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Abstract The method of “natural” estimation of variances in a general (orthogonal
or nonorthogonal) finite discrete spectrum linear regression model of time series is
suggested. Using geometrical language of the theory of projectors a form and proper-
ties of the estimators are investigated. Obtained results show that in describing the first
and second moment properties of the new estimators the central role plays a matrix
known in linear algebra as the Schur complement. Illustrative examples with particular
regressors demonstrate direct applications of the results.
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1 Introduction

In recent articles (Štulajter 2003; Štulajter and Witkovský 2004; Štulajter 2007)
authors have introduced and investigated a time series model called the finite discrete
spectrum linear regression model or shortly FDSLRM, which represents time series
modeling and predicting by linear regression models (see Brockwell and Davis 1991;
Christensen 1991, 2002; Štulajter 2002)—the alternative approach to the most popular
and well-known Box–Jenkins methodology (e.g. Box et al. 1994).

The class of FDSLRM models whose mean values are given by linear regression
and error terms are characterized by a purely finite discrete spectrum and white noise,
offers applications in a wide range of real situations. In practice we usually need to
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266 M. Hančová

estimate not only mean value parameters, but also unknown parameters of the
FDSLRM covariance function. One solution of this problem was just given in
Štulajter and Witkovský (2004) who used the double ordinary least squares estimator
(DOOLSE) and obtained invariant unbiased, not consistent quadratic estimators.

The used approach, however, works only for the orthogonal version of the FDSLRM
and in some cases it gives negative estimates. There are also such cases that we have to
use a numerical nonlinear constrain optimization procedure to compute the DOOLSE
estimates. In general it means that we have no explicit expression for estimators, which
causes a difficult theoretical study of their properties.

Because of these reasons we suggest in Sect. 2 of the article an alternative method
of estimating unknown variance parameters of the covariance function, called by us
“natural” estimation, appropriate for the FDSLRM with and without the assumption
of orthogonality and leading to estimates, which are always non-negative (from the
given parametric space). Moreover the method is based on the least square approach
as DOOLSE so estimating does not require the normality assumption as it is in case of
ML, REML or MIVQUE estimation (Searle et al. 1992; Christensen 2002). In Sect. 3
using theory of projectors, summarized, e.g. in recent works of Ben-Israel and Greville
(2003) or Galántai (2003), we obtain the first and second moment properties of esti-
mators. Final Sect. 4 includes illustrative examples, in which we apply developed
results.

In the rest of the introduction we establish notation and recapitulate used model
and basic results from Štulajter (2003) (or Štulajter and Witkovský 2004) providing
a starting point and assumptions for our considerations.

A model of time series X (.) is said to be the finite discrete spectrum linear regression
model (FDSLRM), if X (.) satisfies

X (t) =
k∑

i =1

βi fi (t) +
l∑

j =1

Y jv j (t) + w(t); t = 1, 2, . . . , (1.1)

where

β = (β1, β2, . . . , βk)
′ ∈ E

k is a vector of unknown regression parameters;
Y = (Y1, Y2, . . . , Yl)

′ is a l × 1 random vector with zero mean value, E[Y ] = 0,
and with covariance matrix Cov(Y ) = diag(σ 2

j ) of size l × l, where unknown

variances σ 2
j ≥ 0 for all j = 1, 2, . . . , l;

fi (.); i = 1, 2, . . . , k and v j (.); j = 1, 2, . . . , l are known real functions defined
on E;
w(.) is white noise time series with the variance D[w(t)] = σ 2 > 0 and it is
uncorrelated with Y .

We denote the unknown variance parameters of Y and w(.), which are also variance
parameters of the FDSLRM, by ν = (σ 2, σ 2

1 , . . . , σ 2
l )′. Under the FDSLRM assump-

tions direct computation applied to the definition of the time series covariance function

R(s, t) yields its expression in the form Rν(s, t) = σ 2δs,t +
l∑

j =1
σ 2

j v j (s)v j (t); s, t =
1, 2, . . . with the parameter ν belonging to the parametric space Υ = (0,∞)×〈0,∞)l .
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Natural estimation of variances in a general FDSLRM 267

The basic result dealing with any finite observation of the FDSLRM time series—
random vector X = (X (1), . . . , X (n))′—says that the observation X satisfies the
following linear regression model (also called the FDSLRM model):

X = Fβ + ε, E(ε) = 0, Cov(ε) = σ 2 In +
l∑

j=1

σ 2
j V j is a p.d.matrix, (1.2)

where

F = ( f1 f2 . . . fk) ∈ E
n×k is the design matrix of the model with columns

fi = ( fi (1), . . . , fi (n))′; i = 1, 2, . . . , k;
Vj = v jv

′
j ∈ E

n×n; v j = (v j (1), v j (2), . . . , v j (n))′; j = 1, 2, . . . , l are matrices
describing the structure of covariance matrix Cov(ε) ≡ Σν .

