︠ae2f7a78-6d73-4b0f-a790-036cbad30e0das︠ %auto typeset_mode(True, display=False) ︡10c89cd6-4d47-4e5b-9ddb-e8beb38906bd︡︡{"auto":true}︡{"done":true} ︠89c9fff0-b1a6-4565-86b3-77addb409ee3i︠ %html

Kerr-Newman spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding Kerr-Newman spacetime, especially the check of Maxwell equations and Einstein equations.

It is released under the GNU General Public License version 3.

(c) Eric Gourgoulhon, Michal Bejger (2015)

The corresponding worksheet file can be downloaded from here.

 

Spacetime manifold

We start by declaring the Kerr-Newman spacetime as a 4-dimensional diffentiable manifold:

︡de52f10c-b086-45d8-95ab-52de03c58737︡︡{"done":true,"html":"

Kerr-Newman spacetime

\n

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding Kerr-Newman spacetime, especially the check of Maxwell equations and Einstein equations.

\n

It is released under the GNU General Public License version 3.

\n

(c) Eric Gourgoulhon, Michal Bejger (2015)

\n

The corresponding worksheet file can be downloaded from here.

\n

 

\n

Spacetime manifold

\n

We start by declaring the Kerr-Newman spacetime as a 4-dimensional diffentiable manifold:

"} ︠e0602933-a206-4574-a52d-f0d99fcf497as︠ M = Manifold(4, 'M', r'\mathcal{M}') ︡89e63871-8c69-437e-8496-07a20ef647a4︡︡{"done":true} ︠41f5adcc-002f-4b4e-8bd9-d703dece35b2i︠ %html

Let us use the standard Boyer-Lindquist coordinates on it, by first introducing the part $\mathcal{M}_0$ covered by these coordinates

︡757d4416-cd39-45fc-86b0-7bd9945c2992︡︡{"done":true,"html":"

Let us use the standard Boyer-Lindquist coordinates on it, by first introducing the part $\\mathcal{M}_0$ covered by these coordinates

"} ︠cb467730-47cc-41de-8244-d904fa77596cs︠ M0 = M.open_subset('M0', r'\mathcal{M}_0') # BL = Boyer-Lindquist BL. = M0.chart(r't r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') print BL ; BL ︡5b404291-f7e2-421d-b223-d9d4ed637332︡︡{"stdout":"chart (M0, (t, r, th, ph))\n","done":false}︡{"html":"
$\\left(\\mathcal{M}_0,(t, r, {\\theta}, {\\phi})\\right)$
","done":false}︡{"done":true} ︠8dced339-f34e-44de-a0d3-681f42b90ebfi︠ %html

Metric tensor

The 3 parameters $m$, $a$ and $q$ of the Kerr-Newman spacetime are declared as symbolic variables:

︡42688c9a-acce-406f-9431-146685b6b163︡︡{"done":true,"html":"

Metric tensor

\n

The 3 parameters $m$, $a$ and $q$ of the Kerr-Newman spacetime are declared as symbolic variables:

"} ︠b3490163-5411-4ef4-8f7a-d663ad3bd6f7s︠ var('m a q') ︡622c1bda-c52f-4753-b9c8-f33b65d5d474︡︡{"html":"
($m$, $a$, $q$)
","done":false}︡{"done":true} ︠052141dc-0639-459c-8172-a06e257e371ci︠ %html

Let us introduce the spacetime metric:

︡16e07352-c567-4ae4-94bd-7286c4025463︡︡{"done":true,"html":"

Let us introduce the spacetime metric:

"} ︠d0187d6f-9fcc-4d90-b988-67162f64a36fs︠ g = M.lorentz_metric('g') ︡eb777184-45b5-4d65-8773-c5dc271303d1︡︡{"done":true} ︠ccce8e1e-2485-4a94-a9d7-04f3350d61cbi︠ %html

The metric is defined by its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the current manifold's default frame:

︡f37a09ad-b789-4ee5-991d-f06c9f4008ce︡︡{"done":true,"html":"

The metric is defined by its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the current manifold's default frame:

"} ︠07fb0b7d-8c84-4960-98c2-53e96e9d5c1fs︠ rho2 = r^2 + (a*cos(th))^2 Delta = r^2 -2*m*r + a^2 + q^2 g[0,0] = -1 + (2*m*r-q^2)/rho2 g[0,3] = -a*sin(th)^2*(2*m*r-q^2)/rho2 g[1,1], g[2,2] = rho2/Delta, rho2 g[3,3] = (r^2 + a^2 + (2*m*r-q^2)*(a*sin(th))^2/rho2)*sin(th)^2 g.display() ︡9a0d815f-d3d1-40ad-ad5f-cb609877b91f︡︡{"html":"
$g = \\left( -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + q^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} + q^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} t + \\left( -\\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠ff6b5edc-fa59-40ae-bd17-9af04a86b0dds︠ g.display_comp() ︡bbd3cec6-616d-4712-ba62-c4358ef8d1f0︡︡{"html":"
$\\begin{array}{lcl} g_{ \\, t \\, t }^{ \\phantom{\\, t } \\phantom{\\, t } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + q^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, t \\, {\\phi} }^{ \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r } \\phantom{\\, r } } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} + q^{2} - 2 \\, m r + r^{2}} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\phi} \\, t }^{ \\phantom{\\, {\\phi} } \\phantom{\\, t } } & = & \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\phi} \\, {\\phi} }^{ \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\end{array}$
","done":false}︡{"done":true} ︠08c4cd5a-c7e1-41fb-b048-87ab0fc5c699s︠ g.inverse()[0,0] ︡7192a2ab-cc5a-44b9-8144-0ede24501027︡︡{"html":"
$\\frac{a^{4} + 2 \\, a^{2} r^{2} + r^{4} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{2 \\, m r^{3} - r^{4} - {\\left(a^{2} + q^{2}\\right)} r^{2} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}$
","done":false}︡{"done":true} ︠f0f3294c-fb64-40f7-9de6-271d2bbf2f65i︠ %html

The lapse function:

︡bc2759ca-bf1c-498d-bd0e-18ce4aaf268a︡︡{"done":true,"html":"

The lapse function:

