{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# 4-dimensional anti-de Sitter spacetime\n",
"\n",
"This Jupyter/SageMath worksheet presents the computation of the curvature tensor and the Ricci tensor of the 4-dimensional anti-de Sitter spacetime $\\mathrm{AdS}_4$.\n",
"See the [SageManifolds home page](http://sagemanifolds.obspm.fr/) for more details about tensor calculus with the free computer algebra system SageMath. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"%display latex"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"We declare first the spacetime manifold $M$ and the chart $X$ of Poincaré coordinates:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 2,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"M = Manifold(4, 'M')\n",
"X. = M.chart('t x y z:(0,+oo)')\n",
"X"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 3,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"X.coord_range()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The AdS metric is then defined as"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 4,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g = M.lorentzian_metric('g')\n",
"L = var('L', domain='real')\n",
"g[0,0] = -L^2/z^2\n",
"g[1,1], g[2,2], g[3,3] = L^2/z^2, L^2/z^2, L^2/z^2\n",
"g.display()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The Christoffel symbols are (the vanishing ones and those that can be deduced by symmetry on the last two indices are not displayed)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 5,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g.christoffel_symbols_display()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The components of the Riemann curvature tensor are"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 6,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g.riemann().display_comp(only_nonzero=True, only_nonredundant=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"while those of the Ricci tensor are"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 7,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g.ricci().display_comp(only_nonzero=True, only_nonredundant=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Another view of the same thing:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 8,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g.ricci().display()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The Ricci scalar turns out to be constant (as on any maximally symmetric spacetime):"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 9,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"g.ricci_scalar().display()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Finally, we check that the **Einstein equation** with the negative cosmological constant $\\Lambda=-\\frac{3}{L^2}$ is satisfied:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 10,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Lambda = -3/L^2\n",
"g.ricci() - 1/2*g.ricci_scalar()*g + Lambda*g == 0"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 8.0",
"name": "sage-8.0"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 0
}