︠561ffbf6-327b-4526-833b-29361e4f1c1di︠
%md
See [10 Minutes to pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html)
This is really "a few hours", not 10 minutes.
Carefully working through this is a good way to get a **solid foundation** in using Pandas.
︡d9e21b7a-eb0b-488f-9b03-a6455176515e︡{"done":true,"md":"See [10 Minutes to pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html)\n\nThis is really \"a few hours\", not 10 minutes.\nCarefully working through this is a good way to get a **solid foundation** in using Pandas."}
︠46a1738d-ae48-4ba8-883b-3947987ade11s︠
%auto
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
%default_mode python # avoid Sage data types!
%typeset_mode True
︡44b60adf-4c34-4ea9-be96-12b848037fdb︡{"done":true}︡
︠a5591ed7-3167-45dd-bf15-52f897206f51s︠
pi**e
︡c9704d84-5fe9-43e4-a41e-0c17323907ee︡{"html":"
$\\displaystyle \\pi^{e}$
"}︡{"done":true}︡
︠a12c8d50-0137-479d-afb5-2c8c59c5ea9bs︠
2/3
︡b9b11834-8db5-481d-a521-86f1e2640321︡{"html":"$\\displaystyle 0$
"}︡{"done":true}︡
︠bcb6c7de-4c39-441e-990b-f21e18c83ed3s︠
s = pd.Series([1, 3, 5, np.nan, 6, 8])
s
︡cd323f51-ed63-4429-ae35-b1ba6e889a55︡{"stdout":"0 1.0\n1 3.0\n2 5.0\n3 NaN\n4 6.0\n5 8.0\ndtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠d1d2c5a0-fc47-4196-92e6-66c7bbcbeb6es︠
pd.date_range('20160227', periods=6)
︡02a5dbab-0918-4552-8d25-54ff02b67b8e︡{"stdout":"DatetimeIndex(['2016-02-27', '2016-02-28', '2016-02-29', '2016-03-01',\n '2016-03-02', '2016-03-03'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":""}︡{"done":true}︡
︠1740a96a-4a7a-4e5d-83b7-2dbe42275c86s︠
pd.date_range('20170227', periods=6)
︡e8a467d6-2e09-425b-b965-35dc656f3d16︡{"stdout":"DatetimeIndex(['2017-02-27', '2017-02-28', '2017-03-01', '2017-03-02',\n '2017-03-03', '2017-03-04'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":""}︡{"done":true}︡
︠bf394969-ef44-4f52-a11f-a78872f86625s︠
dates = pd.date_range('20130101', periods=6)
dates
︡ac0c8677-d618-4b58-98f1-0fb0b5a8d0af︡{"stdout":"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n '2013-01-05', '2013-01-06'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":""}︡{"done":true}︡
︠4e038ed8-fe32-4dea-8f0b-7a9a21e91388s︠
np.random.randn(6)
︡046b50d3-4d4b-42d5-987e-81fc55ede581︡{"stdout":"[ 0.19017359 0.75139576 1.38014427 0.20743407 0.5190933 2.20607076]\n"}︡{"html":""}︡{"done":true}︡
︠f77f0178-3fd2-4bac-a4b7-72ec6d83af9bs︠
print list('ABCD')
︡aadb5e8e-f076-455d-ac54-418f8a475dfc︡{"stdout":"['A', 'B', 'C', 'D']\n"}︡{"done":true}︡
︠daf006ec-721b-496c-ab78-be5fa9d79687s︠
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
︡fc90ef8a-bb77-4a94-a092-20c1fc51e724︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n 2013-01-04 | \n -0.521096 | \n 2.033860 | \n 0.196687 | \n 1.718198 | \n
\n \n 2013-01-05 | \n 0.140910 | \n 0.579546 | \n 0.002477 | \n 0.782339 | \n
\n \n 2013-01-06 | \n -0.975994 | \n -1.138417 | \n 1.484711 | \n -0.831980 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ca6be9cf-3dd7-4cd8-babc-a018ad0f54c3s︠
type(df)
︡15c9e2bf-3957-47dd-9945-f50da364629e︡{"stdout":"\n"}︡{"done":true}︡
︠6cf8bedd-ee3b-4592-9fdb-231c151166eas︠
a = np.array([1,2,3,4**5000]); a
︡1ed38688-1cf5-4720-96c0-b798de5e9a42︡{"stdout":"[1 2 3\n 19950631168807583848837421626835850838234968318861924548520089498529438830221946631919961684036194597899331129423209124271556491349413781117593785932096323957855730046793794526765246551266059895520550086918193311542508608460618104685509074866089624888090489894838009253941633257850621568309473902556912388065225096643874441046759871626985453222868538161694315775629640762836880760732228535091641476183956381458969463899410840960536267821064621427333394036525565649530603142680234969400335934316651459297773279665775606172582031407994198179607378245683762280037302885487251900834464581454650557929601414833921615734588139257095379769119277800826957735674444123062018757836325502728323789270710373802866393031428133241401624195671690574061419654342324638801248856147305207431992259611796250130992860241708340807605932320161268492288496255841312844061536738951487114256315111089745514203313820202931640957596464756010405845841566072044962867016515061920631004186422275908670900574606417856951911456055068251250406007519842261898059237118054444788072906395242548339221982707404473162376760846613033778706039803413197133493654622700563169937455508241780972810983291314403571877524768509857276937926433221599399876886660808368837838027643282775172273657572744784112294389733810861607423253291974813120197604178281965697475898164531258434135959862784130128185406283476649088690521047580882615823961985770122407044330583075869039319604603404973156583208672105913300903752823415539745394397715257455290510212310947321610753474825740775273986348298498340756937955646638621874569499279016572103701364433135817214311791398222983845847334440270964182851005072927748364550578634501100852987812389473928699540834346158807043959118985815145779177143619698728131459483783202081474982171858011389071228250905826817436220577475921417653715687725614904582904992461028630081535583308130101987675856234343538955409175623400844887526162643568648833519463720377293240094456246923254350400678027273837755376406726898636241037491410966718557050759098100246789880178271925953381282421954028302759408448955014676668389697996886241636313376393903373455801407636741877711055384225739499110186468219696581651485130494222369947714763069155468217682876200362777257723781365331611196811280792669481887201298643660768551639860534602297871557517947385246369446923087894265948217008051120322365496288169035739121368338393591756418733850510970271613915439590991598154654417336311656936031122249937969999226781732358023111862644575299135758175008199839236284615249881088960232244362173771618086357015468484058622329792853875623486556440536962622018963571028812361567512543338303270029097668650568557157505516727518899194129711337690149916181315171544007728650573189557450920330185304847113818315407324053319038462084036421763703911550639789000742853672196280903477974533320468368795868580237952218629120080742819551317948157624448298518461509704888027274721574688131594750409732115080498190455803416826949787141316063210686391511681774304792596709376L]\n"}︡{"html":""}︡{"done":true}︡