"} ︠ba04e291-606d-446e-a2b9-14f5cf17151fs︠ N = 1/sqrt(-(g.inverse()[[0,0]])) ; N ︡e1fef3f6-cd60-4185-b2c9-800d2804b468︡︡{"html":"
$\\mbox{scalar field on the open subset 'M0' of the 4-dimensional manifold 'M'}$
","done":false}︡{"done":true} ︠ed7466c2-4afc-48a2-8472-fae6dff12b21s︠ N.display() ︡a92eb573-8f09-411d-8d49-80634363e585︡︡{"html":"
$\\begin{array}{llcl} & \\mathcal{M}_0 & \\longrightarrow & \\mathbb{R} \\\\ & \\left(t, r, {\\theta}, {\\phi}\\right) & \\longmapsto & \\frac{\\sqrt{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\sqrt{a^{2} + q^{2} - 2 \\, m r + r^{2}}}{\\sqrt{a^{4} + 2 \\, a^{2} r^{2} + r^{4} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}} \\end{array}$
","done":false}︡{"done":true} ︠3b4c80aa-fd79-4418-9915-78e15e23e2eci︠ %html

Electromagnetic field tensor

Let us first introduce the 1-form basis associated with Boyer-Lindquist coordinates:

︡e160d6ab-afe8-4faf-b3d1-a36b1974704f︡︡{"done":true,"html":"

Electromagnetic field tensor

\n

Let us first introduce the 1-form basis associated with Boyer-Lindquist coordinates:

"} ︠e87dfb4e-3a34-493e-8735-c5708a72b720s︠ dBL = BL.coframe() ; dBL ︡2d0d05fb-1227-4e2d-b393-a450913f7401︡︡{"html":"
$\\left(\\mathcal{M}_0 ,\\left(\\mathrm{d} t,\\mathrm{d} r,\\mathrm{d} {\\theta},\\mathrm{d} {\\phi}\\right)\\right)$
","done":false}︡{"done":true} ︠9eba5119-7b76-41e3-b02f-610e6e22e810i︠ %html

The electromagnetic field tensor $F$ is formed as [cf. e.g. Eq. (33.5) of Misner, Thorne & Wheeler (1973)]

︡8aac91a0-2d37-4acd-88fe-0417f0975b98︡︡{"done":true,"html":"

The electromagnetic field tensor $F$ is formed as [cf. e.g. Eq. (33.5) of Misner, Thorne & Wheeler (1973)]

"} ︠1b2fbf85-3eaa-4a90-b016-967301b591c3s︠ F = M.diff_form(2, name='F') F.set_restriction( q/rho2^2 * (r^2-a^2*cos(th)^2)* dBL[1].wedge( dBL[0] - a*sin(th)^2* dBL[3] ) + \ 2*q/rho2^2 * a*r*cos(th)*sin(th)* dBL[2].wedge( (r^2+a^2)* dBL[3] - a* dBL[0] ) ) F.display() ︡ec4832ae-ff36-4883-9af7-cddd6322450f︡︡{"html":"
$F = \\left( \\frac{a^{2} q \\cos\\left({\\theta}\\right)^{2} - q r^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} r + \\left( \\frac{2 \\, a^{2} q r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} {\\theta} + \\left( \\frac{{\\left(a^{3} q \\cos\\left({\\theta}\\right)^{2} - a q r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\left( \\frac{2 \\, {\\left(a^{3} q r + a q r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠09b6281b-f0e5-4f19-a074-882f960ba22cs︠ F.display_comp() ︡a863c616-e876-498c-b17b-8e06bef4a93f︡︡{"html":"
$\\begin{array}{lcl} F_{ \\, t \\, r }^{ \\phantom{\\, t } \\phantom{\\, r } } & = & \\frac{a^{2} q \\cos\\left({\\theta}\\right)^{2} - q r^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, t \\, {\\theta} }^{ \\phantom{\\, t } \\phantom{\\, {\\theta} } } & = & \\frac{2 \\, a^{2} q r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, r \\, t }^{ \\phantom{\\, r } \\phantom{\\, t } } & = & -\\frac{a^{2} q \\cos\\left({\\theta}\\right)^{2} - q r^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, r \\, {\\phi} }^{ \\phantom{\\, r } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a^{3} q \\cos\\left({\\theta}\\right)^{2} - a q r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, {\\theta} \\, t }^{ \\phantom{\\, {\\theta} } \\phantom{\\, t } } & = & -\\frac{2 \\, a^{2} q r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, {\\theta} \\, {\\phi} }^{ \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\frac{2 \\, {\\left(a^{3} q r + a q r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, {\\phi} \\, r }^{ \\phantom{\\, {\\phi} } \\phantom{\\, r } } & = & -\\frac{{\\left(a^{3} q \\cos\\left({\\theta}\\right)^{2} - a q r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ F_{ \\, {\\phi} \\, {\\theta} }^{ \\phantom{\\, {\\phi} } \\phantom{\\, {\\theta} } } & = & -\\frac{2 \\, {\\left(a^{3} q r + a q r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\end{array}$
","done":false}︡{"done":true} ︠e95431aa-9d57-4f8e-85c6-e6e016e4dd6ai︠ %html

The Hodge dual of $F$:

︡85a1a3c0-8d1b-432b-9010-0aca1b5afac7︡︡{"done":true,"html":"

The Hodge dual of $F$:

"} ︠68828dd8-2c88-4c4f-9db4-8a1f56b35fb2s︠ star_F = F.hodge_star(g) ; star_F.display() ︡f26a37f0-a181-43d7-b4d6-9128a34c3a32︡︡{"html":"
$\\star F = \\left( \\frac{2 \\, a q r \\cos\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} r + \\left( -\\frac{{\\left(a^{3} q \\cos\\left({\\theta}\\right)^{2} - a q r^{2}\\right)} \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, {\\left(a^{4} q r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{4} q r + a^{2} q r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{2}\\right)}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\right) \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\left( \\frac{{\\left(a^{4} q + a^{2} q r^{2}\\right)} \\sin\\left({\\theta}\\right)^{3} - {\\left(a^{4} q - q r^{4}\\right)} \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠33f41355-9155-436c-bae7-7e456348d0e8i︠ %html

Maxwell equations

Let us check that $F$ obeys the two (source-free) Maxwell equations:

︡473937da-9e9c-4ea9-9b2b-893bfcbe6eb8︡︡{"done":true,"html":"

Maxwell equations

\n\n

Let us check that $F$ obeys the two (source-free) Maxwell equations:

"} ︠22bb65ca-539e-45fe-a194-5f1a075b6a55s︠ xder(F).display() ︡2ffa4f45-8703-4191-92bc-eb017b4a67d2︡︡{"html":"
$\\mathrm{d}F = 0$
","done":false}︡{"done":true} ︠9a212cfa-3095-4cda-b966-147af4b1bd9bs︠ xder(star_F).display() ︡eaaa0346-8f19-41ee-ac35-c084d43e2fc2︡︡{"html":"
$\\mathrm{d}\\star F = 0$
","done":false}︡{"done":true} ︠6856e839-4813-437a-be03-a4cc8e065448i︠ %html

Levi-Civita Connection

The Levi-Civita connection $\nabla$ associated with $g$:

︡5c8b038c-8518-41a8-94b4-0bbfa5630f50︡︡{"done":true,"html":"

Levi-Civita Connection

\n\n

The Levi-Civita connection $\\nabla$ associated with $g$:

"} ︠119c58e0-7dcd-4c2d-ab62-a4e031b5b0fbs︠ nab = g.connection() ; print nab ︡8054c07e-1f67-4900-9821-da4222cb9a1a︡︡{"stdout":"Levi-Civita connection 'nabla_g' associated with the Lorentzian metric 'g' on the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠562863cb-0afe-4c5f-89c4-cea486452c10i︠ %html

Let us verify that the covariant derivative of $g$ with respect to $\nabla$ vanishes identically:

︡5eb73909-c2e5-427f-91ab-f55d20b4bf97︡︡{"done":true,"html":"

Let us verify that the covariant derivative of $g$ with respect to $\\nabla$ vanishes identically:

"} ︠aba00cf1-944c-44b2-8429-f91243f3f49fs︠ nab(g) == 0 ︡9782c0e0-2931-424d-a953-b7952e3eb90b︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠79d01667-271d-498d-a18f-d42b2ecfd6a2s︠ nab(g).display() # another view of the above property ︡8d336fa5-a4bf-47a5-9eb0-292bdbd73591︡{"html":"
$\\nabla_{g} g = 0$
","done":false}︡{"done":true}︡ ︠45729200-e736-4b62-9f53-623c762d2e74i︠ %html

The nonzero Christoffel symbols (skipping those that can be deduced by symmetry of the last two indices):

︡a3fa11b3-c1dc-4b01-9884-34b85e332831︡︡{"done":true,"html":"

The nonzero Christoffel symbols (skipping those that can be deduced by symmetry of the last two indices):

"} ︠1fc49681-33d8-491c-a725-a631f7a742c4s︠ g.christoffel_symbols_display() ︡b4170f31-4648-4632-9570-b7422d052d40︡︡{"html":"
$\\begin{array}{lcl} \\Gamma_{ \\phantom{\\, t } \\, t \\, r }^{ \\, t \\phantom{\\, t } \\phantom{\\, r } } & = & \\frac{a^{4} m + a^{2} q^{2} r + q^{2} r^{3} - m r^{4} - {\\left(a^{4} m + a^{2} m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, t \\, {\\theta} }^{ \\, t \\phantom{\\, t } \\phantom{\\, {\\theta} } } & = & \\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, r \\, {\\phi} }^{ \\, t \\phantom{\\, r } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a^{5} m + a^{3} q^{2} r - a^{3} m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{5} m + 2 \\, a^{3} q^{2} r - 2 \\, a^{3} m r^{2} + 2 \\, a q^{2} r^{3} - 3 \\, a m r^{4}\\right)} \\sin\\left({\\theta}\\right)^{2}}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t } \\, {\\theta} \\, {\\phi} }^{ \\, t \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a^{5} q^{2} - 2 \\, a^{5} m r\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{5} - {\\left(a^{5} q^{2} - 2 \\, a^{5} m r + a^{3} q^{2} r^{2} - 2 \\, a^{3} m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{3}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, t \\, t }^{ \\, r \\phantom{\\, t } \\phantom{\\, t } } & = & \\frac{m r^{4} - {\\left(2 \\, m^{2} + q^{2}\\right)} r^{3} + {\\left(a^{2} m + 3 \\, m q^{2}\\right)} r^{2} - {\\left(a^{4} m + a^{2} m q^{2} - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2} - {\\left(a^{2} q^{2} + q^{4}\\right)} r}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, t \\, {\\phi} }^{ \\, r \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left(a m r^{4} - {\\left(2 \\, a m^{2} + a q^{2}\\right)} r^{3} + {\\left(a^{3} m + 3 \\, a m q^{2}\\right)} r^{2} - {\\left(a^{5} m + a^{3} m q^{2} - 2 \\, a^{3} m^{2} r + a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2} - {\\left(a^{3} q^{2} + a q^{4}\\right)} r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, r \\, r }^{ \\, r \\phantom{\\, r } \\phantom{\\, r } } & = & -\\frac{a^{2} m + q^{2} r - m r^{2} - {\\left(a^{2} m - a^{2} r\\right)} \\sin\\left({\\theta}\\right)^{2}}{2 \\, m r^{3} - r^{4} - {\\left(a^{2} + q^{2}\\right)} r^{2} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, r } \\phantom{\\, {\\theta} } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, {\\theta} \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & \\frac{2 \\, m r^{2} - r^{3} - {\\left(a^{2} + q^{2}\\right)} r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r } \\, {\\phi} \\, {\\phi} }^{ \\, r \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & \\frac{{\\left(a^{2} m r^{4} - {\\left(2 \\, a^{2} m^{2} + a^{2} q^{2}\\right)} r^{3} + {\\left(a^{4} m + 3 \\, a^{2} m q^{2}\\right)} r^{2} - {\\left(a^{6} m + a^{4} m q^{2} - 2 \\, a^{4} m^{2} r + a^{4} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2} - {\\left(a^{4} q^{2} + a^{2} q^{4}\\right)} r\\right)} \\sin\\left({\\theta}\\right)^{4} + {\\left(2 \\, m r^{6} - r^{7} - {\\left(a^{2} + q^{2}\\right)} r^{5} + {\\left(2 \\, a^{4} m r^{2} - a^{4} r^{3} - {\\left(a^{6} + a^{4} q^{2}\\right)} r\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{4} - a^{2} r^{5} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, t \\, t }^{ \\, {\\theta} \\phantom{\\, t } \\phantom{\\, t } } & = & \\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, t \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, t } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left(a^{3} q^{2} - 2 \\, a^{3} m r + a q^{2} r^{2} - 2 \\, a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, r \\, r }^{ \\, {\\theta} \\phantom{\\, r } \\phantom{\\, r } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{2 \\, m r^{3} - r^{4} - {\\left(a^{2} + q^{2}\\right)} r^{2} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r } \\phantom{\\, {\\theta} } } & = & \\frac{r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, {\\theta} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\theta} } \\phantom{\\, {\\theta} } } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta} } \\, {\\phi} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi} } \\phantom{\\, {\\phi} } } & = & -\\frac{{\\left({\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} - 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{3} - {\\left(a^{4} q^{2} - 2 \\, a^{4} m r + 2 \\, a^{2} q^{2} r^{2} - 4 \\, a^{2} m r^{3} - a^{2} r^{4} - r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, t \\, r }^{ \\, {\\phi} \\phantom{\\, t } \\phantom{\\, r } } & = & \\frac{a^{3} m \\cos\\left({\\theta}\\right)^{2} + a q^{2} r - a m r^{2}}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, t \\, {\\theta} }^{ \\, {\\phi} \\phantom{\\, t } \\phantom{\\, {\\theta} } } & = & \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, r \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, r } \\phantom{\\, {\\phi} } } & = & -\\frac{a^{2} q^{2} r - a^{2} m r^{2} + q^{2} r^{3} - 2 \\, m r^{4} + r^{5} - {\\left(a^{4} m - a^{4} r\\right)} \\cos\\left({\\theta}\\right)^{4} + {\\left(a^{4} m - a^{2} m r^{2} + 2 \\, a^{2} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi} } \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta} } \\phantom{\\, {\\phi} } } & = & \\frac{a^{4} \\cos\\left({\\theta}\\right)^{5} + {\\left(a^{2} q^{2} - 2 \\, a^{2} m r + 2 \\, a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{3} - {\\left(a^{2} q^{2} - 2 \\, a^{2} m r - r^{4}\\right)} \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\end{array}$
","done":false}︡{"done":true} ︠bbe07533-935c-4357-abeb-5b092db9c9d4i︠ %html

