︠561ffbf6-327b-4526-833b-29361e4f1c1di︠ %md See [10 Minutes to pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html) This is really "a few hours", not 10 minutes. Carefully working through this is a good way to get a **solid foundation** in using Pandas. ︡d9e21b7a-eb0b-488f-9b03-a6455176515e︡{"done":true,"md":"See [10 Minutes to pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html)\n\nThis is really \"a few hours\", not 10 minutes.\nCarefully working through this is a good way to get a **solid foundation** in using Pandas."} ︠46a1738d-ae48-4ba8-883b-3947987ade11s︠ %auto import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.style.use('ggplot') %default_mode python # avoid Sage data types! %typeset_mode True ︡44b60adf-4c34-4ea9-be96-12b848037fdb︡{"done":true}︡ ︠a5591ed7-3167-45dd-bf15-52f897206f51s︠ pi**e ︡c9704d84-5fe9-43e4-a41e-0c17323907ee︡{"html":"
$\\displaystyle \\pi^{e}$
"}︡{"done":true}︡ ︠a12c8d50-0137-479d-afb5-2c8c59c5ea9bs︠ 2/3 ︡b9b11834-8db5-481d-a521-86f1e2640321︡{"html":"
$\\displaystyle 0$
"}︡{"done":true}︡ ︠bcb6c7de-4c39-441e-990b-f21e18c83ed3s︠ s = pd.Series([1, 3, 5, np.nan, 6, 8]) s ︡cd323f51-ed63-4429-ae35-b1ba6e889a55︡{"stdout":"0 1.0\n1 3.0\n2 5.0\n3 NaN\n4 6.0\n5 8.0\ndtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠d1d2c5a0-fc47-4196-92e6-66c7bbcbeb6es︠ pd.date_range('20160227', periods=6) ︡02a5dbab-0918-4552-8d25-54ff02b67b8e︡{"stdout":"DatetimeIndex(['2016-02-27', '2016-02-28', '2016-02-29', '2016-03-01',\n '2016-03-02', '2016-03-03'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":"
"}︡{"done":true}︡ ︠1740a96a-4a7a-4e5d-83b7-2dbe42275c86s︠ pd.date_range('20170227', periods=6) ︡e8a467d6-2e09-425b-b965-35dc656f3d16︡{"stdout":"DatetimeIndex(['2017-02-27', '2017-02-28', '2017-03-01', '2017-03-02',\n '2017-03-03', '2017-03-04'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":"
"}︡{"done":true}︡ ︠bf394969-ef44-4f52-a11f-a78872f86625s︠ dates = pd.date_range('20130101', periods=6) dates ︡ac0c8677-d618-4b58-98f1-0fb0b5a8d0af︡{"stdout":"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n '2013-01-05', '2013-01-06'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":"
"}︡{"done":true}︡ ︠4e038ed8-fe32-4dea-8f0b-7a9a21e91388s︠ np.random.randn(6) ︡046b50d3-4d4b-42d5-987e-81fc55ede581︡{"stdout":"[ 0.19017359 0.75139576 1.38014427 0.20743407 0.5190933 2.20607076]\n"}︡{"html":"
"}︡{"done":true}︡ ︠f77f0178-3fd2-4bac-a4b7-72ec6d83af9bs︠ print list('ABCD') ︡aadb5e8e-f076-455d-ac54-418f8a475dfc︡{"stdout":"['A', 'B', 'C', 'D']\n"}︡{"done":true}︡ ︠daf006ec-721b-496c-ab78-be5fa9d79687s︠ df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) df ︡fc90ef8a-bb77-4a94-a092-20c1fc51e724︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
2013-01-04-0.5210962.0338600.1966871.718198
2013-01-050.1409100.5795460.0024770.782339
2013-01-06-0.975994-1.1384171.484711-0.831980
"}︡{"html":"
"}︡{"done":true}︡ ︠ca6be9cf-3dd7-4cd8-babc-a018ad0f54c3s︠ type(df) ︡15c9e2bf-3957-47dd-9945-f50da364629e︡{"stdout":"\n"}︡{"done":true}︡ ︠6cf8bedd-ee3b-4592-9fdb-231c151166eas︠ a = np.array([1,2,3,4**5000]); a ︡1ed38688-1cf5-4720-96c0-b798de5e9a42︡{"stdout":"[1 2 3\n 19950631168807583848837421626835850838234968318861924548520089498529438830221946631919961684036194597899331129423209124271556491349413781117593785932096323957855730046793794526765246551266059895520550086918193311542508608460618104685509074866089624888090489894838009253941633257850621568309473902556912388065225096643874441046759871626985453222868538161694315775629640762836880760732228535091641476183956381458969463899410840960536267821064621427333394036525565649530603142680234969400335934316651459297773279665775606172582031407994198179607378245683762280037302885487251900834464581454650557929601414833921615734588139257095379769119277800826957735674444123062018757836325502728323789270710373802866393031428133241401624195671690574061419654342324638801248856147305207431992259611796250130992860241708340807605932320161268492288496255841312844061536738951487114256315111089745514203313820202931640957596464756010405845841566072044962867016515061920631004186422275908670900574606417856951911456055068251250406007519842261898059237118054444788072906395242548339221982707404473162376760846613033778706039803413197133493654622700563169937455508241780972810983291314403571877524768509857276937926433221599399876886660808368837838027643282775172273657572744784112294389733810861607423253291974813120197604178281965697475898164531258434135959862784130128185406283476649088690521047580882615823961985770122407044330583075869039319604603404973156583208672105913300903752823415539745394397715257455290510212310947321610753474825740775273986348298498340756937955646638621874569499279016572103701364433135817214311791398222983845847334440270964182851005072927748364550578634501100