︠4f66128e-d2a4-427c-8930-3a7bd7cf76c1s︠
a.dtype
︡0372ce07-7e66-4273-9076-10907807b520︡{"stdout":"object\n"}︡{"html":""}︡{"done":true}︡
︠b31c905e-4a1c-4e3f-80c9-96162f7e84a2ss︠
df2 = pd.DataFrame({ 'A' : 1.,
"Jake's column" : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([1,2,3,4],dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo' })
df2
︡b2348683-6997-48e4-9493-8fb0065316f4︡{"html":"\n \n \n | \n A | \n C | \n D | \n E | \n F | \n Jake's column | \n
\n \n \n \n 0 | \n 1.0 | \n 1.0 | \n 1 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 1 | \n 1.0 | \n 1.0 | \n 2 | \n train | \n foo | \n 2013-01-02 | \n
\n \n 2 | \n 1.0 | \n 1.0 | \n 3 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 3 | \n 1.0 | \n 1.0 | \n 4 | \n train | \n foo | \n 2013-01-02 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠fc632961-26de-4769-b84a-865e8c59d5bfs︠
df2.dtypes
︡3f527129-59ba-4832-8750-4b63bf6adc28︡{"stdout":"A float64\nC float32\nD int32\nE category\nF object\nJake's column datetime64[ns]\ndtype: object\n"}︡{"html":""}︡{"done":true}︡
︠41ca1488-010c-4f05-92ef-8906416d7d93s︠
df2.head(2)
︡9a061728-dbb8-4c3c-a21b-051a524b4810︡{"html":"\n \n \n | \n A | \n C | \n D | \n E | \n F | \n Jake's column | \n
\n \n \n \n 0 | \n 1.0 | \n 1.0 | \n 1 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 1 | \n 1.0 | \n 1.0 | \n 2 | \n train | \n foo | \n 2013-01-02 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠8e5cc0af-22ca-4b74-9916-00e2a8cd7516s︠
df.tail(3)
︡d046dd06-b62a-45ca-8296-6204e5788fb6︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠2d85cfe9-1182-4894-b79d-d18a287d120es︠
df.index
︡8890c51d-9cb4-4f1a-a4e6-1c1abe16ff00︡{"stdout":"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n '2013-01-05', '2013-01-06'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":""}︡{"done":true}︡
︠7f385b68-0cad-402c-ad13-9a648e5bb79es︠
df[1]
︡999eeac6-00d3-4a89-8495-4da4c64d3012︡
︠2b33ac53-44d4-4925-9d41-cb649cb5f144︠
df[df.index[1]]
# learning curve is steep;
︡68a031b8-8343-431a-8870-a88973ea88ff︡
︠bef9d760-a0d5-43aa-8575-983c31bf5b70s︠
df[:1]
︡087e1343-ab45-47dc-bffb-890bcfbe121e︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.00755 | \n 0.863493 | \n 0.212264 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠d77bb043-c4b8-4dca-b685-ff499f5d606fs︠
df[:3]
︡75052a0b-85ab-40ee-ab5e-a30e4c21998d︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠b6e3d647-a01d-44d8-9ec6-6f432a1f6a9fs︠
df.columns
︡de7942a5-4d77-4ee0-95ca-47c49d9a3401︡{"stdout":"Index([u'A', u'B', u'C', u'D'], dtype='object')\n"}︡{"html":""}︡{"done":true}︡
︠e6bfbb3e-1a69-476c-93c0-30c110223985s︠
df.values
︡39d86a88-7951-4836-ab27-e119c17c5b6c︡{"stdout":"[[ 1.09140566 2.27443272 -0.0519728 -1.46711534]\n [ 0.81694772 -0.92729441 0.9847454 -1.04465081]\n [ 1.76427825 -0.53356165 -0.62657329 -1.76661059]\n [ 0.76790378 -0.85793508 2.28827014 2.3107576 ]\n [ 0.27506969 0.7425217 2.74225875 -1.30026817]\n [-1.48271814 0.3790422 1.35226067 0.17327937]]\n"}︡{"html":""}︡{"done":true}︡
︠6edf5a6a-8e07-4916-9219-9f5a345a8a63s︠
df
︡76b98c3c-fb35-478f-8a8f-8d99e9326917︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n 2013-01-04 | \n -0.521096 | \n 2.033860 | \n 0.196687 | \n 1.718198 | \n
\n \n 2013-01-05 | \n 0.140910 | \n 0.579546 | \n 0.002477 | \n 0.782339 | \n
\n \n 2013-01-06 | \n -0.975994 | \n -1.138417 | \n 1.484711 | \n -0.831980 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠4d042bb8-7243-4716-b341-598c7260b1a4s︠
df.describe()
︡da4f9193-9d16-47ad-8176-5c64e796035a︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n count | \n 6.000000 | \n 6.000000 | \n 6.000000 | \n 6.000000 | \n
\n \n mean | \n 0.173825 | \n -0.148535 | \n 0.298124 | \n 0.173461 | \n
\n \n std | \n 1.022374 | \n 1.726231 | \n 1.343759 | \n 1.091978 | \n
\n \n min | \n -0.975994 | \n -3.007550 | \n -2.152061 | \n -1.282658 | \n
\n \n 25% | \n -0.355594 | \n -0.793221 | \n 0.051029 | \n -0.570919 | \n
\n \n 50% | \n 0.156794 | \n 0.320674 | \n 0.530090 | \n 0.327434 | \n
\n \n 75% | \n 0.195793 | \n 0.534405 | \n 1.260952 | \n 0.697406 | \n
\n \n max | \n 2.022955 | \n 2.033860 | \n 1.484711 | \n 1.718198 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠4ce91356-8e9e-4ddf-9e7c-595c42f70cc0s︠
df2
︡3a804da5-4b78-4201-b5a5-1c5a709c5c5f︡{"html":"\n \n \n | \n A | \n C | \n D | \n E | \n F | \n Jake's column | \n
\n \n \n \n 0 | \n 1.0 | \n 1.0 | \n 1 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 1 | \n 1.0 | \n 1.0 | \n 2 | \n train | \n foo | \n 2013-01-02 | \n
\n \n 2 | \n 1.0 | \n 1.0 | \n 3 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 3 | \n 1.0 | \n 1.0 | \n 4 | \n train | \n foo | \n 2013-01-02 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠7cc0aa8f-5755-42af-892e-54abeea9340as︠
df2.describe()
︡ea9760f1-0a29-4176-9e3a-d65a5b397ea0︡{"html":"\n \n \n | \n A | \n C | \n D | \n
\n \n \n \n count | \n 4.0 | \n 4.0 | \n 4.000000 | \n
