k and l 
planes they will record a result for all three axis 
(x, y and z) they are involved in, using the 
structure factor equation as reference, 
equation 2. 
 
Where the value for each x as a function of 
each combination of planes, q·r, comes from 
equation 9: 
 
             𝑞 · 𝑟 = 2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)      (Eq. 9)  
 
While for the y and z values the cosine and 
sine of q·r was calculated respectively. 
 
This set of information was combined with the 
K and I ions’ atomic number to find the 
amplitude of the waves scattered on each 
plane, equation 20, and by squaring the 
amplitude get its intensity for each plane. 
Consequently, the value of theta can be found 
with the help of the Miller indices of each plane 
as well as using the lattice parameter of this 
sample, 7.05 Ȧm, as the wavelength of 1.54 
Ȧm and so on the number a certain value of 
theta has been repeated on the theta column, 
known as the theta index of multiplicity, θ 
Index Mult, [12]. Continuing with the wide 
range of steps on the modelling of this 
experiment, the Lorentz-Polarisation, LP, 
factor, equation 10, accounts for the angle-
dependence scattering of x-rays  
 

 𝐿𝑃 =  
1

𝜃
5
2

   (Eq. 10) 

 
And adding the values of each theta variable 
for a particular plane combination with LP, will 
provide the intensity at each Bragg angle we 
were looking for, which after normalising it 

could then be plotted as a function of each 
Bragg angle expressed in degrees, table 8.  
 
This modelling featuring 124 plane 
combinations produced a theoretical 
expectation of Bragg peaks, considering the KI 
substance as the unknown studied sample, 
that could be compared with the obtained 
experimental ones as shown on table 1 and 
figure 6 for a better visual understanding of the 
results. 
 

THEORETICAL 
PEAKS 

EXPERIMENTAL 
PEAKS 

hkl theta hkl theta 

1.1.1. 10.9 1.1.1. 10.8 

2.0.0. 12.6 2.0.0. 12.8 

2.2.0. 18.0 2.2.0. 18.3 

3.1.1. 21.2 3.1.1. 21.4 

2.2.2. 22.2 2.2.2. 22.3 

4.1.0. 26.8 4.1.0. 26.1 

4.2.0. 29.2 4.2.0. 29.1 

4.3.0. 33.1 4.3.0. 32.8 
Table 1: Comparing the Bragg peaks at theta with the 
planes they were spotted at in the experimental and 
theoretical (modelled) procedure. As seen, for the same 
combination of Miller indices, approximately the same 
value of theta is assigned what helps ensure KI as the 
real identity of the sample studied. 

 
Figure 6: Graph comparing the modelled Bragg peaks, 
plotting the normalized intensity versus the angle theta, 
for the KI substance which matches the recordings for 
the unknown powdered crystal on the X-ray machine 
ensuring the correctness when identifying KI as the 
identity of the studied sample. 

 
After observing the accuracy of this method on 
the study of crystals a series of different 
modelling were proposed in order to offer a 
more extensive understanding of crystal’s 
characteristics by going across examples of all 
three kinds of structure: simple cubic, BCC 
and FCC. 
 
 
 



MOISES BARBERA RAMOS 
16/11/2018 

6 
 

• Simple cubic, BCC and FCC study 

 
Following the previous approach, we 
constructed a group of crystal structures by 
placing atoms of elements in the unit cell, so it 
was possible to simulate diffraction from the 
different structures we want to analyse thanks 
to the structure factor equation (Eq. 2). 
 
BCC 
 
To study the body centred cubic structure a 
single element for a more straight-forward 
analysis of this condition is used. With two 
atoms, a single atom visualised on the middle 
of a unit cell (with coordinates x, y and z equal 
to 0.5 each) and an eighth of an atom 
visualised at each of the eight corners of this 
cube that added up generate the totality of 2 
atoms in the model.  
 
The results this analysis is expecting to find 
follow the rules for BCC structures that the 
single element will present all its hkl squared 
values adding up a totality of an even number. 
This means that from all the combinations of 
planes, only those for which summing each 
squared Miller index equals an even number 

(ℎ2 + 𝑘2 + 𝑙2 = 𝑒𝑣𝑒𝑛 𝑁) will generate a Bragg 
peak on the intensity over angle theta graph. 
 