852987812389473928699540834346158807043959118985815145779177143619698728131459483783202081474982171858011389071228250905826817436220577475921417653715687725614904582904992461028630081535583308130101987675856234343538955409175623400844887526162643568648833519463720377293240094456246923254350400678027273837755376406726898636241037491410966718557050759098100246789880178271925953381282421954028302759408448955014676668389697996886241636313376393903373455801407636741877711055384225739499110186468219696581651485130494222369947714763069155468217682876200362777257723781365331611196811280792669481887201298643660768551639860534602297871557517947385246369446923087894265948217008051120322365496288169035739121368338393591756418733850510970271613915439590991598154654417336311656936031122249937969999226781732358023111862644575299135758175008199839236284615249881088960232244362173771618086357015468484058622329792853875623486556440536962622018963571028812361567512543338303270029097668650568557157505516727518899194129711337690149916181315171544007728650573189557450920330185304847113818315407324053319038462084036421763703911550639789000742853672196280903477974533320468368795868580237952218629120080742819551317948157624448298518461509704888027274721574688131594750409732115080498190455803416826949787141316063210686391511681774304792596709376L]\n"}︡{"html":"
"}︡{"done":true}︡ ︠4f66128e-d2a4-427c-8930-3a7bd7cf76c1s︠ a.dtype ︡0372ce07-7e66-4273-9076-10907807b520︡{"stdout":"object\n"}︡{"html":"
"}︡{"done":true}︡ ︠b31c905e-4a1c-4e3f-80c9-96162f7e84a2ss︠ df2 = pd.DataFrame({ 'A' : 1., "Jake's column" : pd.Timestamp('20130102'), 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), 'D' : np.array([1,2,3,4],dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]), 'F' : 'foo' }) df2 ︡b2348683-6997-48e4-9493-8fb0065316f4︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ACDEFJake's column
01.01.01testfoo2013-01-02
11.01.02trainfoo2013-01-02
21.01.03testfoo2013-01-02
31.01.04trainfoo2013-01-02
"}︡{"html":"
"}︡{"done":true}︡ ︠fc632961-26de-4769-b84a-865e8c59d5bfs︠ df2.dtypes ︡3f527129-59ba-4832-8750-4b63bf6adc28︡{"stdout":"A float64\nC float32\nD int32\nE category\nF object\nJake's column datetime64[ns]\ndtype: object\n"}︡{"html":"
"}︡{"done":true}︡ ︠41ca1488-010c-4f05-92ef-8906416d7d93s︠ df2.head(2) ︡9a061728-dbb8-4c3c-a21b-051a524b4810︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ACDEFJake's column
01.01.01testfoo2013-01-02
11.01.02trainfoo2013-01-02
"}︡{"html":"
"}︡{"done":true}︡ ︠8e5cc0af-22ca-4b74-9916-00e2a8cd7516s︠ df.tail(3) ︡d046dd06-b62a-45ca-8296-6204e5788fb6︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-040.767904-0.8579352.2882702.310758
2013-01-050.2750700.7425222.742259-1.300268
2013-01-06-1.4827180.3790421.3522610.173279
"}︡{"html":"
"}︡{"done":true}︡ ︠2d85cfe9-1182-4894-b79d-d18a287d120es︠ df.index ︡8890c51d-9cb4-4f1a-a4e6-1c1abe16ff00︡{"stdout":"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n '2013-01-05', '2013-01-06'],\n dtype='datetime64[ns]', freq='D')\n"}︡{"html":"
"}︡{"done":true}︡ ︠7f385b68-0cad-402c-ad13-9a648e5bb79es︠ df[1] ︡999eeac6-00d3-4a89-8495-4da4c64d3012︡ ︠2b33ac53-44d4-4925-9d41-cb649cb5f144︠ df[df.index[1]] # learning curve is steep; ︡68a031b8-8343-431a-8870-a88973ea88ff︡ ︠bef9d760-a0d5-43aa-8575-983c31bf5b70s︠ df[:1] ︡087e1343-ab45-47dc-bffb-890bcfbe121e︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.007550.8634930.212264
"}︡{"html":"
"}︡{"done":true}︡ ︠d77bb043-c4b8-4dca-b685-ff499f5d606fs︠ df[:3] ︡75052a0b-85ab-40ee-ab5e-a30e4c21998d︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
"}︡{"html":"
"}︡{"done":true}︡ ︠b6e3d647-a01d-44d8-9ec6-6f432a1f6a9fs︠ df.columns ︡de7942a5-4d77-4ee0-95ca-47c49d9a3401︡{"stdout":"Index([u'A', u'B', u'C', u'D'], dtype='object')\n"}︡{"html":"
"}︡{"done":true}︡ ︠e6bfbb3e-1a69-476c-93c0-30c110223985s︠ df.values ︡39d86a88-7951-4836-ab27-e119c17c5b6c︡{"stdout":"[[ 1.09140566 2.27443272 -0.0519728 -1.46711534]\n [ 0.81694772 -0.92729441 0.9847454 -1.04465081]\n [ 1.76427825 -0.53356165 -0.62657329 -1.76661059]\n [ 0.76790378 -0.85793508 2.28827014 2.3107576 ]\n [ 0.27506969 0.7425217 2.74225875 -1.30026817]\n [-1.48271814 0.3790422 1.35226067 0.17327937]]\n"}︡{"html":"
"}︡{"done":true}︡ ︠6edf5a6a-8e07-4916-9219-9f5a345a8a63s︠ df ︡76b98c3c-fb35-478f-8a8f-8d99e9326917︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
2013-01-04-0.5210962.0338600.1966871.718198
2013-01-050.1409100.5795460.0024770.782339
2013-01-06-0.975994-1.1384171.484711-0.831980
"}︡{"html":"
"}︡{"done":true}︡ ︠4d042bb8-7243-4716-b341-598c7260b1a4s︠ df.describe() ︡da4f9193-9d16-47ad-8176-5c64e796035a︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
count6.0000006.0000006.0000006.000000
mean0.173825-0.1485350.2981240.173461
std1.0223741.7262311.3437591.091978
