︠806dddac-1062-41b6-96b3-81d2a544542bi︠ %html
EXAMPLE 1 Solving a Polynomial Inequality
Solve and graph the solution set on a real number line: $2x^2 + x > 15$.
︡b6436011-f016-4bdb-824a-19b35907a68b︡{"html": "EXAMPLE 1 Solving a Polynomial Inequality
\nSolve and graph the solution set on a real number line: $2x^2 + x > 15$.
"}︡ ︠18065841-aa80-448e-8066-53d66e05d04c︠ f(x) = 2*x^2 + x - 15 solve(f(x) == 0, x) ︡810fffeb-8364-442f-95f8-8151ab89a877︡︡ ︠67536e47-7e95-4a3f-82f1-5bfcd9346612︠ plot(f, -4, 3) ︡a6ad0101-087d-4abf-ace8-973b5af51731︡︡ ︠f17775e7-0550-4a11-b270-5fd67b8fac2ei︠ %htmlhttp://www.wolframalpha.com/input/?i=2x^2+%2B+x+%3E+15
EXAMPLE 2 Solving a Polynomial Inequality
Solve and graph: $x^3 + x^2 ≤ 4x + 4$.
︡52f2c8c3-9e86-4e3b-9e80-be717159919a︡{"html": "http://www.wolframalpha.com/input/?i=2x^2+%2B+x+%3E+15
\n\nEXAMPLE 2 Solving a Polynomial Inequality
\nSolve and graph: $x^3 + x^2 ≤ 4x + 4$.
"}︡ ︠143f08aa-c34f-448b-a0d8-58cffbe6b37e︠ f(x) = x^3 + x^2 - 4*x - 4 solve(f(x) == 0, x) ︡325d1c28-d626-4fad-82c4-d8065681a93d︡︡ ︠5c0fb24e-3cce-40da-8537-d7ed6159b29d︠ plot(f, -3, 3) ︡e8966a68-5a57-4ccf-83f5-6b7f2b114e66︡︡ ︠9f1c70e1-37b3-47cb-97eb-07d9910164bci︠ %htmlhttp://www.wolframalpha.com/input/?i=x^3+%2B+x^2+%E2%89%A4+4x+%2B+4
EXAMPLE 3 Solving a Rational Inequality
Solve and graph: $\frac{x + 1}{x + 3} ≥ 2$.
︡64e569d0-eb1d-4e52-9c02-1b0341507524︡{"html": "http://www.wolframalpha.com/input/?i=x^3+%2B+x^2+%E2%89%A4+4x+%2B+4
\n\nEXAMPLE 3 Solving a Rational Inequality
\nSolve and graph: $\\frac{x + 1}{x + 3} ≥ 2$.
"}︡ ︠af3675a6-f3ce-403d-948b-ccd03ead5b63︠ f(x) = (x+1)/(x+3) - 2 f ︡e7cb3312-c972-4966-acbf-a62dca56fc19︡︡ ︠1553ff1d-7dcf-4d76-814e-1b8243873712︠ plot(f, -6, -2, ymin = -10, ymax = 10) ︡86a7cc2b-88c2-4168-ab5e-3e4ed1f96326︡︡ ︠e2a8ba5d-ab15-4c59-8a17-7d534ad64b72︠ f(x) = (-x - 5)/(x + 3) f ︡3d876d15-b075-4783-bfa0-6ce4b9c37d32︡︡ ︠8e08186c-7e66-4587-8bb1-87bad559e652︠ plot(f, -6, 2, ymin = -10, ymax = 10) ︡af4b9b1b-300a-4a63-9ccc-c376ed65a57e︡︡ ︠85065e2e-21e3-46c1-ab82-b56fdcdfaf5ei︠ %htmlhttp://www.wolframalpha.com/input/?i=%28x%2B1%29%2F%28x%2B3%29%3E%3D2
EXAMPLE 4 Using the Position Function $s(t) = -16t^2 + v_0t + s_0$
If the initial height $s_0 = 190$ and the initial velocity $v_0 = 96$ feet per second, during what times will the height $s(t) > 190$?
︡3f871b20-3394-463b-8c8e-f70920b5fdbd︡{"html": "http://www.wolframalpha.com/input/?i=%28x%2B1%29%2F%28x%2B3%29%3E%3D2
\n\nEXAMPLE 4 Using the Position Function $s(t) = -16t^2 + v_0t + s_0$
\nIf the initial height $s_0 = 190$ and the initial velocity $v_0 = 96$ feet per second, during what times will the height $s(t) > 190$?
"}︡ ︠7d71dcdf-7279-4d54-889b-08bf7d16ed77︠ s(t) = -16*t^2 + 96*t + 190 ︡0f665a92-f450-4e05-b477-c69b37c57582︡︡ ︠e033af93-355b-40e7-8d6b-6091da1905b1︠ solve(s(t) == 190, t) ︡22a2bdaf-be06-45ec-8196-06ba00154954︡︡ ︠283ba205-902c-4ea5-9c8f-efeb51d31f92︠ h(t) = 190 plot(s, 0, 8) + plot(h, 0, 8) ︡00c5fe97-6941-4a73-9078-ae6983acbe5c︡︡