This main rule, and so the modelling 
performed, shows the lowest value of N to be 
2 (Table 2), since any value lower than that is 
odd and then would be breaking the rule for 
BCC crystal structure. 
 

 
Table 2: Showing the first 12 plane combinations of the 
BCC modelling, out of the 124, and the values for each 
coordinate as represented for the structure factor 
equation components highlighted on blue and 
highlighting on green the position of the highest Bragg 
peak placed on the lowest N value 2, as discussed, 
corresponding to the 011 plane hkl. 

Plotting the intensities of all plane 
combinations against their angle theta show 
the diffraction of the body centered cubic 
structure study for a single element, figure 7. 

 

 
Figure 7: Graph showing the diffraction simulation of a 
single element BCC crystal with lattice parameter 
6.59Ȧm and X-ray wavelength 1.54Ȧm. It plots the 
normalized intensity against the angle theta in degrees. 

FCC 
 
To study the face centered cubic structure 4 
atoms are present in the unit cell, half atom is 
placed at the center of each of the 6 walls of 
the cube which adds up to 3 while the fourth 
atom comes from, as in the BCC structure,  
the addition of all eighths of an atom placed at 
each of the eight corners of the cube together. 
 
The same simulation used for the BCC 
structure, with lattice constant 6.59Ȧm and 

1.54Ȧm wavelength, is used now but for four 
atoms instead, showing how the first main 
Bragg peak, intensity of 100, is at the plane 
combination 111 for hkl. This behaves as 
expected for the rule of FCC structures that 
explain that hkl values must be all even or all 
odd and for that rule 111 is the first plane 
combination at which that happens, fail to do 
so would result on an intensity of 0 and so, no 
Bragg peak at that plane combination, Table 3 
and figure 8.  
 

Table 3: Showing a set of 12 plane combinations of the 
FCC modelling with four atoms, out of the 124 plane 
combinations, and the value for their coordinates 
following the structure factor equation components 
highlighted in blue and highlighting with green the 
position of the highest Bragg peak when the first hkl 
plane combination reflects all odd numbers 111. When 
this rule for FCC structured crystals is not met, we then 
can observe an intensity of 0 in those planes.  

Atom 1 Atom 2 q

x y z x y z (deg)

h k l 0 0 0 0.5 0.5 0.5 Normalised

q*R cos(q*R) sin(q*R)

0 0 0 0 1 0 0.0 1.0 0.0 0.0 0.0

0 0 1 0 1 0 3.1 -1.0 0.0 6.7 0.0

0 0 2 0 1 0 6.3 1.0 0.0 13.5 20.8

0 0 3 0 1 0 9.4 -1.0 0.0 20.5 0.0

0 0 4 0 1 0 12.6 1.0 0.0 27.9 3.4

0 1 0 0 1 0 3.1 -1.0 0.0 6.7 0.0

0 1 1 0 1 0 6.3 1.0 0.0 9.5 100.0

0 1 2 0 1 0 9.4 -1.0 0.0 15.1 0.0

0 1 3 0 1 0 12.6 1.0 0.0 21.7 25.5

0 1 4 0 1 0 15.7 -1.0 0.0 28.8 0.0

0 2 0 0 1 0 6.3 1.0 0.0 13.5 20.8

0 2 1 0 1 0 9.4 -1.0 0.0 15.1 0.0

)(qrealI

Atom 1 … Atom 4 q

x y z … x y z (deg)

h k l 0 0 0 … 0.5 0.5 0 Normalised

q*R cos(q*R) sin(q*R) …

0 0 0 0 1 0 … 0 1 0 0 0

0 0 1 0 1 0 … 0.0 1.0 0.0 6.7 0

0 0 2 0 1 0 … 0.0 1.0 0.0 13.5 52.0

0 0 3 0 1 0 … 0.0 1.0 0.0 20.5 0

0 0 4 0 1 0 … 0.0 1.0 0.0 27.9 8.5

0 1 0 0 1 0 … 3.1 -1.0 0.0 6.7 0

1 0 4 0 1 0 … 3.1 -1.0 0.0 28.8 0

1 1 0 0 1 0 … 6.3 1.0 0.0 9.5 0

1 1 1 0 1 0 … 6.3 1.0 0.0 11.7 100.0

1 1 2 0 1 0 … 6.3 1.0 0.0 16.6 0

1 1 3 0 1 0 … 6.3 1.0 0.0 22.8 56.3

1 1 4 0 1 0 … 6.3 1.0 0.0 29.7 0

)(qrealI
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Figure 8: Graph showing the diffraction simulation of an 
FCC crystal with lattice parameter 6.59Ȧm and X-ray 
wavelength 1.54Ȧm. It plots the normalized intensity 
against the angle theta in degrees. 