The FDSLRM model (1.2) is said to be orthogonal, if fi ⊥ v j for all i = 1, 2, . . . , k;
j = 1, 2, . . . , l and vi ⊥ v j for all i, j = 1, 2, . . . , l, i �= j . In this article we do not
assume validity of the orthogonality conditions what will be also reminded by calling
the model a general(or nonorthogonal) FDSLRM.

Model (1.2) is equivalent to a model belonging to the class of linear mixed models
(see, e.g. McCulloch and Searle 2001; Christensen 2002):1

X = Fβ + V Y + w, E(w) = 0, Cov(w) = σ 2 In, Cov(Y, w) = 0, (1.3)

where V = (v1 v2 . . . vl) ∈ E
n×l and random vector w = (w(1), . . . , w(n))′ is a

finite observation of white noise w(.). Symbols F, β, Y, w(.) and v j ; j = 1, 2, . . . , l
have the same meaning as above.

Since the observation of the FDSLRM is a special case of the linear mixed model,
the problem of estimating ν is related to the problem of estimating variance-covariance
components in linear mixed models studied besides Štulajter and Witkovský (2004),
e.g. for more general cases in Rao and Kleffe (1988), Volaufová and Witkovský (1991)
or Searle et al. (1992).

We shall assume that both matrices F ∈ E
n×k and V ∈ E

n×l are of full col-
umn rank,2 i.e. r(F, V ) = k + l and number k + l + 1 of unknown parameters β

and ν, which arise in the FDSLRM (1.1), is smaller than length n of a realization
x = (x1, x2, . . . , xn) ∈ E

n of finite observation X .
Finally we shall employ the following notation (Galántai 2003) resulting from

using theory of projectors: PN ≡ the orthogonal projector onto some subspace N ;
PN ⊥ ≡ MN ≡ the orthogonal projector onto the orthogonal complement of N ;
PN , O ≡ the oblique projector onto N along O; L (H) = {H x |x ∈ E

n} ≡ the
column space of H ∈ E

m×n ; N (H) = {x ∈ E
n|H x = 0} ≡ the null space of

H ∈ E
m×n .

1 In this case unobservable vector β is frequently called a vector of “fixed effects” and Y is an unobservable
vector of “random effects”.
2 To have no problems in distinguishing between a matrix product (FV ) and

(
F V

)
as matrix F augmented

by V , we will frequently write the matrix
(
F V

)
as (F, V ).
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268 M. Hančová

2 “Natural” variance component estimation in the FDSLRM

2.1 Definition of “natural” estimators

Variances of the FDSLRM σ 2
j = Cov(Y j ) = E(Y 2

j ); j = 1, 2, . . . , l, so that if

components Y j were known, a “natural estimator” of σ 2
j would be just Y 2

j . These
unobservable “natural estimators” and their name are identical with those used in
MINQUE estimating (Rao and Kleffe 1988; Searle et al. 1992; Christensen 2002).

Although Y is a random vector, according to McCulloch and Searle (2001) it is
convenient to consider the linear regression model conditional on unobservable real-
izations y ∈ E

l of Y . In such models mean values are E(X |Y = y) = Fβ + V y
and realization y of Y can be understood as other unknown mean value parameters of
model (1.3). From this viewpoint FDSLRM model (1.3) is nothing else than a regres-
sion model, linear with respect to unknown regression parameters (β, y)′ ∈ E

k+l and
with covariance matrix Cov(X |Y = y) = Cov(w) = σ 2 In—in the theory of linear
models known as the classical linear regression model (LRM).