\n \n mean | \n 1.0 | \n 1.0 | \n 2.500000 | \n
\n \n std | \n 0.0 | \n 0.0 | \n 1.290994 | \n
\n \n min | \n 1.0 | \n 1.0 | \n 1.000000 | \n
\n \n 25% | \n 1.0 | \n 1.0 | \n 1.750000 | \n
\n \n 50% | \n 1.0 | \n 1.0 | \n 2.500000 | \n
\n \n 75% | \n 1.0 | \n 1.0 | \n 3.250000 | \n
\n \n max | \n 1.0 | \n 1.0 | \n 4.000000 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠c3ba03bb-c8b5-4701-bec1-3164659c580ds︠
df2.T
︡c8c148ae-b30f-4144-89d3-6947b2fe7121︡{"html":"\n \n \n | \n 0 | \n 1 | \n 2 | \n 3 | \n
\n \n \n \n A | \n 1 | \n 1 | \n 1 | \n 1 | \n
\n \n C | \n 1 | \n 1 | \n 1 | \n 1 | \n
\n \n D | \n 1 | \n 2 | \n 3 | \n 4 | \n
\n \n E | \n test | \n train | \n test | \n train | \n
\n \n F | \n foo | \n foo | \n foo | \n foo | \n
\n \n Jake's column | \n 2013-01-02 00:00:00 | \n 2013-01-02 00:00:00 | \n 2013-01-02 00:00:00 | \n 2013-01-02 00:00:00 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠67ebc463-d805-4c68-ba91-a0fa13144267s︠
df.T
︡70c6e771-e1f0-425a-b476-27173c4b3b5b︡{"html":"\n \n \n | \n 2013-01-01 00:00:00 | \n 2013-01-02 00:00:00 | \n 2013-01-03 00:00:00 | \n 2013-01-04 00:00:00 | \n 2013-01-05 00:00:00 | \n 2013-01-06 00:00:00 | \n
\n \n \n \n A | \n 1.091406 | \n 0.816948 | \n 1.764278 | \n 0.767904 | \n 0.275070 | \n -1.482718 | \n
\n \n B | \n 2.274433 | \n -0.927294 | \n -0.533562 | \n -0.857935 | \n 0.742522 | \n 0.379042 | \n
\n \n C | \n -0.051973 | \n 0.984745 | \n -0.626573 | \n 2.288270 | \n 2.742259 | \n 1.352261 | \n
\n \n D | \n -1.467115 | \n -1.044651 | \n -1.766611 | \n 2.310758 | \n -1.300268 | \n 0.173279 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠83785cf6-978c-49cf-9765-548eefbccf48s︠
df
︡d6744b8b-08c9-4d29-9d09-6463fb2327c7︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n 2013-01-04 | \n -0.521096 | \n 2.033860 | \n 0.196687 | \n 1.718198 | \n
\n \n 2013-01-05 | \n 0.140910 | \n 0.579546 | \n 0.002477 | \n 0.782339 | \n
\n \n 2013-01-06 | \n -0.975994 | \n -1.138417 | \n 1.484711 | \n -0.831980 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠30123b3d-8e8e-4731-9b4b-dd629b56a9e0s︠
df['D']
︡444b7116-0e92-40c5-9a43-c2f4ec860afe︡{"stdout":"2013-01-01 0.212264\n2013-01-02 0.442605\n2013-01-03 -1.282658\n2013-01-04 1.718198\n2013-01-05 0.782339\n2013-01-06 -0.831980\nFreq: D, Name: D, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠5338cd0b-e95f-4abf-a07a-5c509d306b8cs︠
df2
︡823fd291-84e3-4e6a-9833-a4b77a0d5137︡{"html":"\n \n \n | \n A | \n C | \n D | \n E | \n F | \n Jake's column | \n
\n \n \n \n 0 | \n 1.0 | \n 1.0 | \n 1 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 1 | \n 1.0 | \n 1.0 | \n 2 | \n train | \n foo | \n 2013-01-02 | \n
\n \n 2 | \n 1.0 | \n 1.0 | \n 3 | \n test | \n foo | \n 2013-01-02 | \n
\n \n 3 | \n 1.0 | \n 1.0 | \n 4 | \n train | \n foo | \n 2013-01-02 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠36156838-bf2a-48a1-acbe-1f98cc2e92bds︠
df2["E"]
︡02b91f0f-88e8-43fb-9722-f4adb915976c︡{"stdout":"0 test\n1 train\n2 test\n3 train\nName: E, dtype: category\nCategories (2, object): [test, train]\n"}︡{"html":""}︡{"done":true}︡
︠8a033c3b-eb37-4609-bf53-a6031952b119s︠
df2.E
︡6eb96622-b6db-4567-b208-15a186518fe5︡{"stdout":"0 test\n1 train\n2 test\n3 train\nName: E, dtype: category\nCategories (2, object): [test, train]\n"}︡{"html":""}︡{"done":true}︡
︠1ff10011-7667-4b89-9448-709714d8e688s︠
df2["Jake's column"]
︡325b4799-4458-41d3-92b1-90cef64b3277︡{"stdout":"0 2013-01-02\n1 2013-01-02\n2 2013-01-02\n3 2013-01-02\nName: Jake's column, dtype: datetime64[ns]\n"}︡{"html":""}︡{"done":true}︡
︠636b3542-6678-45ee-b0a1-2db08aaf6732s︠
df.A
︡6937af41-cc8d-45d4-b1be-094b555954a9︡{"stdout":"2013-01-01 1.091406\n2013-01-02 0.816948\n2013-01-03 1.764278\n2013-01-04 0.767904\n2013-01-05 0.275070\n2013-01-06 -1.482718\nFreq: D, Name: A, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠8673b39a-3b43-4a38-928f-96a6d269f83cs︠
df[0:3]
︡a38e3022-45f0-4db7-8981-2280ffb85bb3︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠4fe963ca-622b-4dee-9199-baf1ec427216s︠
df['20130102':'20130104']
︡ee1ef12e-4123-4912-89c2-0292989c25db︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠8745d009-dae8-459e-8d56-489798145a07s︠
df.loc[dates[0]]
︡492326ee-c6a2-4095-ac52-7fcf101c5f21︡{"stdout":"A 1.091406\nB 2.274433\nC -0.051973\nD -1.467115\nName: 2013-01-01 00:00:00, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠d61adede-2af5-4694-9f1e-1665c276ebd4s︠
df
︡98c3c5f2-a9b0-404b-a74f-5e64e12fe4d3︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n 2013-01-04 | \n -0.521096 | \n 2.033860 | \n 0.196687 | \n 1.718198 | \n
\n \n 2013-01-05 | \n 0.140910 | \n 0.579546 | \n 0.002477 | \n 0.782339 | \n
\n \n 2013-01-06 | \n -0.975994 | \n -1.138417 | \n 1.484711 | \n -0.831980 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠c3c8701a-7d6a-47f9-a6fc-6214e5cd094fs︠
df[df.A > 0]
︡df3aa24a-42c0-45da-9a42-e2f3abd8ff4f︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 0.203499 | \n -3.007550 | \n 0.863493 | \n 0.212264 | \n
\n \n 2013-01-02 | \n 0.172677 | \n 0.242367 | \n 1.393439 | \n 0.442605 | \n
\n \n 2013-01-03 | \n 2.022955 | \n 0.398982 | \n -2.152061 | \n -1.282658 | \n
\n \n 2013-01-05 | \n 0.140910 | \n 0.579546 | \n 0.002477 | \n 0.782339 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠cd8f7677-3a70-498c-ad1c-29d26b09db32s︠
df.loc[:,['A','B']]
︡50c24f99-eef7-4cd1-b944-ff60295188b0︡{"html":"\n \n \n | \n A | \n B | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠86d03cc4-2a0d-4a57-8f0d-064fe0336d88s︠
df.loc['20130102':'20130104',['A','B']]