SIMPLE CUBIC  
 
Studying Simple Cubic structures required the 
same modelling but a different approach since 
this time, a set of three different crystals was 
chosen (CsCl, NaCl, KCl) and, by analyzing 
the results, they were classified Simple Cubic 
since none of them followed the BCC nor FCC 
requirements. 

 
1. CsCl 

 
Cesium chloride seems to follow the same 
structure as BCC since its disposition is the 
same as that of a BCC crystal on the unit cell. 
Although, since there are two different atoms 
rather than a single one and the metal element 
is not alpha iron, tungsten, chromium nor beta 
titanium [13], then it cannot be a BCC. 
 

In this case, the ions Cs+ and Cl- (atomic 
numbers 53 and 19 respectively) are 
considered to build the modelling where, as 
the electron charge interact with the X-rays, 
the strength of scattering of an atom will be 
proportional to the number of electrons. 
 
The results from this process, despite featuring 
two atoms the same way a BCC does, it 
generates a different modelling due to the 
different atomic numbers incorporated in the 
calculations and the different lattice parameter 
now assigned as 4.1Ȧm for CsCl, table 4 and 
figure 9. 
 

Table 4: Showing the first 12 plane combinations of the 
Simple Cubic modelling, out of the 124, for its both atoms 
and the values for each coordinate as represented for the 
structure factor equation components highlighted on blue 
and highlighting on green the position of the highest 
Bragg peak where despite it is found on the same hkl 
plane of 011 as expected for a BCC crystal, CsCl fails to 
include any of the metal elements identified above. 

 
Figure 9: Graph showing the diffraction simulation of a 
Simple Cubic crystal with lattice parameter 4.1Ȧm and X-
ray wavelength 1.54Ȧm. It plots the normalized intensity 
against angle theta in degrees for the CsCl substance. 

2. NaCl 
 
Sodium Chloride presents eight atoms and a 
structure formed by two FCC where one is 
shifted as 0.5 from the other what makes this 
one an expansion of the FCC modelling 
accounting for the ionic bounding of Na+ and 
Cl- (atomic numbers 10 and 18 respectively).  
 
Presenting two FCC crystals together and 
shifted produces a destructive interference that 
reduces the maximum Bragg peak from its 111 
plane to the lowest all even numbers. 002, and 
every hkl plane combination with one 2 and 
two 0s, is then the plane combination at which 
the maximum intensity should be found, table 
5, and is because of this destructive 
interference that the NaCl substance can be 
structured as a set of simple cubic structures 
all grouped together [14]. 
 

Atom 1 Atom 2 q

x y z x y z (deg)

h k l 0 0 0 0.5 0.5 0.5 Normalised

q*R cos(q*R) sin(q*R)

0 0 0 0 1 0 0 1.0 0 0 0

0 0 1 0 1 0 3.1 -1.0 0 6.7 26.7

0 0 2 0 1 0 6.3 1.0 0 13.5 20.8

0 0 3 0 1 0 9.4 -1.0 0 20.5 3.3

0 0 4 0 1 0 12.6 1.0 0 27.9 3.4

0 1 0 0 1 0 3.1 -1.0 0 6.7 26.7

0 1 1 0 1 0 6.3 1.0 0 9.5 100.0

0 1 2 0 1 0 9.4 -1.0 0 15.1 13.9

0 1 3 0 1 0 12.6 1.0 0 21.7 25.5

0 1 4 0 1 0 15.7 -1.0 0 28.8 4.2

0 2 0 0 1 0 6.3 1.0 0 13.5 20.8

0 2 1 0 1 0 9.4 -1.0 0 15.1 13.9

)(qrealI
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Table 5: Showing the first 12 plane combinations of the 
Simple Cubic modelling, out of the 124, for its eight 
atoms and the values for each coordinate as represented 
for the structure factor equation components highlighted 
on blue and highlighting on green the position of the 
highest Bragg peak where due to the destructive 
interference they are reduced from an expected 111 
plane combination to the lowest plane which Miller 

indices are all even, so they are 002, 020 and later 200.  

