\qquad

All work on this lab should be original effort from you. Although I encourage collaboration on this assignment, the work performed herein should be your own. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 5 questions for a total of 0 points.

1. Below is the graph of $f(x)$.

Find the value of the following limits. If the limit does not exist, write DNE.
(a) $\lim _{x \rightarrow-2} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 1^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 1^{-}} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 1} f(x)=$ \qquad
2. Below is the graph of $g(x)$.

Find the value of the following limits. If the limit does not exist, write DNE.
(a) $\lim _{x \rightarrow-1^{+}} f(x)=\underline{\mathbf{2}}$
(i) $\lim _{x \rightarrow 1} f(x)=\underline{\mathbf{D N E}}$
(b) $\lim _{x \rightarrow-1^{-}} f(x)=$ DNE
(c) $\lim _{x \rightarrow-1} f(x)=\underline{\text { DNE }}$
(j) $\lim _{x \rightarrow 2^{+}} f(x)=\underline{0}$
(d) $\lim _{x \rightarrow 0^{+}} f(x)=-\mathbf{- 1}$
(k) $\lim _{x \rightarrow 2^{-}} f(x)=\underline{0}$
(e) $\lim _{x \rightarrow 0^{-}} f(x)=\underline{1}$
(1) $\lim _{x \rightarrow 2} f(x)=\underline{0}$
(f) $\lim _{x \rightarrow 0} f(x)=\underline{\text { DNE }}$
(m) What is the value of $f(0) ? \underline{-1}$
(g) $\lim _{x \rightarrow 1^{+}} f(x)=\underline{1}$
(n) What is the value of $f(1) ? \underline{0}$
(h) $\lim _{x \rightarrow 1^{-}} f(x)=\underline{0}$
(o) What is the value of $f(2) ? \quad 1$
3. Write the definition of $\lim _{x \rightarrow \frac{\pi}{4}} \cos (x)=\frac{\sqrt{2}}{2}$ using the formal epsilon-delta form of the definition of a limit.

Solution: For all $\varepsilon>0$, there exists a $\delta>0$ such that if $x \in\left(\frac{\pi}{4}-\delta, \frac{\pi}{4}\right) \cup\left(4, \frac{\pi}{4}+\delta\right)$, then $\cos (x) \in\left(\frac{\sqrt{2}}{2}-\varepsilon, \frac{\sqrt{2}}{2}\right)$.
4. Write the solution set, in interval notation, of the following absolute value inequalities.
(a) $0<|x-2|<0.5$

Solution: $(1.5,2) \cup(2,2.5)$
(b) $0<|x+5|<0.25$

Solution: $(-5.25,-5) \cup(-5,-4.75)$
(c) $\left|x^{2}-4\right|<1$

Solution: $(\sqrt{3}, \sqrt{5})$
5. Describe, via a graph and a mathematical expression, the punctured interval around $x=2$ with a radius of 0.1.

Solution: The punctured interval would be given by $0<|x-2|<0.1$.