︡8e3724c5-df76-4978-9662-64f851e824ca︡{"html":"\n \n \n | \n A | \n B | \n
\n \n \n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠22014bad-1f8e-4f0f-b86f-c424fb857c71s︠
df.loc['20130102',['A','B']]
︡ebc43ef1-d4ad-4a53-8efd-cb7c41c80ca9︡{"stdout":"A 0.816948\nB -0.927294\nName: 2013-01-02 00:00:00, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠1467da36-7f35-4fe2-9be0-3754738c54dds︠
df.loc[dates[0],'A']
︡9aa9e596-9f3b-444e-af27-df2e7d9b07a5︡{"html":"$\\displaystyle 1.09140566006$
"}︡{"done":true}︡
︠fd6ea7fd-fc23-4bb4-a8cc-d5250d53f16cs︠
df.at[dates[0],'A']
︡f9b5c692-dd9f-4240-a391-91eb6fe0c55a︡{"html":"$\\displaystyle 1.09140566006$
"}︡{"done":true}︡
︠d55a4d68-5b4a-498a-9c75-bb7cc658b66bs︠
df.iloc[3]
︡234b47df-d75a-4b25-8362-76d89f9ecf6e︡{"stdout":"A 0.767904\nB -0.857935\nC 2.288270\nD 2.310758\nName: 2013-01-04 00:00:00, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠0e4a8af8-1013-44e1-8aa5-dc64523da3bfs︠
df.iloc[3:5,0:2]
︡8b018542-cf64-41e5-9ef3-00481110e9e3︡{"html":"\n \n \n | \n A | \n B | \n
\n \n \n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠cd131eea-f6d8-4b63-a732-bca5ec3f1de4s︠
df.iloc[[1,2,4],[0,2]]
︡a6bf9259-9c87-4030-a42f-a8618fe40ec1︡{"html":"\n \n \n | \n A | \n C | \n
\n \n \n \n 2013-01-02 | \n 0.816948 | \n 0.984745 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.626573 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 2.742259 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠dd4e491d-90c8-4bad-b441-e5330401f94fs︠
df.iloc[1:3,:]
︡afaf805c-3e3d-4282-9ea8-693b187cddd2︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠68df5d73-703f-454d-87b9-41044745fc46s︠
df.iloc[:,1:3]
︡036e3071-1110-4f1a-a8b9-c36bc9abfa53︡{"html":"\n \n \n | \n B | \n C | \n
\n \n \n \n 2013-01-01 | \n 2.274433 | \n -0.051973 | \n
\n \n 2013-01-02 | \n -0.927294 | \n 0.984745 | \n
\n \n 2013-01-03 | \n -0.533562 | \n -0.626573 | \n
\n \n 2013-01-04 | \n -0.857935 | \n 2.288270 | \n
\n \n 2013-01-05 | \n 0.742522 | \n 2.742259 | \n
\n \n 2013-01-06 | \n 0.379042 | \n 1.352261 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ae8e00b7-9c29-4550-886b-6d7ac91d1d3es︠
df.iloc[1,1]
︡dbf8f50b-a903-4636-8997-adbb7c7a0b21︡{"html":"$\\displaystyle -0.927294411026$
"}︡{"done":true}︡
︠93356d9a-6e4a-4b0c-92cc-1bde42f3a392s︠
df.iat[1,1]
︡c7fe73ff-7510-4b58-be33-3ce15372d0a9︡{"html":"$\\displaystyle -0.927294411026$
"}︡{"done":true}︡
︠487c56f2-16b3-45f4-92e5-a9daca95a197s︠
df[df.A > 0]
︡99b34080-68ac-48fe-864e-929618b71ae3︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠8ce35d46-8b8b-4a36-b54a-1ef1f61a6030s︠
df[df > 0]
︡2e44261c-5a1a-4c2d-bdb3-500444c8f865︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n NaN | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n NaN | \n 0.984745 | \n NaN | \n
\n \n 2013-01-03 | \n 1.764278 | \n NaN | \n NaN | \n NaN | \n
\n \n 2013-01-04 | \n 0.767904 | \n NaN | \n 2.288270 | \n 2.310758 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n NaN | \n
\n \n 2013-01-06 | \n NaN | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠b107d869-b14a-4668-97c9-489330557035s︠
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
df2
︡748db520-3975-4149-acac-30ce44536b45︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n E | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n one | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n one | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n two | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n three | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n four | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n three | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠a2c7c33e-699d-4840-821e-27646613115as︠
df2[df2['E'].isin(['one','four'])]
︡ad6a9071-788f-4d7a-b965-872e17eefb20︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n E | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n one | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n one | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n four | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠5a458808-bf06-4d26-a63e-eb4669bf5755s︠
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
s1
︡8974fd50-e352-48f7-9260-fa196f30cfca︡{"stdout":"2013-01-02 1\n2013-01-03 2\n2013-01-04 3\n2013-01-05 4\n2013-01-06 5\n2013-01-07 6\nFreq: D, dtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠c0bb5197-8385-4d31-9dfb-1fe5fef84e58s︠
df['F'] = s1
df
︡c02f207e-2ce7-4d4d-8d95-449f9c715834︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 1.091406 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠94d01941-8bb0-4bf6-b892-59ca645c9abcs︠
df.at[dates[0],'A'] = 0
df
︡7cd876ab-692a-4423-b902-16218c2fec29︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 2.274433 | \n -0.051973 | \n -1.467115 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠7b6b22cc-a1ac-4c53-885c-b515dfdd0d5cs︠
df.iat[0,1] = 0
df
︡620a0f01-04b4-433d-ac11-29bb8fca2728︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n -1.467115 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n -1.044651 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n -1.766611 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 2.310758 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n -1.300268 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 0.173279 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠9e4d2dc8-e233-49c9-8dc4-4bf7d1731ddbs︠
df.loc[:,'D'] = np.array([5] * len(df))
df