In this (and any) considered classical LRM the standard unbiased estimator of
σ 2 is given (see, e.g. Christensen 2002) by the sum of squares for residuals of the
ordinary least squares method divided by the degrees of freedom.3 Since the ordinary
least squares method also provides an estimator for regression parameters β and y,
then according to the above-mentioned idea of unobservable natural estimators a real
estimator for σ 2

j should be square of a given component y j of the estimator of y.
These considerations motivate the following definition. Let us consider for a

FDSLRM observation X of time series X (.) the following classical linear regression
model

X = (
F, V

) (
β

y

)
+ w; E(w) = 0, Cov(w) = E(ww′) = σ 2 In, (2.1)

where the known n × (k + l) design matrix (F, V ) = ( f1 f2 . . . fk v1 v2 . . . vl) is
of full column rank (k + l) and y ∈ E

l is an unknown realization of random vector Y .
Then estimators ν̃(X) = (̃σ 2(X), σ̃ 2

1 (X), . . . , σ̃ 2
l (X))′ of ν are said to be observable

natural estimators or shortly natural estimators, if

σ̃ 2(X) = 1
n−k−l [X − F β̃(X) − V ỹ(X)]′[X − F β̃(X) − V ỹ(X)], (2.2)

σ̃ 2
j (X) = ỹ2

j (X), j = 1, 2, . . . , l, (2.3)

where (β̃(X), ỹ(X))′ = (β̃1(X), . . . , β̃k(X), ỹ1(X), . . . , ỹl(X))′ is the ordinary least
square estimator of (β, y)′ ∈ E

k+l .

3 This estimator can be also obtained through the double least squares principle (Štulajter 2002). Therefore
it is also called the double ordinary least squares estimator (DOOLSE) for a classical LRM.
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Natural estimation of variances in a general FDSLRM 269

From projection theory we know that the ordinary least square estimator
(β̃(X), ỹ(X))′ of (β, y)′ for linear regression model (2.1) is given by the equation:

(
β̃ (X)

ỹ (X)

)
=

(
F ′ F F ′ V
V ′ F V ′ V

)−1 (
F ′ X
V ′ X

)
, (2.4)

where the (k + l) × (k + l) Gram matrix G =
(

F ′ F F ′V
V ′ F V ′V

)
is of full rank, since

r(G) = r [(F, V )′(F, V )] = r(F, V ) = k + l.
If (F, V ) is of full column rank, then F must be too, so making use of the so-called

Banachiewicz formula for the inverse of a partitioned (block) matrix,4 see e.g. Zhang
et al. (2005), we can write

G−1 =
( ∗ ∗

−W −1(V ′F)(F ′F)−1 W −1

)
, (2.5)

where symbol * denotes blocks not needed in deriving ỹ(X) and where W = V ′V −
V ′F(F ′F)−1 F ′V ∈ E

l×l is called the Schur complement of F ′F in G. Substituting
(2.5) to (2.4) and rearranging, we finally get the following form of estimator ỹ(X) of y

ỹ(X) = W −1V ′(I − F(F ′F)−1 F ′)X. (2.6)

2.2 Geometrical interpretation of natural estimators

Now we use the geometrical language of projection theory for describing definition
and properties of natural estimators. Such intermediate step provides us a powerful
tool in easier establishing and understanding new features of given concepts.

The orthogonal projector PL ⊥(F) ≡ MF = I − F(F ′F)−1 F ′ offers the following
simplification of (2.6):

ỹ(X) = T X; T ≡ W −1V ′MF ∈ E
l×n, (2.7)

where the Schur complement W = V ′MF V . Since every orthogonal projector MF is
a symmetric matrix, W ∈ E

l×l has to be also symmetric.
Our natural estimators of ν can be effectively expressed by means of projectors:

σ̃ 2(X) = 1
n−k−l ‖M X‖2, where M is PL ⊥(F, V ).

σ̃ 2
j (X) = ỹ 2

j (X); j = 1, 2, . . . , l, where V ỹ(X) = PL (V ), L ⊥(MF V ) X.

The first expression for σ̃ 2(X) is the standard result of the unbiased variance esti-
mation in classical linear regression models (Štulajter 2002). Concerning σ̃ 2

j (X), if H
denotes matrix V T , then it is obvious from properties of V and from expression (2.7)
for T that H2 = H , L (H) = L (V ), N (H) = N (T ) = N (V ′MF ) = L ⊥(MF V ).

4 There exist two standard forms of inverses for given block matrix, which are mathematically equivalent.
We have chosen the form providing simpler algebraic expressions.
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270 M. Hančová

Then from basic properties of oblique projectors we know that every idempotent matrix
H is the oblique projector PL (H), N (H), which means that H = PL (V ), L ⊥(MF V ).

