{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"df=pd.read_excel('SampleData.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" OrderDate | \n",
" Region | \n",
" Rep | \n",
" Item | \n",
" Units | \n",
" Unit Cost | \n",
" Total | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-01-06 | \n",
" East | \n",
" Jones | \n",
" Pencil | \n",
" 95 | \n",
" 1.99 | \n",
" 189.05 | \n",
"
\n",
" \n",
" 1 | \n",
" 2016-01-23 | \n",
" Central | \n",
" Kivell | \n",
" Binder | \n",
" 50 | \n",
" 19.99 | \n",
" 999.50 | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-09 | \n",
" Central | \n",
" Jardine | \n",
" Pencil | \n",
" 36 | \n",
" 4.99 | \n",
" 179.64 | \n",
"
\n",
" \n",
" 3 | \n",
" 2016-02-26 | \n",
" Central | \n",
" Gill | \n",
" Pen | \n",
" 27 | \n",
" 19.99 | \n",
" 539.73 | \n",
"
\n",
" \n",
" 4 | \n",
" 2016-03-15 | \n",
" West | \n",
" Sorvino | \n",
" Pencil | \n",
" 56 | \n",
" 2.99 | \n",
" 167.44 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" OrderDate Region Rep Item Units Unit Cost Total\n",
"0 2016-01-06 East Jones Pencil 95 1.99 189.05\n",
"1 2016-01-23 Central Kivell Binder 50 19.99 999.50\n",
"2 2016-02-09 Central Jardine Pencil 36 4.99 179.64\n",
"3 2016-02-26 Central Gill Pen 27 19.99 539.73\n",
"4 2016-03-15 West Sorvino Pencil 56 2.99 167.44"
]
},
"execution_count": 5,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"df_Central=df[df['Region']=='Central']"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" OrderDate | \n",
" Region | \n",
" Rep | \n",
" Item | \n",
" Units | \n",
" Unit Cost | \n",
" Total | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 2016-01-23 | \n",
" Central | \n",
" Kivell | \n",
" Binder | \n",
" 50 | \n",
" 19.99 | \n",
" 999.50 | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-09 | \n",
" Central | \n",
" Jardine | \n",
" Pencil | \n",
" 36 | \n",
" 4.99 | \n",
" 179.64 | \n",
"
\n",
" \n",
" 3 | \n",
" 2016-02-26 | \n",
" Central | \n",
" Gill | \n",
" Pen | \n",
" 27 | \n",
" 19.99 | \n",
" 539.73 | \n",
"
\n",
" \n",
" 6 | \n",
" 2016-04-18 | \n",
" Central | \n",
" Andrews | \n",
" Pencil | \n",
" 75 | \n",
" 1.99 | \n",
" 149.25 | \n",
"
\n",
" \n",
" 7 | \n",
" 2016-05-05 | \n",
" Central | \n",
" Jardine | \n",
" Pencil | \n",
" 90 | \n",
" 4.99 | \n",
" 449.10 | \n",
"
\n",
" \n",
" 10 | \n",
" 2016-06-25 | \n",
" Central | \n",
" Morgan | \n",
" Pencil | \n",
" 90 | \n",
" 4.99 | \n",
" 449.10 | \n",
"
\n",
" \n",
" 14 | \n",
" 2016-09-01 | \n",
" Central | \n",
" Smith | \n",
" Desk | \n",
" 2 | \n",
" 125.00 | \n",
" 250.00 | \n",
"
\n",
" \n",
" 16 | \n",
" 2016-10-05 | \n",
" Central | \n",
" Morgan | \n",
" Binder | \n",
" 28 | \n",
" 8.99 | \n",
" 251.72 | \n",
"
\n",
" \n",
" 19 | \n",
" 2016-11-25 | \n",
" Central | \n",
" Kivell | \n",
" Pen Set | \n",
" 96 | \n",
" 4.99 | \n",
" 479.04 | \n",
"
\n",
" \n",
" 20 | \n",
" 2016-12-12 | \n",
" Central | \n",
" Smith | \n",
" Pencil | \n",
" 67 | \n",
" 1.29 | \n",
" 86.43 | \n",
"
\n",
" \n",
" 22 | \n",
" 2017-01-15 | \n",