︡1f6b04be-4eb3-4f87-8a60-9b818a5823ef︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n 5 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 5 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n 5 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 5 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠bef45ac5-0169-485d-a9ca-de51897ec3d9s︠
df2 = df.copy()
df2[df2 > 0] = -df2
df2
︡be6b95bf-d1a3-4db4-a234-63c16249aeb4︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n -5 | \n NaN | \n
\n \n 2013-01-02 | \n -0.816948 | \n -0.927294 | \n -0.984745 | \n -5 | \n -1.0 | \n
\n \n 2013-01-03 | \n -1.764278 | \n -0.533562 | \n -0.626573 | \n -5 | \n -2.0 | \n
\n \n 2013-01-04 | \n -0.767904 | \n -0.857935 | \n -2.288270 | \n -5 | \n -3.0 | \n
\n \n 2013-01-05 | \n -0.275070 | \n -0.742522 | \n -2.742259 | \n -5 | \n -4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n -0.379042 | \n -1.352261 | \n -5 | \n -5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠13cff3db-6155-4ecc-966c-3b590004bf4fs︠
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
︡aaeb8bcd-1fc9-4f2d-a0fb-fd78915a6833︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n E | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n NaN | \n 1.0 | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n 5 | \n 2.0 | \n NaN | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 5 | \n 3.0 | \n NaN | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠88488933-a58e-46bc-aa30-61a7585dea3fss︠
df1.dropna(how='any')
︡012092c7-7279-469b-bf6c-215cf75d0e3c︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n E | \n
\n \n \n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n 1.0 | \n
\n \n
"}︡︡{"html":""}︡{"done":true}
︠d254ffda-338a-4a4a-b768-6d13aa576f1fs︠
df1.fillna(value=5)
︡751588dc-fb52-4ab8-86c6-be836c3be05a︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n E | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n 5.0 | \n 1.0 | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n 5 | \n 2.0 | \n 5.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 5 | \n 3.0 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠1f1ab30a-ae3d-44bc-9547-57f871c9fbc6s︠
pd.isnull(df1)
︡0825aa06-1eb5-4a5e-aead-3cc491d1ffa1︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n E | \n
\n \n \n \n 2013-01-01 | \n False | \n False | \n False | \n False | \n True | \n False | \n
\n \n 2013-01-02 | \n False | \n False | \n False | \n False | \n False | \n False | \n
\n \n 2013-01-03 | \n False | \n False | \n False | \n False | \n False | \n True | \n
\n \n 2013-01-04 | \n False | \n False | \n False | \n False | \n False | \n True | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠b56158c2-eb0d-4a0f-abee-6414ecc7f649s︠
df
︡880833dc-de04-4912-8c97-e191899ae397︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n 5 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 5 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n 5 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 5 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠095e60d2-8344-4dd5-9174-f9717fc874cas︠
df.mean()
︡9125b659-013d-4b98-9ea3-93214f848360︡{"stdout":"A 0.356914\nB -0.199538\nC 1.114831\nD 5.000000\nF 3.000000\ndtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠ffa501bb-8521-48c8-8197-417caa0df013︠
df.mean(1)
︡c9e88f20-2b5e-4ca7-91c7-8ced81db62c8︡{"stdout":"2013-01-01 1.237007\n2013-01-02 1.374880\n2013-01-03 1.520829\n2013-01-04 2.039648\n2013-01-05 2.551970\n2013-01-06 2.049717\nFreq: D, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠a2d0c62b-bfdf-4856-be56-ba6d2d7805dds︠
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
s
︡2e93acce-2d2c-4317-b424-4826fad1650b︡{"stdout":"2013-01-01 NaN\n2013-01-02 NaN\n2013-01-03 1.0\n2013-01-04 3.0\n2013-01-05 5.0\n2013-01-06 NaN\nFreq: D, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠94eb0352-069b-468a-b2ac-e3e51c554120s︠
df.sub(s, axis='index')
︡4874c108-de37-4611-b105-29bfe4eddbe2︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2013-01-02 | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2013-01-03 | \n 0.764278 | \n -1.533562 | \n -1.626573 | \n 4.0 | \n 1.0 | \n
\n \n 2013-01-04 | \n -2.232096 | \n -3.857935 | \n -0.711730 | \n 2.0 | \n 0.0 | \n
\n \n 2013-01-05 | \n -4.724930 | \n -4.257478 | \n -2.257741 | \n 0.0 | \n -1.0 | \n
\n \n 2013-01-06 | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠71b5c328-7412-4efc-998e-5434332f4f06s︠
df
︡f87f1458-f8fb-42be-a283-87c39e5cd058︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.984745 | \n 5 | \n 1.0 | \n
\n \n 2013-01-03 | \n 1.764278 | \n -0.533562 | \n -0.626573 | \n 5 | \n 2.0 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.857935 | \n 2.288270 | \n 5 | \n 3.0 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 0.742522 | \n 2.742259 | \n 5 | \n 4.0 | \n
\n \n 2013-01-06 | \n -1.482718 | \n 0.379042 | \n 1.352261 | \n 5 | \n 5.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ea86b439-b9f1-4657-ba28-73303ec9fe8ds︠
df.apply(np.cumsum)
︡10f415e9-3548-4800-98fe-049e15d8fae8︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 5 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.927294 | \n 0.932773 | \n 10 | \n 1.0 | \n
\n \n 2013-01-03 | \n 2.581226 | \n -1.460856 | \n 0.306199 | \n 15 | \n 3.0 | \n
\n \n 2013-01-04 | \n 3.349130 | \n -2.318791 | \n 2.594469 | \n 20 | \n 6.0 | \n
\n \n 2013-01-05 | \n 3.624199 | \n -1.576269 | \n 5.336728 | \n 25 | \n 10.0 | \n
\n \n 2013-01-06 | \n 2.141481 | \n -1.197227 | \n 6.688989 | \n 30 | \n 15.0 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ce9c6df0-c4a2-4c48-a0e8-fdf69b0fbd03s︠
df.apply(np.cumsum, axis=1)
︡1ae6abc8-421a-44c7-9c72-fc9919be9087︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n F | \n
