Physics 211 Formula Sheet

E1

$\left|\vec{F}_{e}\right|=k \frac{\left|q_{1} q_{2}\right|}{r^{2}}$
$\vec{F}_{e}=q \vec{E}$
$\vec{E}=k \frac{Q}{\left|\vec{r}_{P S}\right|^{2}} \hat{r}_{P S}$
\vec{F}_{e} electrostatic force vector
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
q_{1}, q_{2} charge of particles
r distance between particles
\vec{F}_{e} electrostatic force vector
q charge of test particle
\vec{E} electric field vector
\vec{E} Electric field vector at a point P due to a single particle
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
Q charge of source particle
$\vec{r}_{P S}$ position of P relative to source particle
$\hat{r}_{P S}$ unit vector in the direction of $\vec{r}_{P S}$

E2
$\vec{E}=k \frac{2 \vec{p}_{e}}{\left|\vec{r}_{P D}\right|^{3}}$
$\left|\vec{p}_{e}\right|=q s$
$\vec{E}=2 k \frac{\lambda}{\left|\vec{r}_{P N}\right|} \hat{r}_{P N}$
$\vec{E}=(2 \pi k) \sigma \hat{r}_{P N}=\frac{\sigma}{2 \epsilon_{0}} \hat{r}_{P N}$
\vec{E} Electric field vector at a distant point P along a dipole's axis
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
\vec{p}_{e} dipole moment vector
$\vec{r}_{D P}$ position of P relative to dipole's center
\vec{p}_{e} dipole moment vector
q charge of diploe's positive particle
s particle's separation
\vec{E} Electric field vector at a point P by an infinite linear charge dist.
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
λ linear charge density
$\vec{r}_{P N}$ position of P relative to the nearest point on the line
$\hat{r}_{P N}$ unit vector in the direction of $\vec{r}_{P N}$, perpendicularly away from the line
\vec{E} Electric field vector at a point P by an infinite planar charge dist.
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
σ charge per unit area
$\hat{r}_{P N}$ unit vector points perpendicularly away from the plane, at P $\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$

$$
\phi(x, y, z)=\frac{V_{e}(x, y, z)}{q}
$$

$$
\phi=k \frac{Q}{\left|\vec{r}_{P S}\right|}
$$

$$
\Delta \phi=-\int \vec{E} \cdot d \vec{r}
$$

$$
\vec{E}(x, y, z)=\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]=\left[\begin{array}{l}
-\partial \phi / \partial x \\
-\partial \phi / \partial y \\
-\partial \phi / \partial z
\end{array}\right]=-\vec{\nabla} \phi
$$

ϕ electric potential at a point with coordinates x, y, z
V_{e} total electrostatic potential energy
q charge of test particle
ϕ electric potential
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
Q charge of fixed particle
$\vec{r}_{p s}$ position of the observation point, P, relative to the fixed particle
$\Delta \phi$ difference in potential between two points
\vec{E} Electric field vector
$d \vec{r}$ step between the two points
\vec{E} Electric field vector at a point with coordinates x, y, z ϕ electric potential at a point with coordinates x, y, z

E4
$C \equiv\left|\frac{Q}{\Delta \phi}\right|=\epsilon_{0} \frac{A}{S}$

C Capacitance

Q charge of either plate of a capacitor
$\Delta \phi$ difference in potential between the two plates
A Area of one plate
s separation of the plates
$\epsilon_{0}=8.85 \times 10^{-12}$
$u_{E}=\frac{1}{2} \epsilon_{0}|\vec{E}|^{2}=\frac{1}{8 \pi k}|\vec{E}|^{2}$
$U=\frac{1}{2} C(\Delta \phi)^{2}$
u_{E} energy density of an electric field
$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
\vec{E} Electric field vector
U energy stored in the electric field of a capacitor
C capacitance of the capacitor
$\Delta \phi$ difference in potential between the two plates