The resultant diffraction simulated for the NaCl 
substance is shown on figure 10. 

 
Figure 10: Graph showing the diffraction simulation of a 
Simple Cubic crystal with lattice parameter 5.6Ȧm and X-
ray wavelength 1.54Ȧm. It plots the normalized intensity 
against angle theta in degrees for the NaCl substance. 

3. KCl 
 
Potassium Chloride is the last of the three 
selected chlorides selected and presents the 
same structure as NaCl with the difference that 
K+ AND Cl- have the same atomic number 18, 
what means all atoms have the same size. 
This particular disposition when calculating the 
modeling table since I will follow the same 
steps as table 5 apart from the difference in 
the lattice parameter and the atomic numbers 
used to find the amplitude. 
 
The highest intensity will keep being found on 
the lowest all even plane combinations as in 
NaCl so that again confirms the Simple Cubic 
structure for KCl since the destructive 
interference is present again. 
 
So, the simulated diffraction for this crystal can 
be represented as follows, figure 11: 
 

 
Figure 11: Graph showing the diffraction simulation of a 
Simple Cubic crystal with lattice parameter 6.28Ȧm and 
X-ray wavelength 1.54Ȧm. It plots the normalized 
intensity against angle theta in degrees for the KCl 
substance. 

3. Discussion 
 

Being able to find the identity of an unknown 
crystal sample as well as analyzing its 
structure through X-ray crystallization is the 
prove the efficiency of using X-rays diffraction 
as a method to study crystals in a way firstly 
suggested on the 17th century [1] but couldn’t 
be reached until the discovery of X-rays on the 
19th century [19]. 
 
On the results section for the modelling, when 
studying the different structures, it was seeing 
how when atoms where in phase and no 
destructive interference took place the Bragg’s 
law, equation 1, was satisfied while for the 
destructive interference there was another 
element out of phase forming a new crystal. 
 
The different three structures studied on the 
length of this report show an appreciation on 
how the matter is distributed through space 
allowing atoms to be closer or further from 
each other. For instance, the BCC covers a 
68% of the space for each original unit cell and 
the FCC rises that space up to 74.04%, 
producing denser matter in comparison with 
those structures presenting a Simple Cubic 
unit cell that only covers a 52%.  
 
Preparing the crystal powder on the chemical 
laboratory could lead to wrong results if not 
performed properly, that’s why the supervision 
of an experienced assistant was required to 
ensure the grinding of the, at the beginning, 
unknown crystal sample was reduced to a 
proper nano-powder state, which is reached 
after an average of 20 minutes of manual 
grinding, and then compacted on a holder 

Atom 1 … Atom 8 q

x y z … x y z (deg)

h k l 0 0 0 … 1 0.5 0 Normalised

q*R cos(q*R) sin(q*R) …

0 0 0 0 1 0 … 0 1 0 0 0

0 0 1 0 1 0 … 0 1 0 7.9 0

0 0 2 0 1 0 … 0 1 0 15.9 100.0

0 0 3 0 1 0 … 0 1 0 24.2 0

0 0 4 0 1 0 … 0 1 0 33.2 15.8

0 1 0 0 1 0 … 3.1 -1 0 7.9 0

0 1 1 0 1 0 … 3.1 -1 0 11.2 0

0 1 2 0 1 0 … 3.1 -1 0 17.8 0

0 1 3 0 1 0 … 3.1 -1 0 25.6 0

0 1 4 0 1 0 … 3.1 -1 0 34.3 0

0 2 0 0 1 0 … 6.3 1 0 15.9 100.0

0 2 1 0 1 0 … 6.3 1 0 17.8 0

)(qrealI
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showing a smooth surface to reduce the 
undesirable scattering X-rays that would 
interact with wrongly oriented particles if a 
rougher surface is left on the holder. 
 
The calibration method shown on page 2 
reduces the possibilities for shifted-angle 
values on the results obtained and to avoid a 
lower level of recordings through the filter, the 
sample was always placed the closest 
possible to the aperture so the X-rays from the 
Cu X-ray tube after being reflected on the 
sample don’t get lost with the surroundings. 
 