3 Statistical properties of natural estimators

3.1 First and second moment properties

As we mentioned above, the expressions of natural estimators through projectors give
us a powerful tool in understanding and elegant proving properties of matrices T and
M , which determine statistical properties of the estimators. It is easy to show next
lemma:

Lemma 3.1 (basic properties of T and M)

(i) T T ′ = W −1 and r(T ) = l
(ii) T F = 0, T V = Il and (V T )2 = V T

(iii) T ΣνT ′ = σ 2W −1 + diag(σ 2
j )

(iv) [MF (V T )]′ = MF (V T )

(v) M2 = M, M ′ = M, tr(M) = n − k − l
(vi) M (F V ) = 0 and T M = 0

(vii) MΣν = σ 2 M
(viii) M = MF − MF V T

Proof (i) Employing (2.7), M2
F = MF , M ′

F = MF and symmetry of W =
V ′MF V we can write T T ′ = W −1V ′MF (W −1V ′MF )′ = W −1. Since
r(T ) = r(T T ′), we conclude that r(T ) = r(W −1) = l.

(ii) According to the standard properties of oblique projectors (Galántai 2003) pro-
jector PL (V ), L ⊥(MF V ) = V T immediately gives V T v j = v j and V T fi = 0,
where v j and fi are columns of V and F . It implies V T V = V, V T F = 0.
Hence first two properties of (ii) are results of multiplying the equalities on
the left by a left inverse to the full column rank V . The last property is simply
a restatement of projector idempotentness.

(iii) Applying (i), (ii) and the expression for Σν from (1.2)

T ΣνT ′ = σ 2T T ′ +
l∑

j =1

σ 2
j T v j v′

j T
′ = σ 2W −1 +

l∑

j =1

σ 2
j e j e′

j ,

where e j denotes the j th unit vector with unity for its j th element and zeros
elsewhere. Since the last term is only another form of diag(σ 2

j ), (iii) is valid.
(iv) This property can be reached by a direct routine computation.

In a very similar way using properties of orthogonal projectors we can prove the
basic properties (v)–(viii) dealing with matrix M . ��
The natural estimators of ν can be written as quadratic forms

σ̃ 2(X) = 1
n−k−l (M X)′(M X) = 1

n−k−l X ′M X ,
σ̃ 2

j (X) = (t ′j X)2 = X ′tj t ′j X, j = 1, 2, . . . , l, where t ′j are rows of T ,
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Natural estimation of variances in a general FDSLRM 271

so results M F = 0 and T F = 0 from Lemma 3.1 lead to conclusion that natural
estimators are invariant quadratic estimators.5

In the following theorem we summarize mean and covariance characteristics of
natural estimators.

Theorem 3.1 Natural estimators of ν have the following properties:

(i) Eν [̃σ 2(X)] = σ 2 and Eν [̃σ 2
j (X)] = σ 2

j + σ 2(W −1) j j ; j = 1, 2, . . . , l.

If X ∼ Nn(Fβ,Σ), then

(ii) Dν [̃σ 2(X)] = 2σ 4

n−k−l and Covν [̃σ 2(X), σ̃ 2
j (X)] = 0; j = 1, 2, . . . , l,

(iii) Dν [̃σ 2
j (X)] = 2[σ 2

j + σ 2(W −1) j j ]2; j = 1, 2, . . . , l,

(iv) Covν [̃σ 2
i (X), σ̃ 2

j (X)] = 2[σ 2(W −1)i j ]2; i, j = 1, 2, . . . , l, i �= j .

(v) MSEν [̃σ 2
j (X)] = 2[σ 2

j + σ 2(W −1) j j ]2 + σ 4(W −1)2
j j ; j = 1, 2, . . . , l.

Proof Since used arguments are very similar in proofs of items (i)–(iv) we show only
proofs of (i) and (iv). Applying previous results with the aid of well-known expressions
for mean values and covariances of invariant quadratic estimators (see, e.g. Christensen
2002) Eν(X ′ AX) = tr(AΣν) and if X ∼ N (Fβ,Σν), then Covν(X ′ AX, X ′ B X) =
2tr(AΣν BΣν), we find

(i)

Eν [̃σ 2
j (X)] = tr(tj t

′
j Σν) = tr(t ′j Σν tj ) = t ′j Σν tj

= (T ΣνT ′) j j = σ 2
j + σ 2(W −1) j j

Eν [̃σ 2(X)] = 1
n−k−l tr(MΣν) = σ 2

n−k−l tr(M) = σ 2

(iv)

Covν [̃σ 2
i (X), σ̃ 2

j (X)] = 2tr(ti t
′

i Σν tj t
′
j Σν) = 2tr(t ′i Σν tj t

′
j Σν ti )

= 2(T ΣνT ′)i j (T ΣνT ′) j i = 2(σ 2(W −1)i j )
2.