\n \n \n \n 2013-01-01 | \n 0.000000 | \n 0.000000 | \n -0.051973 | \n 4.948027 | \n NaN | \n
\n \n 2013-01-02 | \n 0.816948 | \n -0.110347 | \n 0.874399 | \n 5.874399 | \n 6.874399 | \n
\n \n 2013-01-03 | \n 1.764278 | \n 1.230717 | \n 0.604143 | \n 5.604143 | \n 7.604143 | \n
\n \n 2013-01-04 | \n 0.767904 | \n -0.090031 | \n 2.198239 | \n 7.198239 | \n 10.198239 | \n
\n \n 2013-01-05 | \n 0.275070 | \n 1.017591 | \n 3.759850 | \n 8.759850 | \n 12.759850 | \n
\n \n 2013-01-06 | \n -1.482718 | \n -1.103676 | \n 0.248585 | \n 5.248585 | \n 10.248585 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠a69f4212-1e7e-4ae2-afce-4353ceb0c67as︠
df.apply(lambda x: x.max() - x.min())
︡9e52f1a6-1732-4f8d-8254-0aa9936ba00a︡{"stdout":"A 3.246996\nB 1.669816\nC 3.368832\nD 0.000000\nF 4.000000\ndtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠70b4d9b6-6d4e-41b4-b154-f70948a06a07s︠
s = pd.Series(np.random.randint(0, 7, size=10))
s
︡6791c954-3a54-41d9-8aac-251b81f9866a︡{"stdout":"0 2\n1 6\n2 4\n3 3\n4 1\n5 3\n6 6\n7 4\n8 1\n9 4\ndtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠06e72ed5-503a-42d5-878f-eaf8281fdaeds︠
s.value_counts()
︡c986be5f-6649-406a-95fd-66c19f2dbc76︡{"stdout":"3 2\n2 2\n0 2\n6 1\n5 1\n4 1\n1 1\ndtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠9be404d4-33e1-4c7b-be3f-0ac7ce3f16acs︠
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
︡b9e477b2-599a-48cc-82e6-f860f794a36b︡{"stdout":"0 a\n1 b\n2 c\n3 aaba\n4 baca\n5 NaN\n6 caba\n7 dog\n8 cat\ndtype: object\n"}︡{"html":""}︡{"done":true}︡
︠7987ee64-8f99-4dbf-bcdc-69e3f98abc84s︠
df = pd.DataFrame(np.random.randn(10, 4))
df
︡2d53da37-bd3a-4333-af10-a30ef265da78︡{"html":"\n \n \n | \n 0 | \n 1 | \n 2 | \n 3 | \n
\n \n \n \n 0 | \n 0.489649 | \n -0.930106 | \n 0.534682 | \n 0.583658 | \n
\n \n 1 | \n 0.201224 | \n -0.103676 | \n 1.076049 | \n -0.378711 | \n
\n \n 2 | \n 1.734129 | \n 1.270388 | \n 0.182100 | \n 1.275143 | \n
\n \n 3 | \n 0.756130 | \n -1.469688 | \n 1.139847 | \n -1.056633 | \n
\n \n 4 | \n -0.210804 | \n -1.576685 | \n 0.379073 | \n -0.357527 | \n
\n \n 5 | \n -0.762810 | \n -1.107889 | \n 1.040216 | \n -0.601039 | \n
\n \n 6 | \n 1.619109 | \n -0.869445 | \n -0.655173 | \n -1.418691 | \n
\n \n 7 | \n -1.061251 | \n -0.346968 | \n -0.057042 | \n -1.518861 | \n
\n \n 8 | \n 1.135685 | \n 1.133475 | \n 0.196636 | \n 0.291553 | \n
\n \n 9 | \n -0.726244 | \n -0.842093 | \n -0.265447 | \n -0.634778 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠7925fb17-4b4c-4ebc-91a0-00616e44201fs︠
df[:3]
︡5bc8074b-2cf8-4915-9221-8d7705917bd0︡{"html":"\n \n \n | \n 0 | \n 1 | \n 2 | \n 3 | \n
\n \n \n \n 0 | \n 0.489649 | \n -0.930106 | \n 0.534682 | \n 0.583658 | \n
\n \n 1 | \n 0.201224 | \n -0.103676 | \n 1.076049 | \n -0.378711 | \n
\n \n 2 | \n 1.734129 | \n 1.270388 | \n 0.182100 | \n 1.275143 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠74177153-f477-4134-81ad-dd97390d8548s︠
pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
︡d89970b5-0b4d-431b-aac7-c5966f4c29f9︡{"html":"\n \n \n | \n 0 | \n 1 | \n 2 | \n 3 | \n
\n \n \n \n 0 | \n 0.489649 | \n -0.930106 | \n 0.534682 | \n 0.583658 | \n
\n \n 1 | \n 0.201224 | \n -0.103676 | \n 1.076049 | \n -0.378711 | \n
\n \n 2 | \n 1.734129 | \n 1.270388 | \n 0.182100 | \n 1.275143 | \n
\n \n 3 | \n 0.756130 | \n -1.469688 | \n 1.139847 | \n -1.056633 | \n
\n \n 4 | \n -0.210804 | \n -1.576685 | \n 0.379073 | \n -0.357527 | \n
\n \n 5 | \n -0.762810 | \n -1.107889 | \n 1.040216 | \n -0.601039 | \n
\n \n 6 | \n 1.619109 | \n -0.869445 | \n -0.655173 | \n -1.418691 | \n
\n \n 7 | \n -1.061251 | \n -0.346968 | \n -0.057042 | \n -1.518861 | \n
\n \n 8 | \n 1.135685 | \n 1.133475 | \n 0.196636 | \n 0.291553 | \n
\n \n 9 | \n -0.726244 | \n -0.842093 | \n -0.265447 | \n -0.634778 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠a6a2c3a0-7af6-4424-9468-656c7dbea5bcs︠
left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
print 'left='
left
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
print 'right='
right
pd.merge(left, right, on='key') # cartesian product of sets
︡2b69ab71-32e1-46dc-a2b3-af90428c55cf︡{"stdout":"left=\n"}︡{"html":"\n \n \n | \n key | \n lval | \n
\n \n \n \n 0 | \n foo | \n 1 | \n
\n \n 1 | \n foo | \n 2 | \n
\n \n
"}︡{"html":""}︡{"stdout":"right=\n"}︡{"html":"\n \n \n | \n key | \n rval | \n
\n \n \n \n 0 | \n foo | \n 4 | \n
\n \n 1 | \n foo | \n 5 | \n
\n \n
"}︡{"html":""}︡{"html":"\n \n \n | \n key | \n lval | \n rval | \n
\n \n \n \n 0 | \n foo | \n 1 | \n 4 | \n
\n \n 1 | \n foo | \n 1 | \n 5 | \n
\n \n 2 | \n foo | \n 2 | \n 4 | \n
\n \n 3 | \n foo | \n 2 | \n 5 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠9028c824-b5d1-44b1-8a60-0ddbb7eb8d5bs︠
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
︡ab920c62-a49e-45ae-ad7e-e8c8afc51d9f︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 0 | \n 0.357406 | \n 1.244947 | \n -1.505490 | \n 0.647047 | \n
\n \n 1 | \n 0.965902 | \n -0.817161 | \n -1.021037 | \n 1.973119 | \n
\n \n 2 | \n -0.592771 | \n -0.712344 | \n -1.239662 | \n 0.023419 | \n
\n \n 3 | \n -0.050144 | \n -0.425577 | \n -0.450232 | \n 0.117308 | \n
\n \n 4 | \n 0.405984 | \n 0.388842 | \n 1.020623 | \n 0.377212 | \n
\n \n 5 | \n 0.429241 | \n 0.414187 | \n 0.216448 | \n 0.099873 | \n
\n \n 6 | \n 1.308360 | \n -0.131163 | \n -0.290972 | \n -1.351830 | \n
\n \n 7 | \n -0.258822 | \n 1.826776 | \n 0.124504 | \n 1.157286 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠7a7fd8f4-c681-48f5-a3d1-60df8bd7e097s︠
s = df.iloc[3]
s