min-0.975994-3.007550-2.152061-1.282658
25%-0.355594-0.7932210.051029-0.570919
50%0.1567940.3206740.5300900.327434
75%0.1957930.5344051.2609520.697406
max2.0229552.0338601.4847111.718198
"}︡{"html":"
"}︡{"done":true}︡ ︠4ce91356-8e9e-4ddf-9e7c-595c42f70cc0s︠ df2 ︡3a804da5-4b78-4201-b5a5-1c5a709c5c5f︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ACDEFJake's column
01.01.01testfoo2013-01-02
11.01.02trainfoo2013-01-02
21.01.03testfoo2013-01-02
31.01.04trainfoo2013-01-02
"}︡{"html":"
"}︡{"done":true}︡ ︠7cc0aa8f-5755-42af-892e-54abeea9340as︠ df2.describe() ︡ea9760f1-0a29-4176-9e3a-d65a5b397ea0︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ACD
count4.04.04.000000
mean1.01.02.500000
std0.00.01.290994
min1.01.01.000000
25%1.01.01.750000
50%1.01.02.500000
75%1.01.03.250000
max1.01.04.000000
"}︡{"html":"
"}︡{"done":true}︡ ︠c3ba03bb-c8b5-4701-bec1-3164659c580ds︠ df2.T ︡c8c148ae-b30f-4144-89d3-6947b2fe7121︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
A1111
C1111
D1234
Etesttraintesttrain
Ffoofoofoofoo
Jake's column2013-01-02 00:00:002013-01-02 00:00:002013-01-02 00:00:002013-01-02 00:00:00
"}︡{"html":"
"}︡{"done":true}︡ ︠67ebc463-d805-4c68-ba91-a0fa13144267s︠ df.T ︡70c6e771-e1f0-425a-b476-27173c4b3b5b︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
2013-01-01 00:00:002013-01-02 00:00:002013-01-03 00:00:002013-01-04 00:00:002013-01-05 00:00:002013-01-06 00:00:00
A1.0914060.8169481.7642780.7679040.275070-1.482718
B2.274433-0.927294-0.533562-0.8579350.7425220.379042
C-0.0519730.984745-0.6265732.2882702.7422591.352261
D-1.467115-1.044651-1.7666112.310758-1.3002680.173279
"}︡{"html":"
"}︡{"done":true}︡ ︠83785cf6-978c-49cf-9765-548eefbccf48s︠ df ︡d6744b8b-08c9-4d29-9d09-6463fb2327c7︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
2013-01-04-0.5210962.0338600.1966871.718198
2013-01-050.1409100.5795460.0024770.782339
2013-01-06-0.975994-1.1384171.484711-0.831980
"}︡{"html":"
"}︡{"done":true}︡ ︠30123b3d-8e8e-4731-9b4b-dd629b56a9e0s︠ df['D'] ︡444b7116-0e92-40c5-9a43-c2f4ec860afe︡{"stdout":"2013-01-01 0.212264\n2013-01-02 0.442605\n2013-01-03 -1.282658\n2013-01-04 1.718198\n2013-01-05 0.782339\n2013-01-06 -0.831980\nFreq: D, Name: D, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠5338cd0b-e95f-4abf-a07a-5c509d306b8cs︠ df2 ︡823fd291-84e3-4e6a-9833-a4b77a0d5137︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ACDEFJake's column
01.01.01testfoo2013-01-02
11.01.02trainfoo2013-01-02
21.01.03testfoo2013-01-02
31.01.04trainfoo2013-01-02
"}︡{"html":"
"}︡{"done":true}︡ ︠36156838-bf2a-48a1-acbe-1f98cc2e92bds︠ df2["E"] ︡02b91f0f-88e8-43fb-9722-f4adb915976c︡{"stdout":"0 test\n1 train\n2 test\n3 train\nName: E, dtype: category\nCategories (2, object): [test, train]\n"}︡{"html":"
"}︡{"done":true}︡ ︠8a033c3b-eb37-4609-bf53-a6031952b119s︠ df2.E ︡6eb96622-b6db-4567-b208-15a186518fe5︡{"stdout":"0 test\n1 train\n2 test\n3 train\nName: E, dtype: category\nCategories (2, object): [test, train]\n"}︡{"html":"
"}︡{"done":true}︡ ︠1ff10011-7667-4b89-9448-709714d8e688s︠ df2["Jake's column"] ︡325b4799-4458-41d3-92b1-90cef64b3277︡{"stdout":"0 2013-01-02\n1 2013-01-02\n2 2013-01-02\n3 2013-01-02\nName: Jake's column, dtype: datetime64[ns]\n"}︡{"html":"
"}︡{"done":true}︡ ︠636b3542-6678-45ee-b0a1-2db08aaf6732s︠ df.A ︡6937af41-cc8d-45d4-b1be-094b555954a9︡{"stdout":"2013-01-01 1.091406\n2013-01-02 0.816948\n2013-01-03 1.764278\n2013-01-04 0.767904\n2013-01-05 0.275070\n2013-01-06 -1.482718\nFreq: D, Name: A, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠8673b39a-3b43-4a38-928f-96a6d269f83cs︠ df[0:3] ︡a38e3022-45f0-4db7-8981-2280ffb85bb3︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-011.0914062.274433-0.051973-1.467115
2013-01-020.816948-0.9272940.984745-1.044651
2013-01-031.764278-0.533562-0.626573-1.766611
"}︡{"html":"
"}︡{"done":true}︡ ︠4fe963ca-622b-4dee-9199-baf1ec427216s︠ df['20130102':'20130104'] ︡ee1ef12e-4123-4912-89c2-0292989c25db︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-020.816948-0.9272940.984745-1.044651
2013-01-031.764278-0.533562-0.626573-1.766611
2013-01-040.767904-0.8579352.2882702.310758
"}︡{"html":"
"}︡{"done":true}︡ ︠8745d009-dae8-459e-8d56-489798145a07s︠ df.loc[dates[0]] ︡492326ee-c6a2-4095-ac52-7fcf101c5f21︡{"stdout":"A 1.091406\nB 2.274433\nC -0.051973\nD -1.467115\nName: 2013-01-01 00:00:00, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠d61adede-2af5-4694-9f1e-1665c276ebd4s︠ df ︡98c3c5f2-a9b0-404b-a74f-5e64e12fe4d3︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
2013-01-04-0.5210962.0338600.1966871.718198
2013-01-050.1409100.5795460.0024770.782339
2013-01-06-0.975994-1.1384171.484711-0.831980
"}︡{"html":"
"}︡{"done":true}︡ ︠c3c8701a-7d6a-47f9-a6fc-6214e5cd094fs︠ df[df.A > 0] ︡df3aa24a-42c0-45da-9a42-e2f3abd8ff4f︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-010.203499-3.0075500.8634930.212264