To find the identity of the crystal sample, 
finding the lattice parameter was needed and 
the errors to do so were carried from those on 
the theta angle given from the MATLAB 
program and investigated on the “Curve 
Fitting” tool and in the following steps 
calculated through mathematical operations as 
shown on the appendix. The efficiency of the 
X-ray machine will determine the accuracy of 
the angle theta values recorded, which are 
considered under the calculations of the 
MATLAB program. All the processes followed 
were based on a theoretical model, table 6, 
which was easily calculated using a lab 
manual [15] and where no errors were 
assigned, these could then be found on the 
experimental procedure as seeing on figures 3 
and 4. 
 

 
Table 6: Showing the theoretical approach to plot a sin 
squared graph as a function of the multiplier N to later 
find the lattice constant and so the identity of the sample 
to study. This is the process in which the result 
operations where based for the identification of KI on 
page 3 but without considering any error.  
 

The error on the gradient still depends on the 
mathematical operations undertaken so little 
human error is found on this process where, 
when comparing the results obtained with the 
lattice parameters expected [16] the error on 
those ones was given up to two significant 
figures. This simulation corresponds then to 
the AgCl sample since the simulated lattice 
constant equals to (5.54 ± 0.01)Ȧm (0.1% 
error) in consistency with the expected (5.55 ± 
0.01)Ȧm (0.1% error). 
 

The Nelson-Riley functions keeps depending 
on theta as before, equation 6, and so the 
error sources are based on the logical order of 
significant figures again based on the error 
calculations showed in the appendix. 
 
Consequently, for all modelled data on this 
report, since it’s based on given samples, the 
errors will appear for the already values of the 
lattice parameter [16] and wavelength of X-
rays [17]. 
 
These sources of error affected on our results 
by adding a margin of miscalculation that 
appear to make our results consistent with the 
expected, equation 5, ensuring the proper 
conclusions to be found although by reducing 
the precision. 
 

4. Conclusions 
X-ray crystallography is a scientific method to 
study the structure and identity of crystals by 
analyzing the diffraction produced by Cu X-
rays reflecting on the surface of an unknow 
powdered sample through an Ni foil aperture 
filter, filtering K(β) radiation, and a 2mm 
aperture filter generating a shifted data set by 
a 1.1 ratio from the previous one.  
 
As studied on this dissertation, data recorded 
through those two  filters after hitting the 
sample with X-rays on a range of angles from 
8 to 45 degrees on intervals of 0.1 degrees 
every 15 seconds produced the needed data 
to calculate the lattice parameter (found on the  
Ni Filter since only K(α) radiation was 

required) at (7.11 ± 0.06)Ȧm, armstrongs 
meter, (1% error) and using the same data, but 
analysing the intercept of the Nelson-Riley 
function, Eq. 7, instead of the gradient of figure 
3, the resultant lattice parameter, a, was found 
at (7.16 ± 0.1)Ȧm (1% error). Since both 
results were consistent with two different 
crystal substances, a theoretical study showed 
that since our unknown sample had an odd 
multiplier N, its structure must be FCC and so, 
the only consistent face centred cubic 
substance [8] with our results was the KI 
crystal with a lattice constant of (7.05 ± 
0.01)Ȧm (0.1% error). Confirmed to be the 
right identity of the crystal powder after doing a 
modelling of the theoretical expected Bragg 
peaks and seeing the concordance between 
the modelled and experimental results on table 
1 and figure 6.  
 

theta sin(theta) sin2(theta) ratio Multiplied ratio N (hkl)

13.90 0.24 0.06 1.00 3.00 3 111

16.10 0.28 0.08 1.33 4.00 4 200

23.10 0.39 0.15 2.67 8.00 8 220

27.20 0.46 0.21 3.62 10.86 11 311

28.73 0.48 0.23 4.00 12.01 12 222

33.73 0.56 0.31 5.34 16.03 16 400

37.22 0.60 0.37 6.34 19.02 19 331
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Results complimented with the findings of the 
mean crystallize size for the studied sample 
ranging between (86.9 ± 0.9)Ȧm (1% error) 
from the Ni filter study and (83.9 ± 4.5)Ȧm (6% 
error) from the 2mm aperture study. 
 