$\vec{v}_{d}=-\frac{e}{m_{e}} \vec{E} \tau$	\vec{v}_{d} drift velocity of an electron e elementary charge
	m_{e} mass of an electron \vec{E} Electric field vector τ time between collisions
	\vec{J} current density in the neighborhood of a point in a conductor ρ charge per unit volume
$\vec{J}=\rho \vec{v}_{d}=n q \vec{v}_{d}$	\vec{v}_{d} drift velocity n number density (number of carriers per unit volume) q charge of each carrier
$\vec{J}=\sigma_{c} \vec{E}$	\vec{J} current density in the neighborhood of a point in a conductor σ_{c} conductivity \vec{E} Electric field at that point
$\sigma_{c}=\frac{n q^{2} \tau}{m}$	σ_{c} conductivity n number density
	q charge of each carrier τ time between collisions m mass of a carrier
$n=N_{1} \rho_{m} \frac{N_{A}}{M_{A}}$	n number density N_{1} number of electrons per one atom
	ρ_{m} metal's mass density N_{A} Avagadro's number, 6.02×10^{23} M_{A} atomic weight
$\vec{J}_{N}=n \vec{v}$	\vec{J}_{N} number current density
	\vec{v} velocity n number density
$\frac{\Delta N}{\Delta t}=\vec{J}_{N} \cdot \vec{A}$	ΔN change in the number of particles Δt change in time
	\vec{J}_{N} number current density \vec{A} area Vector
	i current
$i \equiv \int_{S} \vec{J} \cdot d \vec{A}$	S surface \vec{J} current density \vec{A} tile vector

$$
\left|\Delta \phi_{\text {wire }}\right|=|\vec{E}| L
$$

$$
R=\frac{|\Delta \phi|}{I}
$$

$$
R=\frac{L}{\sigma_{c} A}
$$

$$
P=I|\Delta \phi|=\frac{|\Delta \phi|^{2}}{R}=I^{2} R
$$

$I(t)=I_{0} e^{-t / R C}$
$|\Delta \phi(t)|=\left|\Delta \phi_{0}\right| e^{-t / R C}$
$Q(t)=Q_{0} e^{-t / R C}$
$\Delta \phi_{\text {wire }}$ potential difference between the ends of a wire
\vec{E} Electric field inside the wire
L Length of wire
R Resistance
$|\Delta \phi|$ potential difference
I current
R Resistance of wire
$\mid L$ length of wire
A Cross sectional area σ_{c} resistivity of wire
P Power dissipated, R Resistance
$|\Delta \phi|$ potential difference, I current
I current flowing through the circuit
$|\Delta \phi|$ potential difference between the plates Q charge on the capacitor's positive plate
$I_{0}=I(0), Q_{0}=Q(0),\left|\Delta \phi_{0}\right|=|\Delta \phi(0)|$
e euler's constant $\approx 2.7183, t$ time
R Resistance
C Capacitance of capacitor
$R_{\text {set }}$ equivalent resistance of a set of resistors in series R_{n} resistance of the nth resistor
$R_{\text {set }}$ equivalent resistance of a set of resistors in parallel
R_{n} resistance of the nth resistor
E8
\vec{F}_{m} magnetic force on a charged particle
q charge of particle
\vec{v} velocity of particle
\vec{B} magnetic field
R radius of helical motion
\vec{p}_{\perp} component of the particle's momentum perpendicular to \vec{B}
q charge of particle
\vec{B} magnetic field
T period of helical motion
m mass of particle
\vec{B} magnetic field
q charge of particle

$$
\begin{aligned}
& \vec{F}_{m, \text { seg }} \text { force on a segment of wire } \\
& L \text { length of segment of wire } \\
& \vec{I} \text { current vector } \\
& \vec{B} \text { magnetic field } \\
& \vec{\mu} \text { magnetic moment vector } \\
& N \text { number of turns } \\
& I \text { current } \\
& \vec{A} \text { tile vector of loop } \\
& \vec{\tau} \text { torque on a loop } \\
& \vec{\mu} \text { magnetic moment vector } \\
& \vec{B} \text { magnetic field } \\
& V_{m} \text { magnetic potential energy } \\
& \vec{\mu} \text { magnetic moment vector } \\
& \vec{B} \text { magnetic field } \\
& P \text { power output of an electric motor } \\
& \vec{\mu} \text { magnetic moment vector } \\
& \vec{B} \text { magnetic field } \\
& f \text { frequency of motor (turns per second) } \\
& \Delta \phi \text { potential difference between a bar's ends } \\
& \vec{v} \text { velocity of bar } \\
& \vec{B} \text { magnetic field } \\
& L \text { length of bar } \\
& W \text { Work by a spacially changing magnetic field on a charge carrier in a loop } \\
& q \text { charge of a carrier } \\
& \vec{v} \text { velocity of bar } \\
& \Delta \vec{B} \text { change in magnetic field } \\
& L \text { length of leg of loop }
\end{aligned}
$$