2013-01-020.1726770.2423671.3934390.442605
2013-01-032.0229550.398982-2.152061-1.282658
2013-01-050.1409100.5795460.0024770.782339
"}︡{"html":"
"}︡{"done":true}︡ ︠cd8f7677-3a70-498c-ad1c-29d26b09db32s︠ df.loc[:,['A','B']] ︡50c24f99-eef7-4cd1-b944-ff60295188b0︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AB
2013-01-011.0914062.274433
2013-01-020.816948-0.927294
2013-01-031.764278-0.533562
2013-01-040.767904-0.857935
2013-01-050.2750700.742522
2013-01-06-1.4827180.379042
"}︡{"html":"
"}︡{"done":true}︡ ︠86d03cc4-2a0d-4a57-8f0d-064fe0336d88s︠ df.loc['20130102':'20130104',['A','B']] ︡8e3724c5-df76-4978-9662-64f851e824ca︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AB
2013-01-020.816948-0.927294
2013-01-031.764278-0.533562
2013-01-040.767904-0.857935
"}︡{"html":"
"}︡{"done":true}︡ ︠22014bad-1f8e-4f0f-b86f-c424fb857c71s︠ df.loc['20130102',['A','B']] ︡ebc43ef1-d4ad-4a53-8efd-cb7c41c80ca9︡{"stdout":"A 0.816948\nB -0.927294\nName: 2013-01-02 00:00:00, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠1467da36-7f35-4fe2-9be0-3754738c54dds︠ df.loc[dates[0],'A'] ︡9aa9e596-9f3b-444e-af27-df2e7d9b07a5︡{"html":"
$\\displaystyle 1.09140566006$
"}︡{"done":true}︡ ︠fd6ea7fd-fc23-4bb4-a8cc-d5250d53f16cs︠ df.at[dates[0],'A'] ︡f9b5c692-dd9f-4240-a391-91eb6fe0c55a︡{"html":"
$\\displaystyle 1.09140566006$
"}︡{"done":true}︡ ︠d55a4d68-5b4a-498a-9c75-bb7cc658b66bs︠ df.iloc[3] ︡234b47df-d75a-4b25-8362-76d89f9ecf6e︡{"stdout":"A 0.767904\nB -0.857935\nC 2.288270\nD 2.310758\nName: 2013-01-04 00:00:00, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠0e4a8af8-1013-44e1-8aa5-dc64523da3bfs︠ df.iloc[3:5,0:2] ︡8b018542-cf64-41e5-9ef3-00481110e9e3︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AB
2013-01-040.767904-0.857935
2013-01-050.2750700.742522
"}︡{"html":"
"}︡{"done":true}︡ ︠cd131eea-f6d8-4b63-a732-bca5ec3f1de4s︠ df.iloc[[1,2,4],[0,2]] ︡a6bf9259-9c87-4030-a42f-a8618fe40ec1︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AC
2013-01-020.8169480.984745
2013-01-031.764278-0.626573
2013-01-050.2750702.742259
"}︡{"html":"
"}︡{"done":true}︡ ︠dd4e491d-90c8-4bad-b441-e5330401f94fs︠ df.iloc[1:3,:] ︡afaf805c-3e3d-4282-9ea8-693b187cddd2︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-020.816948-0.9272940.984745-1.044651
2013-01-031.764278-0.533562-0.626573-1.766611
"}︡{"html":"
"}︡{"done":true}︡ ︠68df5d73-703f-454d-87b9-41044745fc46s︠ df.iloc[:,1:3] ︡036e3071-1110-4f1a-a8b9-c36bc9abfa53︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
BC
2013-01-012.274433-0.051973
2013-01-02-0.9272940.984745
2013-01-03-0.533562-0.626573
2013-01-04-0.8579352.288270
2013-01-050.7425222.742259
2013-01-060.3790421.352261
"}︡{"html":"
"}︡{"done":true}︡ ︠ae8e00b7-9c29-4550-886b-6d7ac91d1d3es︠ df.iloc[1,1] ︡dbf8f50b-a903-4636-8997-adbb7c7a0b21︡{"html":"
$\\displaystyle -0.927294411026$
"}︡{"done":true}︡ ︠93356d9a-6e4a-4b0c-92cc-1bde42f3a392s︠ df.iat[1,1] ︡c7fe73ff-7510-4b58-be33-3ce15372d0a9︡{"html":"
$\\displaystyle -0.927294411026$
"}︡{"done":true}︡ ︠487c56f2-16b3-45f4-92e5-a9daca95a197s︠ df[df.A > 0] ︡99b34080-68ac-48fe-864e-929618b71ae3︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-011.0914062.274433-0.051973-1.467115
2013-01-020.816948-0.9272940.984745-1.044651
2013-01-031.764278-0.533562-0.626573-1.766611
2013-01-040.767904-0.8579352.2882702.310758
2013-01-050.2750700.7425222.742259-1.300268
"}︡{"html":"
"}︡{"done":true}︡ ︠8ce35d46-8b8b-4a36-b54a-1ef1f61a6030s︠ df[df > 0] ︡2e44261c-5a1a-4c2d-bdb3-500444c8f865︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
2013-01-011.0914062.274433NaNNaN
2013-01-020.816948NaN0.984745NaN
2013-01-031.764278NaNNaNNaN
2013-01-040.767904NaN2.2882702.310758
2013-01-050.2750700.7425222.742259NaN
2013-01-06NaN0.3790421.3522610.173279
"}︡{"html":"
"}︡{"done":true}︡ ︠b107d869-b14a-4668-97c9-489330557035s︠ df2 = df.copy() df2['E'] = ['one', 'one','two','three','four','three'] df2 ︡748db520-3975-4149-acac-30ce44536b45︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDE
2013-01-011.0914062.274433-0.051973-1.467115one
2013-01-020.816948-0.9272940.984745-1.044651one
2013-01-031.764278-0.533562-0.626573-1.766611two
2013-01-040.767904-0.8579352.2882702.310758three
2013-01-050.2750700.7425222.742259-1.300268four
2013-01-06-1.4827180.3790421.3522610.173279three
"}︡{"html":"
"}︡{"done":true}︡ ︠a2c7c33e-699d-4840-821e-27646613115as︠ df2[df2['E'].isin(['one','four'])] ︡ad6a9071-788f-4d7a-b965-872e17eefb20︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDE
2013-01-011.0914062.274433-0.051973-1.467115one
2013-01-020.816948-0.9272940.984745-1.044651one
2013-01-050.2750700.7425222.742259-1.300268four
"}︡{"html":"