︡7e49fed4-a9e5-498e-bcf5-82179b76d427︡{"stdout":"A -0.050144\nB -0.425577\nC -0.450232\nD 0.117308\nName: 3, dtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠39954a77-18df-496e-b9da-69656c12fcb7s︠
df.append(s, ignore_index=True)
︡fe50772e-372b-4a11-a823-3ef0b89e96bf︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 0 | \n 0.357406 | \n 1.244947 | \n -1.505490 | \n 0.647047 | \n
\n \n 1 | \n 0.965902 | \n -0.817161 | \n -1.021037 | \n 1.973119 | \n
\n \n 2 | \n -0.592771 | \n -0.712344 | \n -1.239662 | \n 0.023419 | \n
\n \n 3 | \n -0.050144 | \n -0.425577 | \n -0.450232 | \n 0.117308 | \n
\n \n 4 | \n 0.405984 | \n 0.388842 | \n 1.020623 | \n 0.377212 | \n
\n \n 5 | \n 0.429241 | \n 0.414187 | \n 0.216448 | \n 0.099873 | \n
\n \n 6 | \n 1.308360 | \n -0.131163 | \n -0.290972 | \n -1.351830 | \n
\n \n 7 | \n -0.258822 | \n 1.826776 | \n 0.124504 | \n 1.157286 | \n
\n \n 8 | \n -0.050144 | \n -0.425577 | \n -0.450232 | \n 0.117308 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠65540b46-f601-42fc-b862-a9acdd0d3cfbs︠
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C' : np.random.randn(8),
'D' : np.random.randn(8)})
df
︡435231d7-ae8e-4234-b109-05803ec604d2︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n
\n \n \n \n 0 | \n foo | \n one | \n -2.077682 | \n 0.331603 | \n
\n \n 1 | \n bar | \n one | \n -0.071400 | \n 0.219208 | \n
\n \n 2 | \n foo | \n two | \n 1.242458 | \n 1.252414 | \n
\n \n 3 | \n bar | \n three | \n 0.963360 | \n -1.377083 | \n
\n \n 4 | \n foo | \n two | \n -0.469703 | \n 1.170327 | \n
\n \n 5 | \n bar | \n two | \n 0.413790 | \n 0.358047 | \n
\n \n 6 | \n foo | \n one | \n -0.611831 | \n 0.359070 | \n
\n \n 7 | \n foo | \n three | \n 0.018343 | \n 0.790031 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠88e75f7b-39bd-43cd-85c0-e4444c0480ecs︠
df.groupby('A').sum()
︡b2261fee-e761-4810-b8dd-ff60b94a2b44︡{"html":"\n \n \n | \n C | \n D | \n
\n \n A | \n | \n | \n
\n \n \n \n bar | \n 1.305749 | \n -0.799828 | \n
\n \n foo | \n -1.898415 | \n 3.903445 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ac16c61f-0e48-424b-87de-b4f2c1a8ed3bs︠
df.groupby(['A','B']).sum()
︡bcf91510-daee-4c10-8dbc-4e7ea7ce3a79︡{"html":"\n \n \n | \n | \n C | \n D | \n
\n \n A | \n B | \n | \n | \n
\n \n \n \n bar | \n one | \n -0.071400 | \n 0.219208 | \n
\n \n three | \n 0.963360 | \n -1.377083 | \n
\n \n two | \n 0.413790 | \n 0.358047 | \n
\n \n foo | \n one | \n -2.689514 | \n 0.690673 | \n
\n \n three | \n 0.018343 | \n 0.790031 | \n
\n \n two | \n 0.772755 | \n 2.422741 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠888fc5e2-7aa0-44ff-95c2-c0756cd69aa3s︠
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df2 = df[:4]
df2
︡37665c34-f539-46b7-aac2-b64977780d9b︡{"html":"\n \n \n | \n | \n A | \n B | \n
\n \n first | \n second | \n | \n | \n
\n \n \n \n bar | \n one | \n -0.083946 | \n -0.246541 | \n
\n \n two | \n -0.208254 | \n -2.175975 | \n
\n \n baz | \n one | \n 0.658479 | \n 1.221688 | \n
\n \n two | \n -0.399217 | \n 0.366461 | \n
\n \n
"}︡︡{"html":""}︡{"done":true}
︠8c4bc88d-8c6f-408a-ba72-91d693ddd525s︠
stacked = df2.stack()
stacked
︡7f2a7738-7ea2-4583-a331-e7713d46e312︡{"stdout":"first second \nbar one A -0.083946\n B -0.246541\n two A -0.208254\n B -2.175975\nbaz one A 0.658479\n B 1.221688\n two A -0.399217\n B 0.366461\ndtype: float64\n"}︡{"html":""}︡{"done":true}︡
︠8c3f8623-85a3-4098-8bd1-5085d46c5543s︠
stacked.unstack()
︡7545de4b-76c9-4c18-9839-f9307401e7c3︡{"html":"\n \n \n | \n | \n A | \n B | \n
\n \n first | \n second | \n | \n | \n
\n \n \n \n bar | \n one | \n -0.083946 | \n -0.246541 | \n
\n \n two | \n -0.208254 | \n -2.175975 | \n
\n \n baz | \n one | \n 0.658479 | \n 1.221688 | \n
\n \n two | \n -0.399217 | \n 0.366461 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠ecfeea2d-b2ee-4d34-bc9c-e440b562f203s︠
stacked.unstack(1)
︡d51d5a84-4759-4149-b519-46864df1811f︡{"html":"\n \n \n | \n second | \n one | \n two | \n
\n \n first | \n | \n | \n | \n
\n \n \n \n bar | \n A | \n -0.083946 | \n -0.208254 | \n
\n \n B | \n -0.246541 | \n -2.175975 | \n
\n \n baz | \n A | \n 0.658479 | \n -0.399217 | \n
\n \n B | \n 1.221688 | \n 0.366461 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠87653962-a49a-4ed7-b635-8ab5ca2191e7s︠
stacked.unstack(0)
︡e95ecefc-ae98-423b-b358-75e8d3b52d12︡{"html":"\n \n \n | \n first | \n bar | \n baz | \n
\n \n second | \n | \n | \n | \n
\n \n \n \n one | \n A | \n -0.083946 | \n 0.658479 | \n
\n \n B | \n -0.246541 | \n 1.221688 | \n
\n \n two | \n A | \n -0.208254 | \n -0.399217 | \n
\n \n B | \n -2.175975 | \n 0.366461 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠a41a856f-681f-4ecb-ac98-058c08c47a0ds︠
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
'B' : ['A', 'B', 'C'] * 4,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
'D' : np.random.randn(12),
'E' : np.random.randn(12)})
df
︡aed45353-4de7-4a5a-86ea-288688aad753︡{"html":"\n \n \n | \n A | \n B | \n C | \n D | \n E | \n
\n \n \n \n 0 | \n one | \n A | \n foo | \n 0.924358 | \n -1.318103 | \n
\n \n 1 | \n one | \n B | \n foo | \n -0.013813 | \n 0.135119 | \n
\n \n 2 | \n two | \n C | \n foo | \n -1.007086 | \n 0.391596 | \n
\n \n 3 | \n three | \n A | \n bar | \n 1.693627 | \n 0.139658 | \n
\n \n 4 | \n one | \n B | \n bar | \n -0.015281 | \n -0.184786 | \n
\n \n 5 | \n one | \n C | \n bar | \n 2.120000 | \n -0.841796 | \n
\n \n 6 | \n two | \n A | \n foo | \n -2.785113 | \n 0.612259 | \n
\n \n 7 | \n three | \n B | \n foo | \n -0.325130 | \n -0.930560 | \n
\n \n 8 | \n one | \n C | \n foo | \n -0.019052 | \n 1.161260 | \n