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q}{\left|\vec{r}_{P S}\right|^{2}}\left(\vec{v} \times \hat{r}_{P S}\right)
$$

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \sum_{\text {all } \mathrm{i}} \frac{d L}{\left|\vec{r}_{P i}\right|^{2}}\left(\vec{I}_{i} \times \hat{r}_{P i}\right)
$$

$d L$ length of the i th segment of wire
\vec{I}_{i} Current flowing through the i th segment of wire
$\vec{r}_{P i}$ position vector of P relative to the charged particle
$\hat{r}_{P i}$ unit vector of the in the direction of $\vec{r}_{P i}$
\vec{B} Magnetic field produced by an infinite, straight wire (with cst. current)
μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7} \mathrm{Tsm} / \mathrm{C}$
I constant current
r distance to the nearest point of the wire
\vec{B} Magnetic field produced at the center of a circular loop (with cst. current) μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7} \mathrm{Tsm} / \mathrm{C}$
$|\vec{B}|=\frac{\mu_{0} I}{2 R}$

E11

$$
\vec{F}_{e m}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$\vec{F}_{e m}$ Electromagnetic force
q charge of moving particle
\vec{E} Electromagnetic field
\vec{v} velocity of moving particle
\vec{B} magnetic field

$$
\left[\begin{array}{c}
E_{x}^{\prime} \\
E_{y}^{\prime} \\
E_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
E_{x} \\
\gamma\left(E_{y}-\beta B_{z}\right) \\
\gamma\left(E_{z}+\beta B_{y}\right)
\end{array}\right]
$$

q charge of particle
\vec{v} velocity of the particle
$\vec{r}_{P S}$ position vector of P relative to the charged particle
$\hat{r}_{P S}$ unit vector of the in the direction of $\vec{r}_{P S}$
\vec{B} magnetic field vector created at point P by a uniform, arbitrarily shaped wire

$$
\mu_{0} \text { magnetic permeability, } \mu_{0} / 4 \pi=10^{-7} \mathrm{Tsm} / \mathrm{C}
$$

$|\vec{B}|=\frac{\mu_{0} I r}{4 \pi} \frac{2}{r^{2}}=\frac{\mu_{0} I}{2 \pi r}$
I constant current
R Radius of loop
\vec{E} Electric field in the home frame
\vec{B} Magnetic field in the home frame
\vec{E}^{\prime} Electric field in the prime frame
\vec{B}^{\prime} Magnetic field in the prime frame

$$
\left[\begin{array}{c}
\not B_{x}^{\prime} \\
B_{y}^{\prime} \\
B_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\not B_{x} \\
\gamma\left(\not B_{y}+\beta E_{z}\right) \\
\gamma\left(\not B_{z}-\beta E_{y}\right)
\end{array}\right]
$$

βc velocity of prime frame relative to home frame
$\gamma \equiv\left(1-\beta^{2}\right)^{-1 / 2}$
$\vec{B}=c \vec{B}$
\vec{B} magnetic field vector created at point P by a moving charged particle μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7} \mathrm{Tsm} / \mathrm{C}$
$\vec{\nabla} \cdot \vec{E} \equiv \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}$
$\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$
$\vec{\nabla} \cdot \vec{E}$ divergence of the electric field
$\vec{\nabla}=\left[\begin{array}{lll}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right]$
\vec{E} Electric field
$\vec{\nabla} \cdot \vec{E}$ divergence of the electric field
$\vec{\nabla}=\left[\begin{array}{lll}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right]$
\vec{E} Electric field
ρ charge density
$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$