Killing vectors

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

︡96efd957-c2d6-4cca-af35-5a44ad4e4c5a︡︡{"done":true,"html":"

Killing vectors

\n

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

"} ︠16f8e79e-666d-48a8-b039-dd216ef2257fs︠ M.default_frame() is BL.frame() ︡248583df-e392-47f8-b1bf-55bebf75feae︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠2cd83306-34a0-4746-b845-caf3a1c5818as︠ BL.frame() ︡d08967e9-fb60-4217-b660-45ceffb21554︡︡{"html":"
$\\left(\\mathcal{M}_0 ,\\left(\\frac{\\partial}{\\partial t },\\frac{\\partial}{\\partial r },\\frac{\\partial}{\\partial {\\theta} },\\frac{\\partial}{\\partial {\\phi} }\\right)\\right)$
","done":false}︡{"done":true} ︠ea0a221e-b735-4281-888b-1ae8ee7a76a3i︠ %html

Let us consider the first vector field of this frame:

︡0beac5cd-7041-4feb-a718-00b62ba8d27b︡︡{"done":true,"html":"

Let us consider the first vector field of this frame:

"} ︠bd71baf4-aa72-416b-906d-cdaf3ee9e6d9s︠ xi = BL.frame()[0] ; xi ︡f1d5bf8c-0063-4bf0-8691-61dc61fcf001︡︡{"html":"
$\\frac{\\partial}{\\partial t }$
","done":false}︡{"done":true} ︠2cea4223-de96-4f70-a22b-9388584487f7s︠ print xi ︡c7420510-cfad-4909-8783-b4514605866c︡︡{"stdout":"vector field 'd/dt' on the open subset 'M0' of the 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠85386afe-e567-4f44-b57c-727500af95fdi︠ %html

The 1-form associated to it by metric duality is

︡87281901-cfcc-4512-be1f-9640cd3ca2fe︡︡{"done":true,"html":"

The 1-form associated to it by metric duality is

"} ︠920eef86-9315-47ad-82ea-d16bd9f71279s︠ xi_form = xi.down(g) ; xi_form.display() ︡8d12d56d-3aba-458e-bc9b-462c765b31d7︡︡{"html":"
$\\left( -\\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + q^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t + \\left( \\frac{{\\left(a q^{2} - 2 \\, a m r\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠a85279dc-57e3-4abc-b259-7428b52c7d84i︠ %html

Its covariant derivative is

︡9688def1-1133-4dcb-96c6-8ea7d36cc07d︡︡{"done":true,"html":"

Its covariant derivative is

"} ︠f592f8cf-b31f-4346-9ef5-85542d7b6bebs︠ nab_xi = nab(xi_form) ; print nab_xi ; nab_xi.display() ︡742cddf7-0dca-40dd-9271-10b7719df041︡︡{"stdout":"tensor field of type (0,2) on the open subset 'M0' of the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"html":"
$\\left( \\frac{m r^{4} - {\\left(2 \\, m^{2} + q^{2}\\right)} r^{3} + {\\left(a^{2} m + 3 \\, m q^{2}\\right)} r^{2} - {\\left(a^{4} m + a^{2} m q^{2} - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2} - {\\left(a^{2} q^{2} + q^{4}\\right)} r}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} r + \\left( -\\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{m r^{4} - {\\left(2 \\, m^{2} + q^{2}\\right)} r^{3} + {\\left(a^{2} m + 3 \\, m q^{2}\\right)} r^{2} - {\\left(a^{4} m + a^{2} m q^{2} - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2} - {\\left(a^{2} q^{2} + q^{4}\\right)} r}{2 \\, m r^{5} - r^{6} - {\\left(a^{2} + q^{2}\\right)} r^{4} - {\\left(a^{6} + a^{4} q^{2} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(2 \\, a^{2} m r^{3} - a^{2} r^{4} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( -\\frac{a^{3} m \\cos\\left({\\theta}\\right)^{4} - a q^{2} r + a m r^{2} - {\\left(a^{3} m - a q^{2} r + a m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{{\\left(a^{2} q^{2} - 2 \\, a^{2} m r\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} t + \\left( -\\frac{{\\left(a^{3} q^{2} - 2 \\, a^{3} m r + a q^{2} r^{2} - 2 \\, a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{a^{3} m \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{3} m + a q^{2} r - a m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} r + \\left( \\frac{{\\left(a^{3} q^{2} - 2 \\, a^{3} m r + a q^{2} r^{2} - 2 \\, a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\theta}$
","done":false}︡{"done":true} ︠ea625136-7c3f-447e-a9b9-bde9c6468edai︠ %html

