︠1343af5b-691b-414b-a15b-9da65d32b0f0︠ var('x,n1,n2,n3,n4,n5') w=[n1,n2,n3,n4,n5] #[w-1,w-2,w-3,...] def phi(x,w): #returns iteration of the inverse Gauss map along trajectory w if (len(w)>1): return 1/(w[-1]+phi(x,w[0:-1])) else: return 1/(w[0]+x) def dphidx(x,w): #returns returns expansion rate along finite trajectory w ret=1 for j in range(len(w)): ret*=-1*(phi(x,w[0:j+1]))^2 return ret def S(x,w): #returns S_omega as defined in paper for a word of finite length ret=0 for j in range(len(w)): ret+=dphidx(x,w[0:j+1])*(-2/phi(x,w[0:j+1])) return -retprint def CF(w): #returns continuous fraction expansion of w if (len(w)>1): return 1/(w[0]+CF(w[1:])) else: return 1/(w[0]) show(S(x,w)) show(-2/(x+1/CF(w))) g=S(x,w)+2/(x+1/CF(w)) show(g.full_simplify()) show('Thus the two terms above are the same!') ︡b330efff-84ca-48de-810a-14b52db1055e︡{"stdout": "
\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{2}{n_{1} + x} + \\frac{2}{{\\left(n_{2} + \\frac{1}{n_{1} + x}\\right)} {\\left(n_{1} + x\\right)}^{2}} - \\frac{2}{{\\left(n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x}}\\right)} {\\left(n_{2} + \\frac{1}{n_{1} + x}\\right)}^{2} {\\left(n_{1} + x\\right)}^{2}} + \\frac{2}{{\\left(n_{4} + \\frac{1}{n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x"}︡ ︠b6e5ae6b-c0bc-41f8-b311-b5421a4ef16di︠ %html right)} {\left(n_{3} + \frac{1}{n_{2} + \frac{1}{n_{1} + x}}\right)}^{2} {\left(n_{2} + \frac{1}{n_{1} + x}\right)}^{2} {\left(n_{1} + x\right)}^{2}} - \frac{2}{{\left(n_{5} + \frac{1}{n_{4} + \frac{1}{n_{3} + \frac{1}{n_{2} + \frac{1}{n_{1} + x}}}}\right)} {\left(n_{4} + \frac{1}{n_{3} + \frac{1}{n_{2} + \frac{1}{n_{1} + x}}}\right)}^{2} {\left(n_{3} + \frac{1}{n_{2} + \frac{1}{n_{1} + x}}\right)}^{2} {\left(n_{2} + \frac{1}{n_{1} + x}\right)}^{2} {\left(n_{1} + x\right)}^{2}}
\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{2}{n_{1} + x + \frac{1}{n_{2} + \frac{1}{n_{3} + \frac{1}{n_{4} + \frac{1}{n_{5}}}}}}
\newcommand{\Bold}[1]{\mathbf{#1}}0
\newcommand{\Bold}[1]{\mathbf{#1}}\verb|Thus|\phantom{x}\verb|the|\phantom{x}\verb|two|\phantom{x}\verb|terms|\phantom{x}\verb|above|\phantom{x}\verb|are|\phantom{x}\verb|the|\phantom{x}\verb|same!|
}}} ︡114d0645-9dae-4bd0-878d-75d623b46c3c︡{"html": "right)} {\\left(n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x}}\\right)}^{2} {\\left(n_{2} + \\frac{1}{n_{1} + x}\\right)}^{2} {\\left(n_{1} + x\\right)}^{2}} - \\frac{2}{{\\left(n_{5} + \\frac{1}{n_{4} + \\frac{1}{n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x}}}}\\right)} {\\left(n_{4} + \\frac{1}{n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x}}}\\right)}^{2} {\\left(n_{3} + \\frac{1}{n_{2} + \\frac{1}{n_{1} + x}}\\right)}^{2} {\\left(n_{2} + \\frac{1}{n_{1} + x}\\right)}^{2} {\\left(n_{1} + x\\right)}^{2}}\n
\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{2}{n_{1} + x + \\frac{1}{n_{2} + \\frac{1}{n_{3} + \\frac{1}{n_{4} + \\frac{1}{n_{5}}}}}}
\n
\\newcommand{\\Bold}[1]{\\mathbf{#1}}0
\n
\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|Thus|\\phantom{x}\\verb|the|\\phantom{x}\\verb|two|\\phantom{x}\\verb|terms|\\phantom{x}\\verb|above|\\phantom{x}\\verb|are|\\phantom{x}\\verb|the|\\phantom{x}\\verb|same!|
\n}}}"}︡