Homological Algebra: Five Lemma

Luis R. GuzMan, Jr.

15 February 2012

Overview

- Prerequisites
- Five Lemma
- Proof of the Five Lemma

Prerequisites

- Modules
- Free Modules
- Exact Sequences

Five Lemma

Lemma (Five Lemma) Consider a commutative diacram

Of R-Modules and homomorphisms with exact rows. (i) If t_{2} and t_{4} are epimorphisMs and t_{5} is a monomorphism then t_{3} is a epimorphism. (ii) If t_{2} and t_{4} are monomorphisms and t_{1} is an epimorphism then t_{3} is a monomorphism.

Proof of the Five Lemma I

Proof (i) Suppose that t_{2}, t_{4} are epimorphisms and t_{5} is a monomorphism. Let $b_{3} \in B_{3}$. Then $g_{3}\left(b_{3}\right) \in B_{4}$ and since t_{4} is an epimorphism, there exists an element $a_{4} \in A_{4}$ such that $g_{3}\left(b_{3}\right)=t_{4}\left(a_{4}\right)$. Now $t_{5} f_{4}\left(a_{4}\right)=g_{4} t_{4}\left(a_{4}\right)=$ $g_{4} g_{3}\left(b_{3}\right)=0$ and t_{5} is a monomorphism. Therefore, $f_{4}\left(a_{4}\right)=0$. The upper row Being exact, there exists an element $a_{3} \in A_{3}$ such that $f_{3}\left(a_{3}\right)=a_{4}$. Then $g_{3}\left(b_{3}\right)=$ $t_{4}\left(a_{4}\right)=t_{4} f_{3}\left(a_{3}\right)=g_{3} t_{3}\left(a_{3}\right)$ and so, $g_{3}\left(b_{3}-t_{3}\left(a_{3}\right)\right)=0$. Therefore, there exists an element $b_{2} \in B_{2}$ such that $b_{3}-t_{3}\left(a_{3}\right)=g_{2}\left(b_{2}\right)$. The homomorphism t_{2} Being an epimorphism, there exists an $a_{2} \in A_{2}$ such that $b_{2}=t_{2}\left(a_{2}\right)$. But then $b_{3}-t_{3}\left(a_{3}\right)=g_{2}\left(b_{2}\right)=g_{2}\left(t_{2}\left(a_{2}\right)\right)=$

Proof of the Five Lemma II
$\left(g_{2} t_{2}\right)\left(a_{2}\right)=t_{3} f_{2}\left(a_{2}\right)$ or $b_{3}=t_{3} f_{2}\left(a_{2}\right)+t_{3}\left(a_{3}\right)=t_{3}\left(a_{3}+f_{2}\left(a_{2}\right)\right)$. Hence t_{3} is an epimorphism.
(ii) Now suppose that t_{2}, t_{4} are monomorphisms and t_{1} is an epimorphism. Let $a_{3} \in A_{3}$ such that $t_{3}\left(a_{3}\right)=0$. Then

$$
\begin{equation*}
0=g_{3} t_{3}\left(a_{3}\right)=t_{4} f_{3}\left(a_{3}\right) \tag{1}
\end{equation*}
$$

t_{4} Being a monomorphism, we have $f_{3}\left(a_{3}\right)=0$ and, therefore, there exists an element $a_{2} \in A_{2}$ such that $a_{3}=f_{2}\left(a_{2}\right)$. But then $g_{2} t_{2}\left(a_{2}\right)=t_{3} f_{2}\left(a_{2}\right)=t_{3}\left(a_{3}\right)=0$ and, therefore there exists an element $b_{1} \in B_{1}$ such that $t_{2}\left(a_{2}\right)=g_{1}\left(b_{1}\right)$. Since t_{1} is an epimorphism, there exists

Proof of the Five Lemma III
an element $a_{1} \in A_{1}$, such that $t_{1}\left(a_{1}\right)=b_{1}$. Then $t_{2}\left(a_{2}\right)=$ $g_{1}\left(b_{1}\right)=g_{1} t_{1}\left(a_{1}\right)=t_{2} f_{1}\left(a_{1}\right)$.
Now t_{2} Being a monomorphism, we have $a_{2}=f_{1}\left(a_{1}\right)$ and, hence, $a_{3}=f_{2}\left(f_{1}\left(a_{1}\right)\right)=0$ Hence t_{3} is a monomorphism.