\n \n 9 | \n one | \n A | \n bar | \n 0.573002 | \n -2.131227 | \n
\n \n 10 | \n two | \n B | \n bar | \n -0.027490 | \n 0.884262 | \n
\n \n 11 | \n three | \n C | \n bar | \n 0.258147 | \n -0.192678 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡
︠33dc69cf-4c93-43b8-866e-a4a8333fd592s︠
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
︡8fd5f12c-24e8-486c-b7ba-51fdfd682f30︡{"html":"\n \n \n | \n C | \n bar | \n foo | \n
\n \n A | \n B | \n | \n | \n
\n \n \n \n one | \n A | \n 0.573002 | \n 0.924358 | \n
\n \n B | \n -0.015281 | \n -0.013813 | \n
\n \n C | \n 2.120000 | \n -0.019052 | \n
\n \n three | \n A | \n 1.693627 | \n NaN | \n
\n \n B | \n NaN | \n -0.325130 | \n
\n \n C | \n 0.258147 | \n NaN | \n
\n \n two | \n A | \n NaN | \n -2.785113 | \n
\n \n B | \n -0.027490 | \n NaN | \n
\n \n C | \n NaN | \n -1.007086 | \n
\n \n
"}︡{"html":""}︡{"done":true}︡{"done":true}︡
︠3c2289cc-9efe-4a50-b194-f2eb4cf35e10s︠
rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum()
︡8bb2fcc7-e080-4869-a468-d1de190b6467︡{"stdout":"2012-01-01 24920\nFreq: 5T, dtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠d4e1cb2a-c7c7-46b6-bed0-0dffbb885e94s︠
ts_utc = ts.tz_localize('UTC')
ts_utc
︡36156487-ea8a-404f-b0de-1136ad4cfbdb︡{"stdout":"2012-01-01 00:00:00+00:00 106\n2012-01-01 00:00:01+00:00 32\n2012-01-01 00:00:02+00:00 281\n2012-01-01 00:00:03+00:00 276\n2012-01-01 00:00:04+00:00 448\n2012-01-01 00:00:05+00:00 207\n2012-01-01 00:00:06+00:00 433\n2012-01-01 00:00:07+00:00 0\n2012-01-01 00:00:08+00:00 81\n2012-01-01 00:00:09+00:00 408\n2012-01-01 00:00:10+00:00 475\n2012-01-01 00:00:11+00:00 37\n2012-01-01 00:00:12+00:00 80\n2012-01-01 00:00:13+00:00 272\n2012-01-01 00:00:14+00:00 496\n2012-01-01 00:00:15+00:00 191\n2012-01-01 00:00:16+00:00 121\n2012-01-01 00:00:17+00:00 476\n2012-01-01 00:00:18+00:00 142\n2012-01-01 00:00:19+00:00 255\n2012-01-01 00:00:20+00:00 492\n2012-01-01 00:00:21+00:00 104\n2012-01-01 00:00:22+00:00 31\n2012-01-01 00:00:23+00:00 128\n2012-01-01 00:00:24+00:00 413\n2012-01-01 00:00:25+00:00 178\n2012-01-01 00:00:26+00:00 293\n2012-01-01 00:00:27+00:00 273\n2012-01-01 00:00:28+00:00 393\n2012-01-01 00:00:29+00:00 284\n ... \n2012-01-01 00:01:10+00:00 17\n2012-01-01 00:01:11+00:00 408\n2012-01-01 00:01:12+00:00 459\n2012-01-01 00:01:13+00:00 329\n2012-01-01 00:01:14+00:00 255\n2012-01-01 00:01:15+00:00 187\n2012-01-01 00:01:16+00:00 277\n2012-01-01 00:01:17+00:00 97\n2012-01-01 00:01:18+00:00 352\n2012-01-01 00:01:19+00:00 163\n2012-01-01 00:01:20+00:00 132\n2012-01-01 00:01:21+00:00 348\n2012-01-01 00:01:22+00:00 130\n2012-01-01 00:01:23+00:00 405\n2012-01-01 00:01:24+00:00 359\n2012-01-01 00:01:25+00:00 308\n2012-01-01 00:01:26+00:00 412\n2012-01-01 00:01:27+00:00 485\n2012-01-01 00:01:28+00:00 430\n2012-01-01 00:01:29+00:00 85\n2012-01-01 00:01:30+00:00 108\n2012-01-01 00:01:31+00:00 462\n2012-01-01 00:01:32+00:00 61\n2012-01-01 00:01:33+00:00 206\n2012-01-01 00:01:34+00:00 383\n2012-01-01 00:01:35+00:00 284\n2012-01-01 00:01:36+00:00 401\n2012-01-01 00:01:37+00:00 318\n2012-01-01 00:01:38+00:00 410\n2012-01-01 00:01:39+00:00 314\nFreq: S, dtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠f9cbc551-a072-4595-89d8-df5acf60f084s︠
ts_utc.tz_convert('US/Eastern')
︡fb393b5f-23b9-4277-9b68-d2421d5f3575︡{"stdout":"2011-12-31 19:00:00-05:00 106\n2011-12-31 19:00:01-05:00 32\n2011-12-31 19:00:02-05:00 281\n2011-12-31 19:00:03-05:00 276\n2011-12-31 19:00:04-05:00 448\n2011-12-31 19:00:05-05:00 207\n2011-12-31 19:00:06-05:00 433\n2011-12-31 19:00:07-05:00 0\n2011-12-31 19:00:08-05:00 81\n2011-12-31 19:00:09-05:00 408\n2011-12-31 19:00:10-05:00 475\n2011-12-31 19:00:11-05:00 37\n2011-12-31 19:00:12-05:00 80\n2011-12-31 19:00:13-05:00 272\n2011-12-31 19:00:14-05:00 496\n2011-12-31 19:00:15-05:00 191\n2011-12-31 19:00:16-05:00 121\n2011-12-31 19:00:17-05:00 476\n2011-12-31 19:00:18-05:00 142\n2011-12-31 19:00:19-05:00 255\n2011-12-31 19:00:20-05:00 492\n2011-12-31 19:00:21-05:00 104\n2011-12-31 19:00:22-05:00 31\n2011-12-31 19:00:23-05:00 128\n2011-12-31 19:00:24-05:00 413\n2011-12-31 19:00:25-05:00 178\n2011-12-31 19:00:26-05:00 293\n2011-12-31 19:00:27-05:00 273\n2011-12-31 19:00:28-05:00 393\n2011-12-31 19:00:29-05:00 284\n ... \n2011-12-31 19:01:10-05:00 17\n2011-12-31 19:01:11-05:00 408\n2011-12-31 19:01:12-05:00 459\n2011-12-31 19:01:13-05:00 329\n2011-12-31 19:01:14-05:00 255\n2011-12-31 19:01:15-05:00 187\n2011-12-31 19:01:16-05:00 277\n2011-12-31 19:01:17-05:00 97\n2011-12-31 19:01:18-05:00 352\n2011-12-31 19:01:19-05:00 163\n2011-12-31 19:01:20-05:00 132\n2011-12-31 19:01:21-05:00 348\n2011-12-31 19:01:22-05:00 130\n2011-12-31 19:01:23-05:00 405\n2011-12-31 19:01:24-05:00 359\n2011-12-31 19:01:25-05:00 308\n2011-12-31 19:01:26-05:00 412\n2011-12-31 19:01:27-05:00 485\n2011-12-31 19:01:28-05:00 430\n2011-12-31 19:01:29-05:00 85\n2011-12-31 19:01:30-05:00 108\n2011-12-31 19:01:31-05:00 462\n2011-12-31 19:01:32-05:00 61\n2011-12-31 19:01:33-05:00 206\n2011-12-31 19:01:34-05:00 383\n2011-12-31 19:01:35-05:00 284\n2011-12-31 19:01:36-05:00 401\n2011-12-31 19:01:37-05:00 318\n2011-12-31 19:01:38-05:00 410\n2011-12-31 19:01:39-05:00 314\nFreq: S, dtype: int64\n"}︡{"html":""}︡{"done":true}︡
︠9c5f2f6f-5fcf-415c-aafe-086bf7b0570cs︠
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()
︡8e50bb1b-08e3-4c44-8f75-bd906c28826a︡{"file":{"filename":"/projects/4d0f1d1d-7b70-4fc7-88a4-3b4a54f77b18/.sage/temp/compute7-us/12786/tmp_dZo_1U.svg","show":true,"text":null,"uuid":"a1ab085e-eae1-4f21-8ffb-398df7bd0a60"},"once":false}︡{"html":""}︡{"done":true}︡
︠cd134afe-b0d5-4fdc-bf30-c929f88fd6ef︠