The last assertion (v) is a trivial consequence of (i), (iii) and the well-known
general expression MSE(̃σ 2

j ) = D(̃σ 2
j )+[E (̃σ 2

j )−σ 2
j ]2 for the mean squared

error (MSE) defined as E [̃σ 2
j − σ 2

j ]2. ��
Obtained results show that unlike modified DOOLSE estimators used in orthogonal

FDSLRM’s, our natural estimators ν̃(X) = (̃σ 2(X), σ̃ 2
1 (X), . . . , σ̃ 2

l (X))′ of ν with
the exception σ̃ 2(X) are biased and not consistent and a bias is determined by diagonal
elements of the inverse of the Schur complement W = V ′V − V ′F(F ′F)−1 F ′V =
(V ′MF V ) ∈ E

l×l of F ′F in Gram matrix G =
(

F ′ F F ′V
V ′ F V ′V

)
for linear regression model

5 We recall that if X satisfies a linear regression model with Eβ(X) = Fβ as it is in case of the FDSLRM
observation, then quadratic form X ′ AX is called invariant quadratic estimator (with respect to β), if
AF = 0, which means that such quadratic form does not depend on the mean value parameter β. Many
authors (e.g. Searle et al. 1992; Christensen 2002) also call such estimator the translation invariant estimator.
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272 M. Hančová

(2.1). The consistent and unbiased estimator is only estimator σ̃ 2(X) of σ 2, which is
also uncorrelated with remaining estimators.

Generally it is clear that if we have only data x, one realization of a finite length
n of a time series X (.) given by the FDSLRM, then for every j = 1, 2, . . . , l we
have only one realization y j of the random variable Y j , whose square in practice is
never equal to σ 2

j , so it is impossible to find a consistent estimator of the unknown

variance σ 2
j = Eν[Y 2

j ] based only on one value (estimate) of the random variable Y j .

The same reason causes that in an orthogonal FDSLRM the DOOLSE ν̂(X) used by
Štulajter and Witkovský (2004) is also not a consistent estimator of ν. In general, in
any FDSLRM there is no consistent estimator of the variances parameter ν.

From the viewpoint of the criteria-based methodology of quadratic estimators,
described, e.g. in Searle et al. (1992), which is based on three main criteria—unbiased-
ness, invariance, minimum variance (or mean squared error)—our natural estimators
σ̃ 2

j (X); j = 1, . . . , l belong to the LaMotte class C2 of invariant quadratic estima-
tors. It is not difficult to see that our natural estimators are not the best in C2 with
respect to the minimum MSE criterion,6 because we can consider estimators σ̂ 2

j (X) =
σ̃ 2

j (X) − (W −1) j j σ̃
2(X), which according to results of Lemma 3.1 and Theorem 3.1

are invariant and unbiased with MSE[σ̂ 2
j (X)] = D[̃σ 2

j (X)]+2σ 4(W −1)2
j j/(n−k −l)

and which clearly have MSE’s equal to MSE’s of corresponding σ̃ 2
j (X) for n = k+l−2

and smaller MSE’s for n > k + l + 2.
Because modified estimators σ̂ 2

j (X) are simultaneously in the LaMotte class C4
of invariant unbiased quadratic estimators, our natural estimators must have bigger
MSE’s then the well-known MINQUE at ν = (σ 2, σ 2

1 , . . . , σ 2
l )—the best estimators

in the LaMotte class C4.
However, since computation of MINQUE estimators involves some pre-assigned

value ν0 of ν, which in practice is again never equal to the unknown ν, MINQUE are
best at ν0 and not necessarily best at ν. In such case for general FDSLRM our natural
estimators could have smaller MSE’s than MINQUE for ν0, but this question is not
yet resolved and now it is an open problem. Moreover our natural estimators have
much simpler form and way of computation (giving always non-negative estimates)
than MINQUE.

Finally it is worthwhile to notice that although the mentioned modified estimators
σ̂ 2

j (X) possess unbiasedness, from our perspective they do not become very important,
since they do not guarantee non-negativity of estimates (similarly like MINQUE; or
Štulajter–Witkovský’s DOOLSE estimators).

