\qquad

1. (6 points) Explain why if $A B$ and $B A$ are both defined (i.e. you can calculate both of them), then $A B$ and $B A$ are both square matrices.
\square
2. (6 points) Explain why it is not necessarily true that if $A, B \in \mathbb{R}^{n \times n}$, then $(A-B)^{2}=$ $A^{2}-B^{2}$.
\square
3. (6 points) If A is a matrix in $\mathbb{R}^{2 \times 2}$, how can you quickly tell if it is invertible WITHOUT performing any row operations?
\square
4. (6 points) Find the $L U$ factorization of the following matrix:

$$
\left[\begin{array}{rr}
4 & -2 \\
2 & 3
\end{array}\right] .
$$

5. Consider the following sequence of row operations.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
2 & -2 & 2 \\
-1 & 1 & -1
\end{array}\right] \stackrel{\text { Op. } 1}{ }\left[\begin{array}{rrr}
2 & -2 & 2 \\
0 & 1 & 0 \\
-1 & 1 & -1
\end{array}\right] \xrightarrow{\text { Op. } 2}\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & 0 \\
-1 & 1 & -1
\end{array}\right] \\
\xrightarrow{\text { Op. } 3}\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\text { Op. } 4}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(a) (16 points) Use the operations defined above to fill in the elementary operation and the corresponding elementary matrix that completes the operation. Yes, you should consider a row swap a elementary row operation for this problem.

Operation:	Elementary Operation:	Elementary Matrix:
1	$E_{1}=[\square]$	
2	$E_{2}=[\square]$	
3	$E_{3}=[7]$	
4	$E_{4}=[$	

(b) (4 points) Does A^{-1} exist? Defend your answer using the information from the table.
\qquad
\qquad
\qquad
(c) (2 points) If A is the coefficient matrix of a system of linear equations with constant vector
$\vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, then the system is
A. consistent with a unique solution. B. consistent with infinitely many solutions.
C. inconsistent.
(c) \qquad
6. (15 points) Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right], \vec{b}_{1}=\left[\begin{array}{l}3 \\ 5\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \vec{b}_{3}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. If $A^{-1}=\left[\begin{array}{rr}3 & -1 \\ -1 & \frac{1}{2}\end{array}\right]$.

Use A^{-1} to solve the three systems

$$
A \vec{x}=\vec{b}_{1}, \quad A \vec{x}=\vec{b}_{2}, \quad A \vec{x}=\vec{b}_{3} .
$$

7. Below is the $L U$ Factorization of a matrix.

$$
C=\left[\begin{array}{rrrr}
\underline{2} & -1 & 0 & 0 \\
6 & -4 & 5 & -3 \\
8 & -4 & 1 & 0 \\
4 & -1 & 0 & 7
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
4 & 0 & 1 & 0 \\
2 & -1 & 5 & 1
\end{array}\right] \times\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
0 & -1 & 5 & -3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

(a) (5 points) What does the -1 in the L matrix encode about the process of elimination that was completed?
\square
(b) (4 points) Using the $L U$ Factorization, what is the determinant of the matrix?
(b) \qquad
(c) (4 points) Suppose the 2 in the first column of matrix C was zero. What can (or cannot) be said about the $L U$ factorization of C in this case?
8. (16 points) Circle (or box) TRUE or FALSE to indicate if the statement is true or false. Each question is worth two points.
(a) True / False

For any matrix, both $A A^{T}$ and $A^{T} A$ are defined.
(b) True / False

If A, B and X are invertible matrices such that $X A=B$, then $X=A^{-1} B$.
(c) True / False

The inverse of an elementary matrix is also an elementary matrix.
(d) True / False

If $B C=B D$, then $C=D$.
(e) True / False

If A is invertible and $r \neq 0$, then $(r A)^{-1}=r(A)^{-1}$.
(f) True / False

Suppose $B \xrightarrow{\text { RREF }} I$. Then there exists some number of elementary matrices such that $E_{p} E_{p-1} \cdots E_{2} E_{1} A=I$.
(g) True / False

Any matrix in $\mathbb{R}^{4 \times 4}$ requires AT MOST 6 row operations in order to upper triangularized.
(h) True / False

If E is an elementary matrix, then E^{T} is also an elementary matrix.