"}︡{"done":true}︡ ︠5a458808-bf06-4d26-a63e-eb4669bf5755s︠ s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6)) s1 ︡8974fd50-e352-48f7-9260-fa196f30cfca︡{"stdout":"2013-01-02 1\n2013-01-03 2\n2013-01-04 3\n2013-01-05 4\n2013-01-06 5\n2013-01-07 6\nFreq: D, dtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠c0bb5197-8385-4d31-9dfb-1fe5fef84e58s︠ df['F'] = s1 df ︡c02f207e-2ce7-4d4d-8d95-449f9c715834︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-011.0914062.274433-0.051973-1.467115NaN
2013-01-020.816948-0.9272940.984745-1.0446511.0
2013-01-031.764278-0.533562-0.626573-1.7666112.0
2013-01-040.767904-0.8579352.2882702.3107583.0
2013-01-050.2750700.7425222.742259-1.3002684.0
2013-01-06-1.4827180.3790421.3522610.1732795.0
"}︡{"html":"
"}︡{"done":true}︡ ︠94d01941-8bb0-4bf6-b892-59ca645c9abcs︠ df.at[dates[0],'A'] = 0 df ︡7cd876ab-692a-4423-b902-16218c2fec29︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000002.274433-0.051973-1.467115NaN
2013-01-020.816948-0.9272940.984745-1.0446511.0
2013-01-031.764278-0.533562-0.626573-1.7666112.0
2013-01-040.767904-0.8579352.2882702.3107583.0
2013-01-050.2750700.7425222.742259-1.3002684.0
2013-01-06-1.4827180.3790421.3522610.1732795.0
"}︡{"html":"
"}︡{"done":true}︡ ︠7b6b22cc-a1ac-4c53-885c-b515dfdd0d5cs︠ df.iat[0,1] = 0 df ︡620a0f01-04b4-433d-ac11-29bb8fca2728︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.051973-1.467115NaN
2013-01-020.816948-0.9272940.984745-1.0446511.0
2013-01-031.764278-0.533562-0.626573-1.7666112.0
2013-01-040.767904-0.8579352.2882702.3107583.0
2013-01-050.2750700.7425222.742259-1.3002684.0
2013-01-06-1.4827180.3790421.3522610.1732795.0
"}︡{"html":"
"}︡{"done":true}︡ ︠9e4d2dc8-e233-49c9-8dc4-4bf7d1731ddbs︠ df.loc[:,'D'] = np.array([5] * len(df)) df ︡1f6b04be-4eb3-4f87-8a60-9b818a5823ef︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.0519735NaN
2013-01-020.816948-0.9272940.98474551.0
2013-01-031.764278-0.533562-0.62657352.0
2013-01-040.767904-0.8579352.28827053.0
2013-01-050.2750700.7425222.74225954.0
2013-01-06-1.4827180.3790421.35226155.0
"}︡{"html":"
"}︡{"done":true}︡ ︠bef45ac5-0169-485d-a9ca-de51897ec3d9s︠ df2 = df.copy() df2[df2 > 0] = -df2 df2 ︡be6b95bf-d1a3-4db4-a234-63c16249aeb4︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.051973-5NaN
2013-01-02-0.816948-0.927294-0.984745-5-1.0
2013-01-03-1.764278-0.533562-0.626573-5-2.0
2013-01-04-0.767904-0.857935-2.288270-5-3.0
2013-01-05-0.275070-0.742522-2.742259-5-4.0
2013-01-06-1.482718-0.379042-1.352261-5-5.0
"}︡{"html":"
"}︡{"done":true}︡ ︠13cff3db-6155-4ecc-966c-3b590004bf4fs︠ df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) df1.loc[dates[0]:dates[1],'E'] = 1 df1 ︡aaeb8bcd-1fc9-4f2d-a0fb-fd78915a6833︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDFE
2013-01-010.0000000.000000-0.0519735NaN1.0
2013-01-020.816948-0.9272940.98474551.01.0
2013-01-031.764278-0.533562-0.62657352.0NaN
2013-01-040.767904-0.8579352.28827053.0NaN
"}︡{"html":"
"}︡{"done":true}︡ ︠88488933-a58e-46bc-aa30-61a7585dea3fss︠ df1.dropna(how='any') ︡012092c7-7279-469b-bf6c-215cf75d0e3c︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDFE
2013-01-020.816948-0.9272940.98474551.01.0
"}︡︡{"html":"
"}︡{"done":true} ︠d254ffda-338a-4a4a-b768-6d13aa576f1fs︠ df1.fillna(value=5) ︡751588dc-fb52-4ab8-86c6-be836c3be05a︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDFE
2013-01-010.0000000.000000-0.05197355.01.0
2013-01-020.816948-0.9272940.98474551.01.0
2013-01-031.764278-0.533562-0.62657352.05.0
2013-01-040.767904-0.8579352.28827053.05.0
"}︡{"html":"
"}︡{"done":true}︡ ︠1f1ab30a-ae3d-44bc-9547-57f871c9fbc6s︠ pd.isnull(df1) ︡0825aa06-1eb5-4a5e-aead-3cc491d1ffa1︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDFE
2013-01-01FalseFalseFalseFalseTrueFalse
2013-01-02FalseFalseFalseFalseFalseFalse
2013-01-03FalseFalseFalseFalseFalseTrue
2013-01-04FalseFalseFalseFalseFalseTrue
"}︡{"html":"
"}︡{"done":true}︡ ︠b56158c2-eb0d-4a0f-abee-6414ecc7f649s︠ df ︡880833dc-de04-4912-8c97-e191899ae397︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.0519735NaN
2013-01-020.816948-0.9272940.98474551.0
2013-01-031.764278-0.533562-0.62657352.0
2013-01-040.767904-0.8579352.28827053.0
2013-01-050.2750700.7425222.74225954.0
2013-01-06-1.4827180.3790421.35226155.0
"}︡{"html":"
"}︡{"done":true}︡ ︠095e60d2-8344-4dd5-9174-f9717fc874cas︠ df.mean() ︡9125b659-013d-4b98-9ea3-93214f848360︡{"stdout":"A 0.356914\nB -0.199538\nC 1.114831\nD 5.000000\nF 3.000000\ndtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠ffa501bb-8521-48c8-8197-417caa0df013︠ df.mean(1) ︡c9e88f20-2b5e-4ca7-91c7-8ced81db62c8︡{"stdout":"2013-01-01 1.237007\n2013-01-02 1.374880\n2013-01-03 1.520829\n2013-01-04 2.039648\n2013-01-05 2.551970\n2013-01-06 2.049717\nFreq: D, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠a2d0c62b-bfdf-4856-be56-ba6d2d7805dds︠ s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) s ︡2e93acce-2d2c-4317-b424-4826fad1650b︡{"stdout":"2013-01-01 NaN\n2013-01-02 NaN\n2013-01-03 1.0\n2013-01-04 3.0\n2013-01-05 5.0\n2013-01-06 NaN\nFreq: D, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠94eb0352-069b-468a-b2ac-e3e51c554120s︠ df.sub(s, axis='index') ︡4874c108-de37-4611-b105-29bfe4eddbe2︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-01NaNNaNNaNNaNNaN