3.2 Further asymptotic properties

Now we will find an appropriate condition of asymptotic unbiasedness. Let symbol Xn

denote the finite observation X of time series X (.), if that observation has size n × 1.

6 We remind that an estimator
∗
σ 2

j (X) of σ 2
j is called the best at ν in some class C , if it has the least MSE

among all estimators of σ 2
j from C (see also LaMotte 1973).
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Natural estimation of variances in a general FDSLRM 273

Then natural estimators of ν, matrices F, V, W and G also depend on n, so that we will
use the more specific notation ν̃(X) = ν̃(Xn), F = Fn, V = Vn, W = Wn, G = Gn .

If we apply the concept of the order O(1/n) of a real matrix sequence7 to the
sequence of inverses of the Schur complements Wn and combine it with the well-
known fact for any matrix sequence {An}: lim

n→∞ An = 0 ∈ E
r×s , if An = O(1/n),

then Theorem 3.1 yields the following result showing a sufficiency for asymptotic
unbiasedness of σ 2

j (Xn) and corresponding asymptotic second-order properties in
case of normality of observation Xn .

Theorem 3.2 Let us consider a general FDSLRM

Xn = Fnβ + εn, E(εn) = 0, Covν(εn) = Σn = σ 2 I +
l∑

j =1

σ 2
j vn, jv

′
n, j ,

where vn, j ; j = 1, 2, . . . , l are columns of Vn and
(
Fn Vn

) ∈ E
n×(k+l) are of full

rank. Let W −1
n = O(1/n), where Wn ∈ E

l×l are Schur complements of (F ′
n Fn) in

the (k + l) × (k + l) partitioned Gram matrices Gn =
(

F ′
n Fn F ′

n Vn

V ′
n Fn V ′

n Vn

)
. Then natural

estimators σ̃ 2
j (Xn) of variances σ 2

j ; j = 1, 2, . . . , l are:

(i) asymptotically unbiased, i.e. lim
n→∞ E [̃σ 2

j (Xn)] = σ 2
j .

If Xn ∼ Nn(Fnβ,Σn), then the estimators are also

(i) mutually asymptotically uncorrelated, i.e. lim
n→∞ Cov[̃σ 2

i (Xn), σ̃ 2
j (Xn)] = 0

for i �= j; i, j = 1, 2, . . . , l
(ii) with asymptotic dispersions 2σ 4

j , i.e. lim
n→∞ D[̃σ 2

j (Xn)] = 2σ 4
j .

4 Illustrations

In the following we briefly illustrate theoretical results obtained in previous sections.
Our concern is primarily to show different forms of Schur complements which play
the central role in establishing properties of natural estimators.

Example 4.1 Let X (.) be a time series given by the model

X (t) = β1 + Y1t + w(t); t = 1, 2, . . .

It means that the FDSLRM has the mean value as an unknown constant and the errors
are given by a random linear trend plus a white noise term.

The corresponding model of FDSLRM observation (1.2) has the form
X = Fβ + ε; E[ε] = 0, Covν(X) = σ 2 I + σ 2

1 v1v
′
1, where F = (1, 1, . . . , 1)′ ≡

jn, V = v1 = (1, 2, . . . , n)′. Then we get MF = I − F(F ′F)−1 F = In − 1
n Jn = Cn,

7 A sequence {An} of r × s matrices is said to be of the order O(1/n), if for any fixed pair of i and
j (i = 1, .., r; j = 1, . . . , s) a real sequence

{∣∣(An)i j /(1/n)
∣∣} formed by matrix elements (An)i j is

bounded. In such case we write An = O(1/n).
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274 M. Hančová

where Jn = jn j ′n is a matrix whose every element is unity and Cn is the well-known
centering matrix.8

After that a routine computation with the aid of the properties of Cn leads to
Wn = v′

1v1 − nv̄2
1 = (n3 − n)/12, T = t ′1 = W −1

n (v′
1 − v̄1 j ′n), M = MF −

MF V T = Cn − W −1
n (v1 − v̄1 jn)(v′

1 − v̄1 j ′n), where v̄1 = 1/n
n∑

t =1
t = n(n + 1)/2

and v′
1v1 = ‖v1‖2 =

n∑
t =1

t2. Inverses W −1
n = 12/(n3 − n) = O(1/n), therefore

σ̃ 2
1 (X) is an asymptotically unbiased estimator with asymptotic covariance 2σ 4