Let us check that the vector field $\xi=\frac{\partial}{\partial t}$ obeys Killing equation:

︡bf7c5e61-33a5-4598-aaff-0cb4da534782︡︡{"done":true,"html":"

Let us check that the vector field $\\xi=\\frac{\\partial}{\\partial t}$ obeys Killing equation:

"} ︠16abbc2d-f60b-4651-a0f7-f298ed899889s︠ nab_xi.symmetrize() == 0 ︡418a7294-8042-42f8-95eb-0fe847120eaa︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠96795b8b-1732-4da0-bc81-4465b2452527i︠ %html

Similarly, let us check that $\chi := \frac{\partial}{\partial\phi}$ is a Killing vector:

︡975cd92f-56b9-4692-bdd7-26b48b8f8427︡︡{"done":true,"html":"

Similarly, let us check that $\\chi := \\frac{\\partial}{\\partial\\phi}$ is a Killing vector:

"} ︠a0972597-be36-4f96-a61a-5ee974d43081s︠ chi = BL.frame()[3] ; chi ︡46337f5f-954b-4a30-8557-fccd7f59c397︡︡{"html":"
$\\frac{\\partial}{\\partial {\\phi} }$
","done":false}︡{"done":true} ︠480d24e7-6a8b-4d42-9947-495ccee8b837s︠ nab(chi.down(g)).symmetrize() == 0 ︡184838c3-f5b5-4528-bcd9-cb0d13ece052︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠31ab046a-fdf2-46b2-b2e8-20f63a147b19i︠ %html

Another way to check that $\xi$ and $\chi$ are Killing vectors is the vanishing of the Lie derivative of the metric tensor along them:

︡1f71aab9-f462-4a75-a460-19bdbe6aafe8︡︡{"done":true,"html":"

Another way to check that $\\xi$ and $\\chi$ are Killing vectors is the vanishing of the Lie derivative of the metric tensor along them:

"} ︠6eea8336-9842-439d-a7a2-dfc5617c5281s︠ g.lie_der(xi) == 0 ︡7746ee30-c916-41b6-933b-9e999b995421︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠43e18cae-e839-4025-b6e8-ed26954d4ddas︠ g.lie_der(chi) == 0 ︡bd43b016-c055-4600-a8e7-c182b118f2ca︡︡{"html":"
$\\mathrm{True}$
","done":false}︡{"done":true} ︠19a20601-6c12-4367-968c-999cc81cd807i︠ %html

Curvature

The Ricci tensor associated with $g$:

︡487286be-8b7d-43f1-8c5c-e89b59785e0e︡︡{"done":true,"html":"

Curvature

\n\n

The Ricci tensor associated with $g$:

"} ︠b0aab5cb-68d9-466c-9e7d-a4e8305d904es︠ Ric = g.ricci() ; print Ric ︡8e1966bd-ea49-40df-bcd9-7d9bfffe3a86︡︡{"stdout":"field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold 'M'","done":false}︡{"stdout":"\n","done":false}︡{"done":true} ︠232937a6-d8b5-476e-a8fa-57a55122b8dds︠ Ric.display() ︡b44b904c-3aba-48fc-a26a-e870bc8f0c0f︡︡{"html":"
$\\mathrm{Ric}\\left(g\\right) = \\left( -\\frac{a^{2} q^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, a^{2} q^{2} - q^{4} + 2 \\, m q^{2} r - q^{2} r^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2} - {\\left(2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{q^{2}}{2 \\, m r^{3} - r^{4} - {\\left(a^{2} + q^{2}\\right)} r^{2} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( \\frac{q^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2} - {\\left(2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} t + \\left( -\\frac{{\\left(a^{6} q^{2} + a^{4} q^{4} - 2 \\, a^{4} m q^{2} r + a^{4} q^{2} r^{2}\\right)} \\sin\\left({\\theta}\\right)^{6} - {\\left(a^{4} q^{4} - 2 \\, a^{4} m q^{2} r + a^{2} q^{4} r^{2} - 2 \\, a^{2} m q^{2} r^{3}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{6} q^{2} + 3 \\, a^{4} q^{2} r^{2} + 3 \\, a^{2} q^{2} r^{4} + q^{2} r^{6}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{8} \\cos\\left({\\theta}\\right)^{8} + 4 \\, a^{6} r^{2} \\cos\\left({\\theta}\\right)^{6} + 6 \\, a^{4} r^{4} \\cos\\left({\\theta}\\right)^{4} + 4 \\, a^{2} r^{6} \\cos\\left({\\theta}\\right)^{2} + r^{8}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$
","done":false}︡{"done":true} ︠03aad13b-ee57-420e-a727-fff0cc060d84s︠ Ric[:] ︡9251851e-e0c2-4e4b-b5d1-d3bd7d354b3e︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n-\\frac{a^{2} q^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, a^{2} q^{2} - q^{4} + 2 \\, m q^{2} r - q^{2} r^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} & 0 & 0 & -\\frac{2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2} - {\\left(2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\\n0 & \\frac{q^{2}}{2 \\, m r^{3} - r^{4} - {\\left(a^{2} + q^{2}\\right)} r^{2} - {\\left(a^{4} + a^{2} q^{2} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} & 0 & 0 \\\\\n0 & 0 & \\frac{q^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 \\\\\n-\\frac{2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2} - {\\left(2 \\, a^{3} q^{2} + a q^{4} - 2 \\, a m q^{2} r + 2 \\, a q^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} & 0 & 0 & -\\frac{{\\left(a^{6} q^{2} + a^{4} q^{4} - 2 \\, a^{4} m q^{2} r + a^{4} q^{2} r^{2}\\right)} \\sin\\left({\\theta}\\right)^{6} - {\\left(a^{4} q^{4} - 2 \\, a^{4} m q^{2} r + a^{2} q^{4} r^{2} - 2 \\, a^{2} m q^{2} r^{3}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{6} q^{2} + 3 \\, a^{4} q^{2} r^{2} + 3 \\, a^{2} q^{2} r^{4} + q^{2} r^{6}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{8} \\cos\\left({\\theta}\\right)^{8} + 4 \\, a^{6} r^{2} \\cos\\left({\\theta}\\right)^{6} + 6 \\, a^{4} r^{4} \\cos\\left({\\theta}\\right)^{4} + 4 \\, a^{2} r^{6} \\cos\\left({\\theta}\\right)^{2} + r^{8}}\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠c9662367-26eb-44db-81fe-0f06c6b06d2ci︠ %html