2013-01-02NaNNaNNaNNaNNaN
2013-01-030.764278-1.533562-1.6265734.01.0
2013-01-04-2.232096-3.857935-0.7117302.00.0
2013-01-05-4.724930-4.257478-2.2577410.0-1.0
2013-01-06NaNNaNNaNNaNNaN
"}︡{"html":"
"}︡{"done":true}︡ ︠71b5c328-7412-4efc-998e-5434332f4f06s︠ df ︡f87f1458-f8fb-42be-a283-87c39e5cd058︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.0519735NaN
2013-01-020.816948-0.9272940.98474551.0
2013-01-031.764278-0.533562-0.62657352.0
2013-01-040.767904-0.8579352.28827053.0
2013-01-050.2750700.7425222.74225954.0
2013-01-06-1.4827180.3790421.35226155.0
"}︡{"html":"
"}︡{"done":true}︡ ︠ea86b439-b9f1-4657-ba28-73303ec9fe8ds︠ df.apply(np.cumsum) ︡10f415e9-3548-4800-98fe-049e15d8fae8︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.0519735NaN
2013-01-020.816948-0.9272940.932773101.0
2013-01-032.581226-1.4608560.306199153.0
2013-01-043.349130-2.3187912.594469206.0
2013-01-053.624199-1.5762695.3367282510.0
2013-01-062.141481-1.1972276.6889893015.0
"}︡{"html":"
"}︡{"done":true}︡ ︠ce9c6df0-c4a2-4c48-a0e8-fdf69b0fbd03s︠ df.apply(np.cumsum, axis=1) ︡1ae6abc8-421a-44c7-9c72-fc9919be9087︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDF
2013-01-010.0000000.000000-0.0519734.948027NaN
2013-01-020.816948-0.1103470.8743995.8743996.874399
2013-01-031.7642781.2307170.6041435.6041437.604143
2013-01-040.767904-0.0900312.1982397.19823910.198239
2013-01-050.2750701.0175913.7598508.75985012.759850
2013-01-06-1.482718-1.1036760.2485855.24858510.248585
"}︡{"html":"
"}︡{"done":true}︡ ︠a69f4212-1e7e-4ae2-afce-4353ceb0c67as︠ df.apply(lambda x: x.max() - x.min()) ︡9e52f1a6-1732-4f8d-8254-0aa9936ba00a︡{"stdout":"A 3.246996\nB 1.669816\nC 3.368832\nD 0.000000\nF 4.000000\ndtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠70b4d9b6-6d4e-41b4-b154-f70948a06a07s︠ s = pd.Series(np.random.randint(0, 7, size=10)) s ︡6791c954-3a54-41d9-8aac-251b81f9866a︡{"stdout":"0 2\n1 6\n2 4\n3 3\n4 1\n5 3\n6 6\n7 4\n8 1\n9 4\ndtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠06e72ed5-503a-42d5-878f-eaf8281fdaeds︠ s.value_counts() ︡c986be5f-6649-406a-95fd-66c19f2dbc76︡{"stdout":"3 2\n2 2\n0 2\n6 1\n5 1\n4 1\n1 1\ndtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠9be404d4-33e1-4c7b-be3f-0ac7ce3f16acs︠ s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() ︡b9e477b2-599a-48cc-82e6-f860f794a36b︡{"stdout":"0 a\n1 b\n2 c\n3 aaba\n4 baca\n5 NaN\n6 caba\n7 dog\n8 cat\ndtype: object\n"}︡{"html":"
"}︡{"done":true}︡ ︠7987ee64-8f99-4dbf-bcdc-69e3f98abc84s︠ df = pd.DataFrame(np.random.randn(10, 4)) df ︡2d53da37-bd3a-4333-af10-a30ef265da78︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
00.489649-0.9301060.5346820.583658
10.201224-0.1036761.076049-0.378711
21.7341291.2703880.1821001.275143
30.756130-1.4696881.139847-1.056633
4-0.210804-1.5766850.379073-0.357527
5-0.762810-1.1078891.040216-0.601039
61.619109-0.869445-0.655173-1.418691
7-1.061251-0.346968-0.057042-1.518861
81.1356851.1334750.1966360.291553
9-0.726244-0.842093-0.265447-0.634778
"}︡{"html":"
"}︡{"done":true}︡ ︠7925fb17-4b4c-4ebc-91a0-00616e44201fs︠ df[:3] ︡5bc8074b-2cf8-4915-9221-8d7705917bd0︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
00.489649-0.9301060.5346820.583658
10.201224-0.1036761.076049-0.378711
21.7341291.2703880.1821001.275143
"}︡{"html":"
"}︡{"done":true}︡ ︠74177153-f477-4134-81ad-dd97390d8548s︠ pieces = [df[:3], df[3:7], df[7:]] pd.concat(pieces) ︡d89970b5-0b4d-431b-aac7-c5966f4c29f9︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
00.489649-0.9301060.5346820.583658
10.201224-0.1036761.076049-0.378711
21.7341291.2703880.1821001.275143
30.756130-1.4696881.139847-1.056633
4-0.210804-1.5766850.379073-0.357527
5-0.762810-1.1078891.040216-0.601039
61.619109-0.869445-0.655173-1.418691
7-1.061251-0.346968-0.057042-1.518861
81.1356851.1334750.1966360.291553
9-0.726244-0.842093-0.265447-0.634778
"}︡{"html":"
"}︡{"done":true}︡ ︠a6a2c3a0-7af6-4424-9468-656c7dbea5bcs︠ left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) print 'left=' left right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) print 'right=' right pd.merge(left, right, on='key') # cartesian product of sets ︡2b69ab71-32e1-46dc-a2b3-af90428c55cf︡{"stdout":"left=\n"}︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
keylval
0foo1
1foo2
"}︡{"html":"
"}︡{"stdout":"right=\n"}︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
keyrval
0foo4
1foo5
"}︡{"html":"
"}︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
keylvalrval
0foo14
1foo15
2foo24
3foo25
"}︡{"html":"