E13

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}= \begin{cases}\frac{\partial E_{z}}{\partial z} & \text { for a unidirectional field } \\
\frac{1}{s} \frac{d}{d s}\left(s E_{s}\right) & \text { for an axial field } \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} E_{r}\right) & \text { for an radial field }\end{cases} \\
& \vec{\nabla} \cdot \vec{E} \text { divergence of the electric field } \\
& E_{s} \text { Electric field component away from the central axis } \\
& s \text { distance from central axis } \\
& E_{r} \text { Electric field component away from the center point } \\
& r \text { distance from center point } \\
& \vec{\nabla} \times \vec{B} \equiv\left[\begin{array}{l}
\frac{\partial}{\partial y} B_{z}-\frac{\partial}{\partial z} B_{y} \\
\frac{\partial}{\partial z} B_{x}-\frac{\partial}{\partial x} B_{z} \\
\frac{\partial}{\partial x} B_{y}-\frac{\partial}{\partial y} B_{x}
\end{array}\right] \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J} \\
& \begin{aligned}
\vec{\nabla} \times \vec{B}=\left[\begin{array}{c}
(\vec{\nabla} \times \vec{B})_{x} \\
(\vec{\nabla} \times \vec{B})_{y} \\
(\vec{\nabla} \times \vec{B})_{z}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{\partial B_{x}}{\partial z} \\
\frac{-\partial B_{x}}{\partial y}
\end{array}\right]
\end{aligned} \text { or } \begin{array}{c}
{\left[\begin{array}{c}
\frac{-\partial B_{y}}{\partial z} \\
0 \\
\frac{\partial B_{y}}{\partial x}
\end{array}\right]}
\end{array} \text { or } \begin{array}{c}
{\left[\begin{array}{c}
\frac{\partial B_{z}}{\partial y} \\
\frac{-\partial B_{z}}{\partial x} \\
0
\end{array}\right] \text { for a unidirectional field }} \\
\\
\text { if } \vec{B}=B_{x} \hat{x}
\end{array} \quad \text { if } \vec{B}=B_{y} \hat{y} \quad \begin{array}{l}
\text { if } \vec{B}=B_{z} \hat{z}
\end{array} \\
& \vec{\nabla} \times \vec{B}=\left[\begin{array}{c}
(\vec{\nabla} \times \vec{B})_{u} \\
(\vec{\nabla} \times \vec{B})_{\phi} \\
(\vec{\nabla} \times \vec{B})_{z}
\end{array}\right]=\left[\begin{array}{c}
\frac{-\partial B_{\phi}}{\partial z} \\
0 \\
\frac{1}{u} \frac{\partial}{\partial u}\left(u B_{\phi}\right)
\end{array}\right] \text { for a circular field }
\end{aligned}
$$

	\vec{E} Electric field
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\epsilon_{0}}$	
	q_{enc} net charge vector
	$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
$\oint \vec{B} \cdot d \vec{S}=\mu_{0} \dot{i}_{\mathrm{enc}}$	\vec{B} Magnetic field
	$d \vec{S}$ tile vector
	$i_{\text {enc }}$ signed current that flows through gaussian surface
μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7}$ Tsm $/ \mathrm{C}$	

E15

Maxwell's Equations

$\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$	$\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$
$\vec{\nabla} \times \vec{B}-\epsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}=\mu_{0} \vec{J}$	$\vec{\nabla} \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\frac{1}{\epsilon_{0}}\left(\frac{\vec{J}}{c}\right)$
$\vec{\nabla} \cdot \vec{B}=0$	$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0$	$\vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t}=0$
$\vec{\nabla} \cdot \vec{E}$ divergence of the electric field	
$\vec{\nabla} \times \vec{B}$ curl of the magnetic field	$\vec{\nabla} \cdot \vec{B}$ divergence of the magnetic field
$\vec{\nabla}=\left[\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right]$	$\vec{\nabla} \times \vec{E}$ curl of the electric field
\vec{B} Magnetic field	
ρ charge density	$\vec{B}=c \vec{B}$
$c=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$	\vec{J} current density
$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$	μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7}$ Tsm/C

E16

$$
\begin{aligned}
& E_{\phi}= \begin{cases}\frac{-1}{2} \frac{\partial B_{z}}{\partial t} u & \text { for } u<R \\
\frac{-1}{2} \frac{\partial B_{z}}{\partial t} \frac{R^{2}}{u} & \text { for } u>R\end{cases} \\
& \mathcal{E}=-\frac{d \Phi_{B}}{d t}
\end{aligned}
$$

u distance from the solenoids axis
B_{z} Magnetic field along axis direction R radius of solenoid
E_{ϕ} Electric field in the counterclockwise ϕ direction
$\mathcal{E}=\oint \vec{E} \cdot d \vec{r}$ emf induced in a closed loop
$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$ magnetic flux

$$
Q(t)=Q_{0} \cos (\omega t)
$$

$$
\mathcal{E}_{\mathrm{src}}(t)=\mathcal{E}_{0} \sin (\omega t)
$$

$$
\mathcal{E}_{2}=\left(\frac{N_{2}}{N_{1}}\right) \mathcal{E}_{1}
$$

$$
i_{1}(t)=\frac{\mathcal{E}_{0}}{L \omega} \sin \left(\omega t-\frac{1}{2} \pi\right)
$$

