2016-04-29

William A. Stein
4/29/2016

Contents

(1 Math 480: Open Source Mathematical Software]
1.0.1 2010-04-291 o

M2 Pland
(1.3 1. Example involving rounding errorf
[1.4 2. Assumptions - sometimes needed when integrating|

--

1 Math 480: Open Source Mathematical Software
1.0.1 2016-04-29
1.0.2 William Stein

1.1 Lectures 15: Symbolic Calculus (part 3/3)

1.2 Plan:
e reminder: homework and peer grading due today at 6pm.
e start screencast
e talk for a few minutes about something

e finish up and polish your homework and peer grading, and ask questions.

1.3 1. Example involving rounding error

10e100 + 1 - 10e100
0.000000000000000

W N P e

1 Math 480: Open Source Mathematical Software

107100 + 1 - 10%100
1

a = exp(100+102(-20)) + 1 - exp(100)

show(a)

10000000000000000000001 100
©100000000000000000000 — @ +1

N(a)
0.000000000000000

F = ReallIntervalField(200); F
Real Interval Field with 200 bits of precision

F(a)
2.68811714181613544842607613728909426472e23

1.4 2. Assumptions - sometimes needed when integrating

/rx”dx

. .y xntl . Sy
the answer is usually easy it's { 7. However, when n =1, it's log(x).

E.g., when computing

var('x, n")

integral(x*n, x)

(x, n)

Error in lines 2-2

Traceback (most recent call last):

File ¢‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/smc_sagews/sage_server.py’’, line 905, in execute

exec compile(block+'\n', "', 'single') in namespace, locals

File “¢’’, line 1, in <module>

File ‘‘/projects/sage/sage-6.10/1local/lib/python2.7/site-
packages/sage/misc/functional.py’’, line 664, in integral

return x.integral(*args, xxkwds)

File ‘‘sage/symbolic/expression.pyx’’, line 11352, in
sage.symbolic.expression.Expression.integral
(/projects/sage/sage-6.10/src/build/cythonized/sage/symbolic/expression.cpp:60288)

return integral(self, *args, *xxkwds)

File ‘¢/projects/sage/sage-6.10/1local/lib/python2.7/site-
packages/sage/symbolic/integration/integral.py’’, line 759, in integrate

return indefinite_integral (expression, v, hold=hold)

File ‘‘sage/symbolic/function.pyx’’, line 988, in
sage.symbolic.function.BuiltinFunction.__call__
(/projects/sage/sage-6.10/src/build/cythonized/sage/symbolic/function.cpp:11343)

res = super(BuiltinFunction, self).__call__(

1 Math 480: Open Source Mathematical Software

File ‘‘sage/symbolic/function.pyx’’, line 508, in sage.symbolic.function.Function.__call__
(/projects/sage/sage-6.10/src/build/cythonized/sage/symbolic/function.cpp:7211)
res = g_function_eval2(self._serial, (<Expression>args[0])._gobj,
File ¢‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/sage/symbolic/integration/integral.py’’, line 85, in _eval_
res = integrator(f, x)
File ¢‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/sage/symbolic/integration/external.py’’, line 22, in maxima_integrator
result = maxima.sr_integral(expression,v)
File ‘¢/projects/sage/sage-6.10/1local/lib/python2.7/site-
packages/sage/interfaces/maxima_lib.py’’, line 784, in sr_integral
self._missing_assumption(s)
File ‘‘/projects/sage/sage-6.10/1local/lib/python2.7/site-
packages/sage/interfaces/maxima_lib.py’’, line 993, in _missing_assumption
raise ValueError(outstr)
ValueError: Computation failed since Maxima requested additional constraints; using the
"assume' command before evaluation *mayx help (example of legal syntax is 'assume(n>Q)',
see ‘assume?’ for more details)
Is n equal to -1?

forget ()
assume (n==-1)
integral(x*n, x)
log(x)
forget(n==-1)
assume(n!=-1)
show(integral (x*n, x))
Xn+1
n+1

1.5 3. Sympy

Sympy is a Python library for symbolic calculus, which can be used independently from Sage, and is
also in Sage. See http://www.sympy.org/en/index.html

Integration with Sage could be improved.

But being able to use Sympy without Sage is potentially very valuable (see Hamster). Or it can
cause you to waste a lot of time (see Chris Swierczewski).

On Sage support list, here about sympy as follows:

1. I've been using Sympy, but switched to Sage since Sympy is too slow or missing something.

2. I've been using Sage to compute this integral (or series) and it's wrong! There is a bug in
Maxima Use algorithm="sympy’, since Sympy is right.

from sympy import Limit, symbols, cos
x = symbols('x")

1 Math 480: Open Source Mathematical Software

expr = Limit((cos(x) - 1)/x, x, @)
print expr
Limit((cos(x) - 1)/x, x, @)

expr.doit() # really??
0

show (expr) # this doesn't work. sigh.
Limit((cos(x) - 1)/x, x, @)

reset() # since we overwrote x above

m = integrate(sin(x)*cos(x)*tan(x), x); show(m) # uses maxima
1 1
Ex——zsm(2x)

s = integrate(sin(x)*cos(x)*tan(x), x, algorithm='sympy'); show(s) \
uses sympy instead under the hood!

1 _ 1
—E'GB(X)QH(X)+-§X

show (s-m)

-—% cos(x)gn(x)+—%rgn(2x)

(s - m).simplify_full()
0

bool (s==m)
True

	Math 480: Open Source Mathematical Software
	2016-04-29
	William Stein

	Lectures 15: Symbolic Calculus (part 3/3)
	Plan:
	1. Example involving rounding error
	2. Assumptions - sometimes needed when integrating
	3. Sympy