"}︡{"done":true}︡ ︠9028c824-b5d1-44b1-8a60-0ddbb7eb8d5bs︠ df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) df ︡ab920c62-a49e-45ae-ad7e-e8c8afc51d9f︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
00.3574061.244947-1.5054900.647047
10.965902-0.817161-1.0210371.973119
2-0.592771-0.712344-1.2396620.023419
3-0.050144-0.425577-0.4502320.117308
40.4059840.3888421.0206230.377212
50.4292410.4141870.2164480.099873
61.308360-0.131163-0.290972-1.351830
7-0.2588221.8267760.1245041.157286
"}︡{"html":"
"}︡{"done":true}︡ ︠7a7fd8f4-c681-48f5-a3d1-60df8bd7e097s︠ s = df.iloc[3] s ︡7e49fed4-a9e5-498e-bcf5-82179b76d427︡{"stdout":"A -0.050144\nB -0.425577\nC -0.450232\nD 0.117308\nName: 3, dtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠39954a77-18df-496e-b9da-69656c12fcb7s︠ df.append(s, ignore_index=True) ︡fe50772e-372b-4a11-a823-3ef0b89e96bf︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
00.3574061.244947-1.5054900.647047
10.965902-0.817161-1.0210371.973119
2-0.592771-0.712344-1.2396620.023419
3-0.050144-0.425577-0.4502320.117308
40.4059840.3888421.0206230.377212
50.4292410.4141870.2164480.099873
61.308360-0.131163-0.290972-1.351830
7-0.2588221.8267760.1245041.157286
8-0.050144-0.425577-0.4502320.117308
"}︡{"html":"
"}︡{"done":true}︡ ︠65540b46-f601-42fc-b862-a9acdd0d3cfbs︠ df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C' : np.random.randn(8), 'D' : np.random.randn(8)}) df ︡435231d7-ae8e-4234-b109-05803ec604d2︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCD
0fooone-2.0776820.331603
1barone-0.0714000.219208
2footwo1.2424581.252414
3barthree0.963360-1.377083
4footwo-0.4697031.170327
5bartwo0.4137900.358047
6fooone-0.6118310.359070
7foothree0.0183430.790031
"}︡{"html":"
"}︡{"done":true}︡ ︠88e75f7b-39bd-43cd-85c0-e4444c0480ecs︠ df.groupby('A').sum() ︡b2261fee-e761-4810-b8dd-ff60b94a2b44︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
CD
A
bar1.305749-0.799828
foo-1.8984153.903445
"}︡{"html":"
"}︡{"done":true}︡ ︠ac16c61f-0e48-424b-87de-b4f2c1a8ed3bs︠ df.groupby(['A','B']).sum() ︡bcf91510-daee-4c10-8dbc-4e7ea7ce3a79︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
CD
AB
barone-0.0714000.219208
three0.963360-1.377083
two0.4137900.358047
fooone-2.6895140.690673
three0.0183430.790031
two0.7727552.422741
"}︡{"html":"
"}︡{"done":true}︡ ︠888fc5e2-7aa0-44ff-95c2-c0756cd69aa3s︠ tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']])) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) df2 = df[:4] df2 ︡37665c34-f539-46b7-aac2-b64977780d9b︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AB
firstsecond
barone-0.083946-0.246541
two-0.208254-2.175975
bazone0.6584791.221688
two-0.3992170.366461
"}︡︡{"html":"
"}︡{"done":true} ︠8c4bc88d-8c6f-408a-ba72-91d693ddd525s︠ stacked = df2.stack() stacked ︡7f2a7738-7ea2-4583-a331-e7713d46e312︡{"stdout":"first second \nbar one A -0.083946\n B -0.246541\n two A -0.208254\n B -2.175975\nbaz one A 0.658479\n B 1.221688\n two A -0.399217\n B 0.366461\ndtype: float64\n"}︡{"html":"
"}︡{"done":true}︡ ︠8c3f8623-85a3-4098-8bd1-5085d46c5543s︠ stacked.unstack() ︡7545de4b-76c9-4c18-9839-f9307401e7c3︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
AB
firstsecond
barone-0.083946-0.246541
two-0.208254-2.175975
bazone0.6584791.221688
two-0.3992170.366461
"}︡{"html":"
"}︡{"done":true}︡ ︠ecfeea2d-b2ee-4d34-bc9c-e440b562f203s︠ stacked.unstack(1) ︡d51d5a84-4759-4149-b519-46864df1811f︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
secondonetwo
first
barA-0.083946-0.208254
B-0.246541-2.175975
bazA0.658479-0.399217
B1.2216880.366461
"}︡{"html":"
"}︡{"done":true}︡ ︠87653962-a49a-4ed7-b635-8ab5ca2191e7s︠ stacked.unstack(0) ︡e95ecefc-ae98-423b-b358-75e8d3b52d12︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
firstbarbaz
second
oneA-0.0839460.658479
B-0.2465411.221688
twoA-0.208254-0.399217
B-2.1759750.366461
"}︡{"html":"
"}︡{"done":true}︡ ︠a41a856f-681f-4ecb-ac98-058c08c47a0ds︠ df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, 'D' : np.random.randn(12), 'E' : np.random.randn(12)}) df ︡aed45353-4de7-4a5a-86ea-288688aad753︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ABCDE
0oneAfoo0.924358-1.318103
1oneBfoo-0.0138130.135119
2twoCfoo-1.0070860.391596
3threeAbar1.6936270.139658
4oneBbar-0.015281-0.184786
5oneCbar2.120000-0.841796
6twoAfoo-2.7851130.612259
7threeBfoo-0.325130-0.930560
8oneCfoo-0.0190521.161260
9oneAbar0.573002-2.131227
10twoBbar-0.0274900.884262
11threeCbar0.258147-0.192678
"}︡{"html":"
"}︡{"done":true}︡ ︠33dc69cf-4c93-43b8-866e-a4a8333fd592s︠ pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) ︡8fd5f12c-24e8-486c-b7ba-51fdfd682f30︡{"html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Cbarfoo
AB
oneA0.5730020.924358
B-0.015281-0.013813
C2.120000-0.019052
threeA1.693627NaN
BNaN-0.325130
C0.258147NaN
twoANaN-2.785113
B-0.027490NaN
CNaN-1.007086
"}︡{"html":"