Let us check that in the Kerr case, i.e. when $q=0$, the Ricci tensor is zero:

︡fe73b667-d2d5-4d33-be5d-92f2f8fd9dfd︡︡{"done":true,"html":"

Let us check that in the Kerr case, i.e. when $q=0$, the Ricci tensor is zero:

"} ︠7b2859e8-3917-42f3-bf4a-3c3477c57203s︠ Ric[:].subs(q=0) ︡7659dcf7-295c-4b80-9df7-f52c3faa39a4︡︡{"html":"
$\\left(\\begin{array}{rrrr}\n0 & 0 & 0 & 0 \\\\\n0 & 0 & 0 & 0 \\\\\n0 & 0 & 0 & 0 \\\\\n0 & 0 & 0 & 0\n\\end{array}\\right)$
","done":false}︡{"done":true} ︠f347b11c-d3dc-4b87-a4cb-ec915c42fd15i︠ %html

The Riemann curvature tensor associated with $g$:

︡08150f1a-01a7-4ddc-a5f9-446cf5fcefe3︡︡{"done":true,"html":"

The Riemann curvature tensor associated with $g$:

"} ︠d172394b-3d0e-4c55-a7b4-a5a9e7fe02dfs︠ R = g.riemann() ; print R ︡0b613fa2-905b-4f66-87d1-e1990fba7a7f︡︡{"stdout":"tensor field 'Riem(g)' of type (1,3) on the 4-dimensional manifold 'M'\n","done":false}︡{"done":true} ︠2b47b31c-521f-4564-8f58-c892a38a867ai︠ %html

The component $R^0_{\ \, 101}$ of the Riemann tensor is

︡528165f3-5e94-4e91-b070-069fa66da763︡︡{"done":true,"html":"

The component $R^0_{\\ \\, 101}$ of the Riemann tensor is

"} ︠7be6631c-9791-4e9e-8a3c-e6cd635da29as︠ R[0,1,0,1] ︡b80865f9-63fc-4d37-b085-704653b1c29a︡︡{"html":"
$\\frac{4 \\, a^{2} q^{2} r^{2} - 3 \\, a^{2} m r^{3} + 3 \\, q^{2} r^{4} - 2 \\, m r^{5} + {\\left(a^{4} q^{2} - 3 \\, a^{4} m r\\right)} \\cos\\left({\\theta}\\right)^{4} - {\\left(2 \\, a^{4} q^{2} - 9 \\, a^{4} m r + 2 \\, a^{2} q^{2} r^{2} - 7 \\, a^{2} m r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{2 \\, m r^{7} - r^{8} - {\\left(a^{2} + q^{2}\\right)} r^{6} - {\\left(a^{8} + a^{6} q^{2} - 2 \\, a^{6} m r + a^{6} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{6} + 3 \\, {\\left(2 \\, a^{4} m r^{3} - a^{4} r^{4} - {\\left(a^{6} + a^{4} q^{2}\\right)} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 3 \\, {\\left(2 \\, a^{2} m r^{5} - a^{2} r^{6} - {\\left(a^{4} + a^{2} q^{2}\\right)} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}}$
","done":false}︡{"done":true} ︠1b4fc5b8-6acf-4b1b-85f1-233e16b61a0di︠ %html

The expression in the uncharged limit (Kerr spacetime) is

︡17e162b9-ab85-46cf-bf06-5c1c717802a7︡︡{"done":true,"html":"

The expression in the uncharged limit (Kerr spacetime) is

"} ︠745c41c0-5f47-428b-b9d3-b32ebdf118a0s︠ R[0,1,0,1].expr().subs(q=0).simplify_rational() ︡4bd53208-d2dc-4f9b-9eed-0fa57f8fbab9︡︡{"html":"
$\\frac{3 \\, a^{4} m r \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} m r^{3} + 2 \\, m r^{5} - {\\left(9 \\, a^{4} m r + 7 \\, a^{2} m r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{6} - 2 \\, m r^{7} + r^{8} + {\\left(a^{8} - 2 \\, a^{6} m r + a^{6} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{6} + 3 \\, {\\left(a^{6} r^{2} - 2 \\, a^{4} m r^{3} + a^{4} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{4} + 3 \\, {\\left(a^{4} r^{4} - 2 \\, a^{2} m r^{5} + a^{2} r^{6}\\right)} \\cos\\left({\\theta}\\right)^{2}}$
","done":false}︡{"done":true} ︠45a28abb-bf74-4948-ac48-0e580fe9b762i︠ %html

while in the non-rotating limit (Reissner-Nordström spacetime), it is

︡11e2ad9b-6939-4b40-9a94-0459b4b90e85︡︡{"done":true,"html":"

while in the non-rotating limit (Reissner-Nordström spacetime), it is

"} ︠2541ebab-2c5c-4d6d-ab66-67e2ed9025ees︠ R[0,1,0,1].expr().subs(a=0).simplify_rational() ︡a7cb7941-fa6e-4819-b35a-e20ced8557c8︡︡{"html":"
$-\\frac{3 \\, q^{2} - 2 \\, m r}{q^{2} r^{2} - 2 \\, m r^{3} + r^{4}}$
","done":false}︡{"done":true} ︠3e9bbc8a-0493-44a2-8406-2989b8562764i︠ %html