Developing a simulated diffraction modelling is 
an accurate method to study the structure of 
known crystals without the need of acquiring 
the data though experimentation. The study of 
the selected three chlorides: CsCl, NaCl and 
KCl, using the explained modelling tables on 
page 5 and 6, showed how CsCl had two 
different atoms placed in a structure similar to 
the BCC one but since the atoms were 
different instead of being the same and the 
metal involved did not couple with the body 
centered cubic requirements then its structure 
only matched that of a Simple Cubic. Following 
with the next two crystals, the NaCl and KCl 
have the same structure, two FCC structures 
together with one of them being shifted by 0.5 
from the origin. This position of the 8 atoms 
causes a destructive interference reducing the 
expected point at which the highest Brag peak 
would be expected and so it breaks the face 
centerd cubic conditions. Both can then be 
explained as a series of Simple cubic cells all 
added together and so that’s the structure of 
NaCl and KCl (which features the same size 
for all its atoms since their anions and cations 
have 18 as atomic number).  
 
Studying the BCC and FCC structures 
following the same modelling lead to observe 
how the BCC, with two atoms, for a single 
element must satisfy the condition in which the 
sum of the square of all three Miller indices 
must be equal to an even number for it to 
feature a Bragg peak, which implies that the 
lowest hkl plane combination will be equal to 2, 
spotted first on the plane 011 (and any 
combination of this three digits) as seeing on 
table 2. 
 
On the other hand, the FCC structure study, 
with four atoms, required all the Miller indices 
to be all ever or all odd for them to spot a 
Bragg peak and so, the lowest plane 
combination at which that happens, showing 
the highest Bragg peak, is when the hkl planes 
equal 111 as seeing on table 3. Fail to follow 
this rule would result on the intensity equal 0 
and so no Bragg peak detected for that plane 
combination.   

 

When analyzing the structure of crystals, the 
electron density of the molecules interacting 
with X-rays will produce the information of the 
atomic positions that then describe the 
molecular structure of the crystal. 
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Appendix A: Error Calculations 
 

 
Table 7: Table with the modelling X-ray diffraction for the 
angles, theta, recorded from the Ni foil aperture filter. It 
has the same structure as the theoretical one shown in 
the discussion section for AgCl but this one features the 
errors and later on the appendix the explanation of where 
these errors come from. 

Error on theta, θ: 
-Given from performing the MATLAB program 
seen below. And given in radians. 
 
Error sin(θ): 
 
  𝛥 sin(𝜃) = sin(𝛥θ)     (Eq. 11) 
 
Error sin2(𝜃): 

   𝛥sin2(𝜃) = 2 · (
𝛥 sin(𝜃)

sin(𝜃)
) · sin2(𝜃)     (Eq. 12) 

Error on N: 
 
    𝛥𝑁 = |𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 − 𝑁|          (Eq. 13) 
 
Error on the lattice parameter, a, from the 
gradient: 
 

              𝛥𝑎 =
𝛥𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
· 𝑎        (Eq. 14) 

 
To obtain a from the NR function, first the 
apparent a for each angle was found, and the 
error corresponds to: 
 

𝛥𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑎 =
𝛥sin (𝜃)

sin (𝜃)
· 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑎      (Eq. 15) 

 
And the error on the NR function following the 
error function for a single variable: 
 

𝛥𝑁𝑅 =  
1

2
(

𝑐𝑜𝑠2(𝜃)

𝜃
+ cos(𝜃) · cot(𝜃)) · 𝛥𝜃(Eq. 16) 

 
Finally, the error on the lattice parameter 
obtained from the Intercept from the NR 
function method is the same as the error on 
the intercept which is provided on the JLineFit 
software. 
On the study of the mean crystallize size of the 
sample, the error on equation 8 is: 
 

 𝛥𝐿 =  √
𝛥𝛽

𝛽
+

𝛥cos (𝜃)

cos (𝜃)
· 𝐿              (Eq. 17) 

NI theta error sin(theta) error sin2(theta) error ratio Multiplied ratioN error (hkl)