1 . The

σ̃ 2
1 (X) is given by

σ̃ 2
1 (X) =

(
12

n3−n

)2 n∑

s =1

n∑

t =1

(
s − n+1

2

) (
t − n+1

2

)
X (s)X (t)

and is uncorrelated with the consistent unbiased estimator σ̃ 2(X) with Dν [̃σ 2(X)]
= 2σ 4

n−2 , whose explicit form after calculating elements of M is

σ̃ 2(X) = 1
n−2

(
n∑

t =1

X (t)2 −
n∑

s =1

n∑

t =1

[
1
n + 12

n3−n

(
s − n+1

2

) (
t − n+1

2

)]
X (s)X (t)

)
.

Example 4.2 Let X (.) be a time series given by the model

X (t) = β1 + β2t + Y1 cos λt + Y2 sin λt + w(t); t = 1, 2, . . . ,

where λ ∈ 〈0, π〉 is some non-fourier frequency and Y1, Y2 are uncorrelated random
variables with zero mean values and variances σ 2

j = D[Y j ]; j = 1, 2. Since in this
case we have

F = ( f1 f2) =
(

1 1 . . . 1
1 2 . . . n

)′
,

V = (v1 v2) =
(

cos λ cos 2λ . . . cos nλ

sin λ sin 2λ . . . sin nλ

)′
,

the orthogonal projection matrix MF onto L ⊥(F) is identical with orthogonal pro-
jection matrix M onto L ⊥(F, V ) in the previous example. The only difference are
other symbols. The role of column v1 takes column f2, so

MF = Cn − ( f ′
2 f2 − n f̄ 2

2 )( f2 − f̄2 jn)( f ′
2 − f̄2 j ′n).

8 The centering matrix has these elementary properties: C ′
n = Cn , C2

n = Cn , Cn Jn = JnCn = 0, Cn x =
x − x̄ jn , x ′Cn y = x ′y − nx̄ ȳ; x, y ∈ En .
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This expression yields to 2 × 2 inverse of the Schur complement W −1
n given by

expression

W −1
n = 1

Dn

(
(Wn)22 −(Wn)12

−(Wn)12 (Wn)11

)
; Dn = (Wn)11(Wn)22 − (Wn)2

12,

where

(Wn)11 =
n∑

t=1

cos2 λt − 1
n

(
n∑

t=1

cos λt

)2

− 12
n3−n

[
n∑

t=1

(
t − n+1

2

)
cos λt

]2

,

(Wn)22 =
n∑

t=1

sin2 λt − 1
n

(
n∑

t=1

sin λt

)2

− 12
n3−n

[
n∑

t=1

(
t − n+1

2

)
sin λt

]2

,

(Wn)12 =
n∑

t=1

cos λt sin λt − 1
n

n∑

t=1

cos λt
n∑

t=1

sin λt −

− 12
n3−n

n∑

t=1

(
t − n+1

2

)
cos λt ·

n∑

t=1

(
t − n+1

2

)
sin λt.

By boundedness of trigonometric functions and the well-known trigonometric iden-
tities we can derive for Wn elements that (Wn)11 = O(n), (Wn)22 = O(n), (Wn)12 =
O(1), Dn = O(n2), which means that matrix sequence

{
W −1

n

}
is of the order O(1/n),

so our natural estimators σ̃ 2
j (X); j = 1, 2 are again asymptotically unbiased with

asymptotic dispersions 2σ 2
j . They also become mutually asymptotically uncorrelated.

Remark 4.1 Finally we remark that our sufficient condition for asymptotic unbiased-
ness holds in many other types of FDSLRM. In orthogonal FDSLRM’s it is equivalent
with condition:

∥∥v j
∥∥2 is of O(n) for all j , and it is fulfilled e.g. in the very useful

FDSLRM with harmonic regressors containing Fourier frequencies (see the model in
Štulajter 2007). The fact that the considered condition does not always hold in every
FDSLRM can be demonstrated e.g. in the model

X (t) = β1 + β2 ln t + Y1 exp(−γ1t) + Y2 exp(−γ2t) + w(t); t = 1, 2, . . . , n

with γ1, γ2 ∈ (0,∞), γ1 �= γ2, where applying the same argument and way of calcu-
lations as in Example 4.2, we can prove that W −1

n is of the order O(1).
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