In the Schwarzschild limit, it reduces to

︡0468e93b-02eb-459c-bd23-cd5b69bb7de2︡︡{"done":true,"html":"

In the Schwarzschild limit, it reduces to

"} ︠71932a1b-48be-40cd-a6c8-e2aa5ce2af26s︠ R[0,1,0,1].expr().subs(a=0, q=0).simplify_rational() ︡62e1f7dc-5c4c-4336-a47c-a6f554ae0566︡︡{"html":"
$-\\frac{2 \\, m}{2 \\, m r^{2} - r^{3}}$
","done":false}︡{"done":true} ︠a695777f-8d3c-44b7-98d8-0dc22ba57cb1i︠ %html

Obviously, it vanishes in the flat space limit:

︡619335f8-448d-4fef-9c2c-6de333002b6c︡︡{"done":true,"html":"

Obviously, it vanishes in the flat space limit:

"} ︠9f597486-c14c-4dbd-81e8-070f5131ba26s︠ R[0,1,0,1].expr().subs(m=0, a=0, q=0) ︡7a33bf3a-4023-46e3-8d82-b25da37f53f7︡︡{"html":"
$0$
","done":false}︡{"done":true} ︠b08ef8fb-ce14-49b8-bccc-1d2d9c58b35bi︠ %html

Bianchi identity

Let us check the Bianchi identity $\nabla_p R^i_{\ \, j kl} + \nabla_k R^i_{\ \, jlp} + \nabla_l R^i_{\ \, jpk} = 0$:

︡675ede47-4c69-4089-be3e-16b7b4aa6f88︡︡{"done":true,"html":"

Bianchi identity

\n\n

Let us check the Bianchi identity $\\nabla_p R^i_{\\ \\, j kl} + \\nabla_k R^i_{\\ \\, jlp} + \\nabla_l R^i_{\\ \\, jpk} = 0$:

"} ︠e4f9af2d-5851-4fca-b69c-41f6d343f9f4r︠ DR = nab(R) ; print DR #long (takes a while) ︡3fe25b04-a451-4dec-8262-df4c53f2996d︡ ︠bf64b710-9d1c-4215-b7fc-12c584cb389cr︠ for i in M.irange(): for j in M.irange(): for k in M.irange(): for l in M.irange(): for p in M.irange(): print DR[i,j,k,l,p] + DR[i,j,l,p,k] + DR[i,j,p,k,l] , ︡f5bdf016-2e8d-4fe9-a311-6731ee300146︡ ︠bc882100-b566-4e83-9f78-a109fbb64bdbi︠ %html

If the last sign in the Bianchi identity is changed to minus, the identity does no longer hold:

︡4dcf68b8-f0d3-40ab-b18d-d1ffe4a3af9a︡︡{"done":true,"html":"

If the last sign in the Bianchi identity is changed to minus, the identity does no longer hold:

"} ︠da8d2d8e-b14d-427f-a499-40ffc9619cebr︠ DR[0,1,2,3,1] + DR[0,1,3,1,2] + DR[0,1,1,2,3] # should be zero (Bianchi identity) ︡10c4acff-102c-41cc-802e-014227cf3f20︡ ︠0ad6d1d3-1705-48fb-a0bf-93a4c7531eb4r︠ DR[0,1,2,3,1] + DR[0,1,3,1,2] - DR[0,1,1,2,3] # note the change of the second + to - ︡97e91d71-eea4-4f6b-9858-90d17f396526︡ ︠e874dc2e-c22f-45bb-b552-4b8f198e7d4di︠ %html

Ricci scalar

The Ricci scalar $R = g^{\mu\nu} R_{\mu\nu}$ of the Kerr-Newman spacetime vanishes identically:

︡eed0efce-b483-4d20-acd5-ff0fce996275︡︡{"done":true,"html":"

Ricci scalar

\n

The Ricci scalar $R = g^{\\mu\\nu} R_{\\mu\\nu}$ of the Kerr-Newman spacetime vanishes identically:

"} ︠99fb0b74-1862-4e1c-929c-bbb8d91875abr︠ g.ricci_scalar().display() ︡366ea31d-cb37-4050-add9-10c6c9842039︡ ︠bff38e5c-bf08-4df6-bdfc-9edfbd9d4e03i︠ %html

Einstein equation

The Einstein tensor is

︡d04fc17b-2783-4b70-b742-0390cde21f5a︡︡{"done":true,"html":"

Einstein equation

\n

The Einstein tensor is

"} ︠92f19b32-4808-4b35-89db-e4f3947a62e2r︠ G = Ric - 1/2*g.ricci_scalar()*g ; print G ︡b9999c80-a923-4bd6-ad50-73c3fa9788cc︡ ︠e4d80fec-d8f0-4603-a36c-8051c404788ci︠ %html

Since the Ricci scalar is zero, the Einstein tensor reduces to the Ricci tensor:

︡5fb89132-acb3-4aa0-b865-1c274b84c531︡︡{"done":true,"html":"

Since the Ricci scalar is zero, the Einstein tensor reduces to the Ricci tensor:

"} ︠88c81d10-ef18-41b3-a689-5e4fa5cac47fr︠ G == Ric ︡2796e517-786a-4c6a-b13d-e0c173564c3e︡ ︠bfd0b130-c639-474b-a4f5-6aed7cc96eb7i︠ %html

The invariant $F_{\mu\nu} F^{\mu\nu}$ of the electromagnetic field:

︡b9243e34-4bba-4b57-a06b-37cbf4604e9d︡︡{"done":true,"html":"

The invariant $F_{\\mu\\nu} F^{\\mu\\nu}$ of the electromagnetic field:

"} ︠13dfa7c1-8632-4524-80b3-2318d465b83ar︠ Fuu = F.up(g) F2 = F['_ab']*Fuu['^ab'] ; print F2 ︡061cb4d6-ef84-44c6-8a46-8248d7712999︡ ︠327a8c28-70f4-4872-b6ba-e9693f85e4b8r︠ F2.display() ︡5ee4d3e1-87fc-46fa-9127-63833d799637︡ ︠b231dd11-21ca-4dfb-843f-2022ff83eaa1i︠ %html