"}︡{"done":true}︡{"done":true}︡ ︠3c2289cc-9efe-4a50-b194-f2eb4cf35e10s︠ rng = pd.date_range('1/1/2012', periods=100, freq='S') ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) ts.resample('5Min').sum() ︡8bb2fcc7-e080-4869-a468-d1de190b6467︡{"stdout":"2012-01-01 24920\nFreq: 5T, dtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠d4e1cb2a-c7c7-46b6-bed0-0dffbb885e94s︠ ts_utc = ts.tz_localize('UTC') ts_utc ︡36156487-ea8a-404f-b0de-1136ad4cfbdb︡{"stdout":"2012-01-01 00:00:00+00:00 106\n2012-01-01 00:00:01+00:00 32\n2012-01-01 00:00:02+00:00 281\n2012-01-01 00:00:03+00:00 276\n2012-01-01 00:00:04+00:00 448\n2012-01-01 00:00:05+00:00 207\n2012-01-01 00:00:06+00:00 433\n2012-01-01 00:00:07+00:00 0\n2012-01-01 00:00:08+00:00 81\n2012-01-01 00:00:09+00:00 408\n2012-01-01 00:00:10+00:00 475\n2012-01-01 00:00:11+00:00 37\n2012-01-01 00:00:12+00:00 80\n2012-01-01 00:00:13+00:00 272\n2012-01-01 00:00:14+00:00 496\n2012-01-01 00:00:15+00:00 191\n2012-01-01 00:00:16+00:00 121\n2012-01-01 00:00:17+00:00 476\n2012-01-01 00:00:18+00:00 142\n2012-01-01 00:00:19+00:00 255\n2012-01-01 00:00:20+00:00 492\n2012-01-01 00:00:21+00:00 104\n2012-01-01 00:00:22+00:00 31\n2012-01-01 00:00:23+00:00 128\n2012-01-01 00:00:24+00:00 413\n2012-01-01 00:00:25+00:00 178\n2012-01-01 00:00:26+00:00 293\n2012-01-01 00:00:27+00:00 273\n2012-01-01 00:00:28+00:00 393\n2012-01-01 00:00:29+00:00 284\n ... \n2012-01-01 00:01:10+00:00 17\n2012-01-01 00:01:11+00:00 408\n2012-01-01 00:01:12+00:00 459\n2012-01-01 00:01:13+00:00 329\n2012-01-01 00:01:14+00:00 255\n2012-01-01 00:01:15+00:00 187\n2012-01-01 00:01:16+00:00 277\n2012-01-01 00:01:17+00:00 97\n2012-01-01 00:01:18+00:00 352\n2012-01-01 00:01:19+00:00 163\n2012-01-01 00:01:20+00:00 132\n2012-01-01 00:01:21+00:00 348\n2012-01-01 00:01:22+00:00 130\n2012-01-01 00:01:23+00:00 405\n2012-01-01 00:01:24+00:00 359\n2012-01-01 00:01:25+00:00 308\n2012-01-01 00:01:26+00:00 412\n2012-01-01 00:01:27+00:00 485\n2012-01-01 00:01:28+00:00 430\n2012-01-01 00:01:29+00:00 85\n2012-01-01 00:01:30+00:00 108\n2012-01-01 00:01:31+00:00 462\n2012-01-01 00:01:32+00:00 61\n2012-01-01 00:01:33+00:00 206\n2012-01-01 00:01:34+00:00 383\n2012-01-01 00:01:35+00:00 284\n2012-01-01 00:01:36+00:00 401\n2012-01-01 00:01:37+00:00 318\n2012-01-01 00:01:38+00:00 410\n2012-01-01 00:01:39+00:00 314\nFreq: S, dtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠f9cbc551-a072-4595-89d8-df5acf60f084s︠ ts_utc.tz_convert('US/Eastern') ︡fb393b5f-23b9-4277-9b68-d2421d5f3575︡{"stdout":"2011-12-31 19:00:00-05:00 106\n2011-12-31 19:00:01-05:00 32\n2011-12-31 19:00:02-05:00 281\n2011-12-31 19:00:03-05:00 276\n2011-12-31 19:00:04-05:00 448\n2011-12-31 19:00:05-05:00 207\n2011-12-31 19:00:06-05:00 433\n2011-12-31 19:00:07-05:00 0\n2011-12-31 19:00:08-05:00 81\n2011-12-31 19:00:09-05:00 408\n2011-12-31 19:00:10-05:00 475\n2011-12-31 19:00:11-05:00 37\n2011-12-31 19:00:12-05:00 80\n2011-12-31 19:00:13-05:00 272\n2011-12-31 19:00:14-05:00 496\n2011-12-31 19:00:15-05:00 191\n2011-12-31 19:00:16-05:00 121\n2011-12-31 19:00:17-05:00 476\n2011-12-31 19:00:18-05:00 142\n2011-12-31 19:00:19-05:00 255\n2011-12-31 19:00:20-05:00 492\n2011-12-31 19:00:21-05:00 104\n2011-12-31 19:00:22-05:00 31\n2011-12-31 19:00:23-05:00 128\n2011-12-31 19:00:24-05:00 413\n2011-12-31 19:00:25-05:00 178\n2011-12-31 19:00:26-05:00 293\n2011-12-31 19:00:27-05:00 273\n2011-12-31 19:00:28-05:00 393\n2011-12-31 19:00:29-05:00 284\n ... \n2011-12-31 19:01:10-05:00 17\n2011-12-31 19:01:11-05:00 408\n2011-12-31 19:01:12-05:00 459\n2011-12-31 19:01:13-05:00 329\n2011-12-31 19:01:14-05:00 255\n2011-12-31 19:01:15-05:00 187\n2011-12-31 19:01:16-05:00 277\n2011-12-31 19:01:17-05:00 97\n2011-12-31 19:01:18-05:00 352\n2011-12-31 19:01:19-05:00 163\n2011-12-31 19:01:20-05:00 132\n2011-12-31 19:01:21-05:00 348\n2011-12-31 19:01:22-05:00 130\n2011-12-31 19:01:23-05:00 405\n2011-12-31 19:01:24-05:00 359\n2011-12-31 19:01:25-05:00 308\n2011-12-31 19:01:26-05:00 412\n2011-12-31 19:01:27-05:00 485\n2011-12-31 19:01:28-05:00 430\n2011-12-31 19:01:29-05:00 85\n2011-12-31 19:01:30-05:00 108\n2011-12-31 19:01:31-05:00 462\n2011-12-31 19:01:32-05:00 61\n2011-12-31 19:01:33-05:00 206\n2011-12-31 19:01:34-05:00 383\n2011-12-31 19:01:35-05:00 284\n2011-12-31 19:01:36-05:00 401\n2011-12-31 19:01:37-05:00 318\n2011-12-31 19:01:38-05:00 410\n2011-12-31 19:01:39-05:00 314\nFreq: S, dtype: int64\n"}︡{"html":"
"}︡{"done":true}︡ ︠9c5f2f6f-5fcf-415c-aafe-086bf7b0570cs︠ ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) ts = ts.cumsum() ts.plot() ︡8e50bb1b-08e3-4c44-8f75-bd906c28826a︡{"file":{"filename":"/projects/4d0f1d1d-7b70-4fc7-88a4-3b4a54f77b18/.sage/temp/compute7-us/12786/tmp_dZo_1U.svg","show":true,"text":null,"uuid":"a1ab085e-eae1-4f21-8ffb-398df7bd0a60"},"once":false}︡{"html":"
"}︡{"done":true}︡ ︠cd134afe-b0d5-4fdc-bf30-c929f88fd6ef︠