10.81 0.17 0.188 0.003 0.035 0.001 1 3.0 3 0 111

12.75 0.14 0.221 0.002 0.049 0.001 1.4 4.2 4 0.15 200

18.29 0.11 0.314 0.002 0.098 0.001 2.8 8.4 8 0.40 220

21.42 0.09 0.365 0.002 0.133 0.001 3.8 11.4 11 0.37 311

22.28 0.64 0.379 0.011 0.144 0.008 4.1 12.3 12 0.26 222

26.11 0.28 0.440 0.005 0.194 0.004 5.5 16.5 17 0.48 410

29.14 0.15 0.487 0.003 0.237 0.003 6.7 20.2 20 0.22 420

32.77 0.11 0.541 0.002 0.293 0.002 8.3 25.0 25 0.01 430

https://vital.liv.ac.uk/webapps/blackboard/execute/content/file?cmd=view&content_id=_1688040_1&course_id=_791491_1
https://vital.liv.ac.uk/webapps/blackboard/execute/content/file?cmd=view&content_id=_1688040_1&course_id=_791491_1
https://www.corrosionpedia.com/definition/1593/body-centered-cubic-bcc
https://www.corrosionpedia.com/definition/1593/body-centered-cubic-bcc
https://vital.liv.ac.uk/webapps/blackboard/execute/content/file?cmd=view&content_id=_1688040_1&course_id=_791491_1
https://vital.liv.ac.uk/webapps/blackboard/execute/content/file?cmd=view&content_id=_1688040_1&course_id=_791491_1
https://vital.liv.ac.uk/webapps/blackboard/execute/content/file?cmd=view&content_id=_1688040_1&course_id=_791491_1
http://www.science.unitn.it/~fisica1/raggi_x/siti/xraywwwserver/xray%20wwwserver.htm
http://www.science.unitn.it/~fisica1/raggi_x/siti/xraywwwserver/xray%20wwwserver.htm
https://en.wikipedia.org/wiki/Harvard_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-674-83339-2
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Where 𝛥𝛽 comes from the error on equation 
for FWHM:  
 

 𝛽 = 𝐹𝑊𝐻𝑀 = 2√2ln (2) · 𝑐1     (Eq. 18) 

 
Since the error on C1 is a given value from the 
MATLAB program below: 
 

  𝛥𝛽 =  
𝛥𝑐1

𝑐1
· 𝛽                  (Eq. 19) 

 
And finally, the error on the mean for the mean 
crystallize size if the standard deviation on the 
mean over the square root of elements on the 
mean. 
 
Appendix B:  
 

Table 8: Showing the order of the steps followed to 
complete the modelling of any of the theoretical models 
calculated on this report. This one particularly 
corresponds to the KI study. 

The amplitude is the first step on this process 
and was found from calculating, equation 20: 
 

=  √(∑ 𝑦𝑖 · 𝑎𝑡𝑜𝑚𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟1 + ∑ 𝑧𝑖 · 𝑎𝑡𝑜𝑚𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟2)

𝑖𝑖

2

 

 
MATLAB peak intervals observation 

 
Figure 12: Plot constructed on MATLAB featuring, with 
different colors, the intervals at which each Bragg peak 
could be spotted using the 2mm aperture filter on a range 
from 8 to 45 degrees. 

 
Figure 13: Plot constructed on MATLAB featuring, with 
different colors, the intervals at which each Bragg peak 
could be spotted using the Ni foil filter on a range from 8 
to 45 degrees. 

MATLAB SCRIPT 
 
%MOISES BARBERA RAMOS 
%13/11/2018 
%data analysis 

  
clear all 
close all 
clc  
%FILTER 2mm 

  
M = csvread('2mm filter day 2.csv') 

  
%PEAK 1 

  
theta1 = M(14:37,1); 
I1 = M(14:37,2); 

  
%PEAK 2 

  
theta2 = M(41:52, 1); 
I2 = M(41:52, 2); 

  
%PEAK 3 

  
theta3 = M(93:110, 1); 
I3 = M(93:110, 2); 

  
%PEAK 4 

  
theta4 = M(127:138, 1); 
I4 = M(127:138, 2); 

  
%PEAK 5 

  
theta5 = M(138:148, 1); 
I5 = M(138:148, 2); 

  
%PEAK 6 

  

q q q LP q

(rad) Mult Index (deg)