$$
\begin{aligned}
& |\mathcal{E}|=L\left|\frac{d I}{d t}\right| \\
& L=\mu_{0} \pi r^{2} \frac{N^{2}}{\ell} \\
& I(t)=I_{0} e^{-(R / L) t} \\
& U^{\text {th }}=\frac{1}{2} L I_{0}^{2} \\
& U_{0}^{B}=\frac{\pi r^{2} \ell}{2 \mu_{0}}\left|\vec{B}_{0}\right|^{2} \\
& u_{E M}=\frac{1}{2}\left(\epsilon_{0}|\vec{E}|^{2}+\frac{|\vec{B}|^{2}}{\mu_{0}}\right) \\
& =\frac{\epsilon_{0}}{2}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right) \\
& i=\frac{-d Q}{d t}
\end{aligned}
$$

$\mathcal{E}=\oint \vec{E} \cdot d \vec{r}$ self-induced emf in a coil or loop
L inductance
I current flowing through the loop
L inductance of a long solenoid
μ_{0} magnetic permeability, $\mu_{0} / 4 \pi=10^{-7} \mathrm{Tsm} / \mathrm{C}$
r radius of solenoid
N number of turns
ℓ length of solenoid
I current in an inductor whose \mathcal{E} pushes this current through a resister
$I_{0}=I(0)$
R resistance of the resistance
L inductance of the inductor
$U^{\text {th }}$ Energy dissipated by a resistor in an LR circuit L inductance
I_{0} initial current
U_{0}^{B} magnetic field's energy inside a long solenoid at $t=0$
r radius of solenoid, ℓ length of solenoid
\vec{B}_{0} initial magnetic field
$u_{E M}$ energy density of an electromagnetic field
$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
\vec{E} Electric field
\vec{B} Magnetic Field
$\vec{B}=c \vec{B}$
i current in an LC circuit
Q positive charge on one of the capacitor's plates
Q positive charge on one of the capacitor's plates
$\omega=1 / \sqrt{L C}$
L inductance, C capacitance
$\mathcal{E}_{\text {src }}$ emf that the source imposes on the primary coil
$\mathcal{E}_{1}, \mathcal{E}_{2}$ emf in coil 1,2
N_{1}, N_{2} number of turns in coil 1,2
i_{1} current flowing in the primary coil

	c speed of light	
avg EM wave intensity $=c \epsilon_{0}\left[\|\vec{E}\|^{2}\right]$ avg	$\left[\|\vec{E}\|^{2}\right]_{\text {avg }}$ average of the electric field's squared magnitude $\Delta U_{\mathrm{EM}} / \Delta t$ Average power per unit time	
$=\frac{1}{A} \frac{\Delta U_{\mathrm{EM}}}{\Delta t}=c\left[u_{\mathrm{EM}}\right]_{\mathrm{avg}}$	A area that the EM wave deposits energy onto $u_{\text {EM }}$ energy density of EM wave	
$u_{\mathrm{EM}}=\epsilon_{0}\|\vec{E}\|^{2}$	$u_{\text {EM }}$ energy density of EM wave \vec{E} Electric field	
	\vec{E}_{w}, \vec{B}_{w} Electric, Magnetic field of the EM wave at at a point P, caused by an accelerating particle q charge of particle	
$\left\|\vec{E}_{w}\right\|=c\left\|\vec{B}_{w}\right\|=\frac{1}{4 \pi \epsilon_{0}} \frac{\|q \\| \vec{a}\| \sin \theta}{c^{2} R}$	\vec{a} acceleration of particle	
	R distance from the accelerating particle to P θ angle between \vec{a} and \vec{P}	
	$U_{\text {EM }}$ Energy contained in an EM wave q charge of particle	
	\vec{a} acceleration of particle	
$U_{\mathrm{EM}}=\frac{\|q\|^{2}\|\vec{a}\|^{2}\left[\sin ^{2} \theta\right]_{\mathrm{avg}} \tau}{4 \pi \epsilon_{0} c^{3}}$	τ brief time	
	R distance from the accelerating particle to P	
	θ angle between \vec{a} and \vec{P} c speed of light	
	P power that a particle radiates in the form of an EM wave	
$P=\frac{q^{2}\|\vec{a}\|^{2}}{6 \pi \epsilon_{0} c^{3}}$	q charge of particle	
	\vec{a} acceleration of particle	
	c speed of light	

