.update at 0x7f7ba52eb280> with 2 widgets\n",
" wh…"
]
},
"execution_count": 10,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5b931a213c5479f9a3bdee120c4638c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'colorscale': [[0.0, 'lightblue'], [1.0, 'lightblue']],\n",
" 'type': 'su…"
]
},
"execution_count": 10,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"show_critpts_interactive(f, (x, 0, 8), (y, 0, 8), (z, 0, 6), critpt_dict, scale=(1,1,1))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Critical points of a function $f\\!: \\mathbb{R}^n \\to \\mathbb{R}$\n",
"\n",
"\n",
"**Definition:** Let $f\\!: \\mathbb{R}^n \\to \\mathbb{R}$. A point $(x^*, y^*, \\dotsc)$ is a critical point of $f$ if every partial derivative of $f$ (i.e. $\\frac{\\partial f}{\\partial x}$, $\\frac{\\partial f}{\\partial y}$, etc...) is either $0$ or undefined at that point. \n",
"\n",
"Note: We will only focus on the kind of critical points at which all of the partial derivatives are $0$. \n",
"\n",
"Just as in the single-variable case, there is a theorem that says that ***any local maximum or minimum of $f$ must occur at a critical point.*** \n",
"\n",
"(If $f$ is defined on some closed domain, then local maxima/minima can also occur at the boundary points of the domain. This can be much more complicated in the multivariable setting, since the domain isn't just an interval. So we will not consider this case either.) \n",
"\n",
"
\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Conclusions\n",
"\n",
"\n",
"For a function $f\\!:\\mathbb{R}^n \\to \\mathbb{R}$... \n",
"\n",
"- A critical point of $f$ is a point in the domain of $f$ at which every partial derivative of $f$ is either $0$ or undefined. (We will only focus on the kind where the partial derivatives are $0$.) Each local maximum and minimum of $f$ must occur at a critical point. \n",
"\n",
"- Therefore, to find the critical points of $f$, take all of its partial derivatives $\\frac{\\partial f}{\\partial x}$, $\\frac{\\partial f}{\\partial y}$, etc, set them all to $0$, and *solve simultaneously*. Note that this is very similar to finding the *equilibrium points* of a system of differential equations. \n",
"\n",
"- A critical point of $f$ can be a local maximum, or a local minimum, **or a saddle point**. So, just as in the single-variable case, we need a way to classify critical points. \n",
"\n",
"
\n"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"hide_input": false,
"kernelspec": {
"display_name": "SageMath 9.3",
"language": "sagemath",
"metadata": {
"cocalc": {
"description": "Open-source mathematical software system",
"priority": 10,
"url": "https://www.sagemath.org/"
}
},
"name": "sage-9.3",
"resource_dir": "/ext/jupyter/kernels/sage-9.3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}