Mult Normalised

288 82944 #DIV/0! 1 1 0 0 #DIV/0! 0

1.76E-14 3.11E-28 0.109438 3 2 252.3933 4.71E-25 6.2703458 2.15533E-30

288 82944 0.220215 3 2 43.94215 21868428 12.617407 100

5.29E-14 2.8E-27 0.333825 6 2 15.53108 5.22E-25 19.126783 2.38732E-30

288 82944 0.452127 3 2 7.275283 3620646 25.904946 16.5565

1.76E-14 3.11E-28 0.109438 3 2 252.3933 4.71E-25 6.2703458 2.15533E-30

0 0 0.155081 3 4 105.5852 0 8.8854912 0

1.76E-14 3.11E-28 0.246718 6 4 33.07473 2.47E-25 14.135922 1.12978E-30

hklA hklI )(qrealI)(qrealI

hklA
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theta6 = M(175:189, 1); 
I6 = M(175:189, 2); 

  
%PEAK 7 

  
theta7 = M(200:225, 1); 
I7 = M(200:225, 2); 

  
%PEAK 8 

  
theta8 = M(239:248, 1); 
I8 = M(239:248, 2); 

  
%NIQUEL filter 

  
Ni = csvread('Ni filter day 2.csv') 

  
%2PEAK 1 

  
ntheta1 = Ni(23:40,1); 
nI1 = Ni(23:40,2); 

  
%2PEAK 2 

  
ntheta2 = Ni(45:55, 1); 
nI2 = Ni(45:55, 2); 

  
%2PEAK 3 

  

ntheta3 = Ni(93:110, 1); 
nI3 = Ni(93:110, 2); 

  
%2PEAK 4 

  
ntheta4 = Ni(130:141, 1); 
nI4 = Ni(130:141, 2); 

  
%2PEAK 5 

  
ntheta5 = Ni(141:153, 1); 
nI5 = Ni(141:153, 2); 

  
%2PEAK 6 

  
ntheta6 = Ni(178:185, 1); 
nI6 = Ni(178:185, 2); 

  
%2PEAK 7 

  
ntheta7 = Ni(200:225, 1); 
nI7 = Ni(200:225, 2); 

  
%2PEAK 8 

  
ntheta8 = Ni(245:255, 1); 
nI8 = Ni(245:255, 2); 

  

  

figure(1) 
hold on 
plot(Ni(:,1),Ni(:,2),'k-'); 
plot(ntheta1,nI1,'r-'); 
plot(ntheta2,nI2,'g-'); 
plot(ntheta3,nI3,'b-'); 
plot(ntheta4,nI4,'r-'); 
plot(ntheta5,nI5,'g-'); 
plot(ntheta6,nI6,'b-'); 
plot(ntheta7,nI7,'r-'); 
plot(ntheta8,nI8,'g-'); 
hold off 

  
grid on 

  
xlim([min(Ni(:,1)) max(Ni(:,1))]); 

  

  
figure(2) 

  
plot(1:length(Ni(:,2)),Ni(:,2),'k-'); 

  
figure(3) 
hold on 
plot(M(:,1),M(:,2),'k-'); 
plot(theta1,I1,'r-'); 
plot(theta2,I2,'g-'); 
plot(theta3,I3,'b-'); 
plot(theta4,I4,'r-'); 
plot(theta5,I5,'g-'); 
plot(theta6,I6,'b-'); 
plot(theta7,I7,'r-'); 
plot(theta8,I8,'g-'); 
hold off 

  
grid on 

  
figure(4) 

  
plot(1:length(M(:,2)),M(:,2),'k-'); 

  

 

Access to the EXCEL spreadsheets to check 
all calculations is open through the following 
link leading to a DROPBOX folder storing the 
spreadsheets for everyone to access no 
matter where you are. 
 
https://www.dropbox.com/sh/1oatz5uzjmnv2fo/
AAC5Jp1Sg7MKaVRT_QROcHgQa?dl=0 
 
 
 
 
 

https://www.dropbox.com/sh/1oatz5uzjmnv2fo/AAC5Jp1Sg7MKaVRT_QROcHgQa?dl=0
https://www.dropbox.com/sh/1oatz5uzjmnv2fo/AAC5Jp1Sg7MKaVRT_QROcHgQa?dl=0