" Central | \n",
" Gill | \n",
" Binder | \n",
" 46 | \n",
" 8.99 | \n",
" 413.54 | \n",
"
\n",
" \n",
" 23 | \n",
" 2017-02-01 | \n",
" Central | \n",
" Smith | \n",
" Binder | \n",
" 87 | \n",
" 15.00 | \n",
" 1305.00 | \n",
"
\n",
" \n",
" 26 | \n",
" 2017-03-24 | \n",
" Central | \n",
" Jardine | \n",
" Pen Set | \n",
" 50 | \n",
" 4.99 | \n",
" 249.50 | \n",
"
\n",
" \n",
" 27 | \n",
" 2017-04-10 | \n",
" Central | \n",
" Andrews | \n",
" Pencil | \n",
" 66 | \n",
" 1.99 | \n",
" 131.34 | \n",
"
\n",
" \n",
" 29 | \n",
" 2017-05-14 | \n",
" Central | \n",
" Gill | \n",
" Pencil | \n",
" 53 | \n",
" 1.29 | \n",
" 68.37 | \n",
"
\n",
" \n",
" 30 | \n",
" 2017-05-31 | \n",
" Central | \n",
" Gill | \n",
" Binder | \n",
" 80 | \n",
" 8.99 | \n",
" 719.20 | \n",
"
\n",
" \n",
" 31 | \n",
" 2017-06-17 | \n",
" Central | \n",
" Kivell | \n",
" Desk | \n",
" 5 | \n",
" 125.00 | \n",
" 625.00 | \n",
"
\n",
" \n",
" 33 | \n",
" 2017-07-21 | \n",
" Central | \n",
" Morgan | \n",
" Pen Set | \n",
" 55 | \n",
" 12.49 | \n",
" 686.95 | \n",
"
\n",
" \n",
" 34 | \n",
" 2017-08-07 | \n",
" Central | \n",
" Kivell | \n",
" Pen Set | \n",
" 42 | \n",
" 23.95 | \n",
" 1005.90 | \n",
"
\n",
" \n",
" 36 | \n",
" 2017-09-10 | \n",
" Central | \n",
" Gill | \n",
" Pencil | \n",
" 7 | \n",
" 1.29 | \n",
" 9.03 | \n",
"
\n",
" \n",
" 39 | \n",
" 2017-10-31 | \n",
" Central | \n",
" Andrews | \n",
" Pencil | \n",
" 14 | \n",
" 1.29 | \n",
" 18.06 | \n",
"
\n",
" \n",
" 40 | \n",
" 2017-11-17 | \n",
" Central | \n",
" Jardine | \n",
" Binder | \n",
" 11 | \n",
" 4.99 | \n",
" 54.89 | \n",
"
\n",
" \n",
" 41 | \n",
" 2017-12-04 | \n",
" Central | \n",
" Jardine | \n",
" Binder | \n",
" 94 | \n",
" 19.99 | \n",
" 1879.06 | \n",
"
\n",
" \n",
" 42 | \n",
" 2017-12-21 | \n",
" Central | \n",
" Andrews | \n",
" Binder | \n",
" 28 | \n",
" 4.99 | \n",
" 139.72 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" OrderDate Region Rep Item Units Unit Cost Total\n",
"1 2016-01-23 Central Kivell Binder 50 19.99 999.50\n",
"2 2016-02-09 Central Jardine Pencil 36 4.99 179.64\n",
"3 2016-02-26 Central Gill Pen 27 19.99 539.73\n",
"6 2016-04-18 Central Andrews Pencil 75 1.99 149.25\n",
"7 2016-05-05 Central Jardine Pencil 90 4.99 449.10\n",
"10 2016-06-25 Central Morgan Pencil 90 4.99 449.10\n",
"14 2016-09-01 Central Smith Desk 2 125.00 250.00\n",
"16 2016-10-05 Central Morgan Binder 28 8.99 251.72\n",
"19 2016-11-25 Central Kivell Pen Set 96 4.99 479.04\n",
"20 2016-12-12 Central Smith Pencil 67 1.29 86.43\n",
"22 2017-01-15 Central Gill Binder 46 8.99 413.54\n",
"23 2017-02-01 Central Smith Binder 87 15.00 1305.00\n",
"26 2017-03-24 Central Jardine Pen Set 50 4.99 249.50\n",
"27 2017-04-10 Central Andrews Pencil 66 1.99 131.34\n",
"29 2017-05-14 Central Gill Pencil 53 1.29 68.37\n",
"30 2017-05-31 Central Gill Binder 80 8.99 719.20\n",
"31 2017-06-17 Central Kivell Desk 5 125.00 625.00\n",
"33 2017-07-21 Central Morgan Pen Set 55 12.49 686.95\n",
"34 2017-08-07 Central Kivell Pen Set 42 23.95 1005.90\n",