The energy-momentum tensor of the electromagnetic field:

︡69ce1f85-2c05-4b97-ac55-9a8326fd3b70︡︡{"done":true,"html":"

The energy-momentum tensor of the electromagnetic field:

"} ︠5c8de992-d424-4a99-b24c-574b5b7e06afr︠ Fud = F.up(g,0) T = 1/(4*pi)*( F['_k.']*Fud['^k_.'] - 1/4*F2 * g ); print T ︡3292835a-556b-43f0-b53d-8db91d65e17c︡ ︠196944ee-087f-4ceb-83e8-b107548a6f2ar︠ T[:] ︡d5dc116f-bf5e-4bbb-b4a3-e8260149d064︡ ︠c6f0183d-29be-4a4a-a2da-cf9537dda7bfi︠ %html

Check of the Einstein equation:

︡4842254d-4493-4d4e-8952-43a28f6e635a︡︡{"done":true,"html":"

Check of the Einstein equation:

"} ︠8c613891-0994-4eb9-8af4-a6ed5bb531efr︠ G == 8*pi*T ︡50ce4595-ff95-4d50-8a20-869bb868713c︡ ︠2cdc239d-b356-451e-b6c7-3cebecc23bc7i︠ %html

Kretschmann scalar

The tensor $R^\flat$, of components $R_{ijkl} = g_{ip} R^p_{\ \, jkl}$:

︡6d221117-5c38-477f-b45f-2494d428344f︡︡{"done":true,"html":"

Kretschmann scalar

\n\n

The tensor $R^\\flat$, of components $R_{ijkl} = g_{ip} R^p_{\\ \\, jkl}$:

"} ︠d38543c5-79ff-400b-acdc-5399f936d344r︠ dR = R.down(g) ; print dR ︡eddc8a39-7be3-4848-afe2-97139c89dc18︡ ︠15ef1e7a-5f5e-4a75-851b-98b674da369ei︠ %html

The tensor $R^\sharp$, of components $R^{ijkl} = g^{jp} g^{kq} g^{lr} R^i_{\ \, pqr}$:

︡d33edd00-27ef-47d5-809b-e50e0d08c8aa︡︡{"done":true,"html":"

The tensor $R^\\sharp$, of components $R^{ijkl} = g^{jp} g^{kq} g^{lr} R^i_{\\ \\, pqr}$:

"} ︠89c99deb-b7ef-4b91-9531-a978ad25208er︠ uR = R.up(g) ; print uR ︡dce42ba1-896a-4875-8724-076d2362a69a︡ ︠12f62e8a-473c-40eb-8d85-85661d2227b6i︠ %html

The Kretschmann scalar $K := R^{ijkl} R_{ijkl}$:

︡5bff5fbd-d876-496e-a1a3-480080267d9e︡︡{"done":true,"html":"

The Kretschmann scalar $K := R^{ijkl} R_{ijkl}$:

"} ︠af289796-1cc7-4e3c-a76d-ee1d1b289014r︠ Kr_scalar = uR['^ijkl']*dR['_ijkl'] Kr_scalar.display() ︡d948bd7b-07a7-4ef8-aad1-cd33f774339a︡ ︠13b81bdd-02ea-4daf-92aa-4f4d9199a4d0i︠ %html

A variant of this expression can be obtained by invoking the factor() method:

︡43a772fd-65ec-430d-88c3-b1a3a92ab002︡︡{"done":true,"html":"

A variant of this expression can be obtained by invoking the factor() method:

"} ︠c8529675-c677-4edf-93d6-70d747c2de89r︠ Kr = Kr_scalar.function_chart() # coordinate function representing the scalar field in the default chart Kr.factor() ︡73548d2b-de7e-4f33-8a74-eaf88c8ffd5b︡ ︠a4335c80-919b-4527-ae86-35f1f0ae944fi︠ %html

As a check, we can compare Kr to the formula given by R. Conn Henry, Astrophys. J. 535, 350 (2000):

︡471e9193-1464-413c-9109-fc7c8ed5e943︡︡{"done":true,"html":"

As a check, we can compare Kr to the formula given by R. Conn Henry, Astrophys. J. 535, 350 (2000):

"} ︠3b02e1ab-bd17-4914-95a0-10fbad2ab60br︠ Kr == 8/(r^2+(a*cos(th))^2)^6 *( \ 6*m^2*(r^6 - 15*r^4*(a*cos(th))^2 + 15*r^2*(a*cos(th))^4 - (a*cos(th))^6) \ - 12*m*q^2*r*(r^4 - 10*(a*r*cos(th))^2 + 5*(a*cos(th))^4) \ + q^4*(7*r^4 - 34*(a*r*cos(th))^2 + 7*(a*cos(th))^4) ) ︡17a5ed22-b540-4fa7-ad70-404c62d83775︡ ︠c1f4f9d8-ca73-4367-ab28-fe35ec1d33a4i︠ %html

The Schwarzschild value of the Kretschmann scalar is recovered by setting $a=0$ and $q=0$:

︡6d344d8e-5d66-441b-b295-d4dde5decc0b︡︡{"done":true,"html":"

The Schwarzschild value of the Kretschmann scalar is recovered by setting $a=0$ and $q=0$:

"} ︠145ca360-5aec-468a-b34d-4327c98614der︠ Kr.expr().subs(a=0, q=0) ︡e33325e0-7311-49b4-95a0-2435fb2a03c4︡ ︠0a7f7312-f518-4a26-b45e-7e1e9a115f1fr︠ K1 = Kr.expr().subs(m=1, a=0.9, q=0.5) ︡fee893fa-8afa-40f5-88a6-628881ada189︡ ︠f7d93009-41e3-4dfb-9031-3e7bc92ea900r︠ plot3d(K1, (r,1,3), (th, 0, pi)) ︡ef9befbf-7e2e-4f55-8f4c-154e92157e5f︡ ︠f2d7d92c-3c90-41ae-91d8-23e46b579fc2r︠ ︡30c71755-217d-4b0d-bac9-13899ac27ff0︡ ︠d672b88a-bf1f-49c4-898a-765e7b08047br︠ ︡3b709a88-7d54-4a61-90aa-f2d258cec99f︡