\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 8 questions for a total of 60 points.

1. (20 points) Determine if the following statments are true or false. You must provide a justification for your answer.
(a) TRUE / FALSE

If a number is divisible by 6 , then it is divisible by 3 .
\square
(b) TRUE / FALSE

For all real numbers x and $y, \frac{x}{y}=0$ if and only if $x=0$.
\square
(c) TRUE / FALSE

For all real numbers y there is a real number x such that $y=2 x+4$.
(d) TRUE / FALSE

For all real numbers $x>0$ and $y>0$, if $x>y$, then $\frac{1}{x}<\frac{1}{y}$
2. Consider the following implication:

If x is divisible by 12, then x is divisible by 3.
(a) (2 points) Write the converse of the statement.

The converse of the implication is TRUE / FALSE.
(b) (2 points) Write the contrapositive of the statement.

The contrapositive of the implication is TRUE / FALSE.
3. (6 points) Sketch the graph of a function that has the given limits and values. There is more than one correct answer.

- $\lim _{x \rightarrow-1} f(x)=4$
- $\lim _{x \rightarrow \infty} f(x)=4$
- $f(0)=5$

4. (6 points) Let $g(x)$ be the function graphed below.

(a) $\lim _{x \rightarrow-1} g(x)=$ \qquad (c) $g(-1)=$
(e) $\lim _{x \rightarrow-\infty} g(x)=$ \qquad
(b) $\lim _{x \rightarrow 1} g(x)=$ \qquad (d) $\lim _{x \rightarrow 2} g(x)=$ \qquad (f) $\lim _{x \rightarrow \infty} g(x)=$
5. (5 points) Give an argument, be it a table of values, or a graph, that justifies your educated guess for the following limit:

$$
\lim _{x \rightarrow 4} \frac{x-4}{(x+1)(x-4)}
$$

\square
6. (4 points) Let $h(x)$ be the following piecewise-defined function:

$$
h(x)= \begin{cases}3 x-2 & \text { if } x>2 \\ 0 & \text { if } x=2 \\ x^{2} & \text { if } x<2\end{cases}
$$

Using the graph of the function, determine the value of $\lim _{x \rightarrow 2} h(x)$.
6. \qquad
7. (5 points) Write the following limit using the $\varepsilon-\delta$ definition of a limit.

$$
\lim _{x \rightarrow 3}\left(x^{2}-4\right)=5
$$

\qquad
\qquad
\qquad
8. (10 points) Given that $\lim _{x \rightarrow 2}(2 x+1)=5$, use algebra to approximate the largest value of δ such that

$$
\text { if } x \in(2-\delta, 2) \cup(2,2+\delta) \text {, then } f(x) \in(5-\varepsilon, 5+\varepsilon) \text { where } \varepsilon=0.01 \text {. }
$$