"36 2017-09-10 Central Gill Pencil 7 1.29 9.03\n",
"39 2017-10-31 Central Andrews Pencil 14 1.29 18.06\n",
"40 2017-11-17 Central Jardine Binder 11 4.99 54.89\n",
"41 2017-12-04 Central Jardine Binder 94 19.99 1879.06\n",
"42 2017-12-21 Central Andrews Binder 28 4.99 139.72"
]
},
"execution_count": 7,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df[df['Region']=='Central']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
":1: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
" df_central_Binder= df_Central[df['Item']=='Binder']\n"
]
}
],
"source": [
"df_central_Binder= df_Central[df['Item']=='Binder']"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" OrderDate | \n",
" Region | \n",
" Rep | \n",
" Item | \n",
" Units | \n",
" Unit Cost | \n",
" Total | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 2016-01-23 | \n",
" Central | \n",
" Kivell | \n",
" Binder | \n",
" 50 | \n",
" 19.99 | \n",
" 999.50 | \n",
"
\n",
" \n",
" 16 | \n",
" 2016-10-05 | \n",
" Central | \n",
" Morgan | \n",
" Binder | \n",
" 28 | \n",
" 8.99 | \n",
" 251.72 | \n",
"
\n",
" \n",
" 22 | \n",
" 2017-01-15 | \n",
" Central | \n",
" Gill | \n",
" Binder | \n",
" 46 | \n",
" 8.99 | \n",
" 413.54 | \n",
"
\n",
" \n",
" 23 | \n",
" 2017-02-01 | \n",
" Central | \n",
" Smith | \n",
" Binder | \n",
" 87 | \n",
" 15.00 | \n",
" 1305.00 | \n",
"
\n",
" \n",
" 30 | \n",
" 2017-05-31 | \n",
" Central | \n",
" Gill | \n",
" Binder | \n",
" 80 | \n",
" 8.99 | \n",
" 719.20 | \n",
"
\n",
" \n",
" 40 | \n",
" 2017-11-17 | \n",
" Central | \n",
" Jardine | \n",
" Binder | \n",
" 11 | \n",
" 4.99 | \n",
" 54.89 | \n",
"
\n",
" \n",
" 41 | \n",
" 2017-12-04 | \n",
" Central | \n",
" Jardine | \n",
" Binder | \n",
" 94 | \n",
" 19.99 | \n",
" 1879.06 | \n",
"
\n",
" \n",
" 42 | \n",
" 2017-12-21 | \n",
" Central | \n",
" Andrews | \n",
" Binder | \n",
" 28 | \n",
" 4.99 | \n",
" 139.72 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" OrderDate Region Rep Item Units Unit Cost Total\n",
"1 2016-01-23 Central Kivell Binder 50 19.99 999.50\n",
"16 2016-10-05 Central Morgan Binder 28 8.99 251.72\n",
"22 2017-01-15 Central Gill Binder 46 8.99 413.54\n",
"23 2017-02-01 Central Smith Binder 87 15.00 1305.00\n",
"30 2017-05-31 Central Gill Binder 80 8.99 719.20\n",
"40 2017-11-17 Central Jardine Binder 11 4.99 54.89\n",
"41 2017-12-04 Central Jardine Binder 94 19.99 1879.06\n",
"42 2017-12-21 Central Andrews Binder 28 4.99 139.72"
]
},
"execution_count": 12,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df_central_Binder"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"424"
]
},
"execution_count": 13,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df_central_Binder['Units'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (system-wide)",
"language": "python",
"metadata": {
"cocalc": {
"description": "Python 3 programming language",
"priority": 100,
"url": "https://www.python.org/"
}
},
"name": "python3",
"resource_dir": "/ext/jupyter/kernels/python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}