Some Physical Constants

Speed of light	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Coulomb's constant	$1 / 4 \pi \varepsilon_{0}$	$8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Permittivity constant	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
Permeability constant	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Elementary charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Electron mass	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Neutron mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Avogadro's number	N_{A}	6.02×10^{23}
Commonly Used Physical Data		
$\text { Gravitational field strength } g=\|\vec{g}\|$(near the earth's surface)		$9.80 \mathrm{~N} / \mathrm{kg}=9.80 \mathrm{~m} / \mathrm{s}^{2}$
Mass of the earth M_{e}		$5.98 \times 10^{24} \mathrm{~kg}$
Radius of the earth R_{e}		6380 km (equatorial)
Mass of the sun M_{\odot}		$1.99 \times 10^{30} \mathrm{~kg}$
Radius of the sun R_{\odot}		$696,000 \mathrm{~km}$
Mass of the moon		$7.36 \times 10^{22} \mathrm{~kg}$
Radius of the moon		1740 km
Distance to the moon		$3.84 \times 10^{8} \mathrm{~m}$
Distance to the sun		$1.50 \times 10^{11} \mathrm{~m}$
Density of water ${ }^{+}$		$1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~g} / \mathrm{cm}^{3}$
Density of air ${ }^{+}$		$1.2 \mathrm{~kg} / \mathrm{m}^{3}$
Absolute zero		$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}=-459.67^{\circ} \mathrm{F}$
Freezing point of water ${ }^{\ddagger}$		$273.15 \mathrm{~K}=0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$
Boiling point of water ${ }^{\ddagger}$		$373.15 \mathrm{~K}=100^{\circ} \mathrm{C}=212^{\circ} \mathrm{F}$
Normal atmospheric pressure		101.3 kPa
${ }^{\dagger}$ At normal atmospheric pressure and $20^{\circ} \mathrm{C}$. ${ }^{\ddagger}$ At normal atmospheric pressure.		

Standard Metric Prefixes
(for powers of 10)

Power	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	C
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Useful Conversion Factors

```
1 meter = 1 m = 100 cm = 39.4 in = 3.28 ft
1 mile = 1 mi = 1609 m = 1.609 km = 5280 ft
1 inch == 1 in = 2.54 cm
1 light-year = 1 ly =9.46 Pm = 0.946 }\times1\mp@subsup{0}{}{16}\textrm{m
1 minute = 1 min = 60 s
1 hour = 1 h = 60 min = 3600 s
1 day = 1d = 24 h = 86.4 ks=86,400 s
1 year = 1 y = 365.25 d=31.6 Ms=3.16 \times 10}\mp@subsup{0}{}{7}\textrm{s
1 newton = 1 N = 1 kg.m}/\mp@subsup{\textrm{s}}{}{2}=0.225\textrm{lb
1 joule = 1 J = 1 N}\cdot\textrm{m}=1\textrm{kg}\cdot\mp@subsup{\textrm{m}}{}{2}/\mp@subsup{\textrm{s}}{}{2}=0.239\textrm{cal
1 watt = 1 W = 1 J/s
1 pascal = 1 Pa = 1 N/m}\mp@subsup{m}{}{2}=1.45\times1\mp@subsup{0}{}{-4}\textrm{psi
1 kelvin (temperature difference) = 1 K=1 钅 = 1.8 %
1 radian = 1 rad = 57.3 }=0.1592 rev
1 revolution = 1 rev = 2\pi rad = 360
1 cycle = 2\pi rad
1 hertz=1 Hz=1 cycle/s
```

$1 \mathrm{~m} / \mathrm{s}=2.24 \mathrm{mi} / \mathrm{h}=3.28 \mathrm{ft} / \mathrm{s}$
$1 \mathrm{mi} / \mathrm{h}=-1.61 \mathrm{~km} / \mathrm{h}=0.447 \mathrm{~m} / \mathrm{s}=1.47 \mathrm{ft} / \mathrm{s}$
1 liter $=1 \mathrm{l}=(10 \mathrm{~cm})^{3}=10^{-3} \mathrm{~m}^{3}=0.0353 \mathrm{ft}^{3}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=0.0283 \mathrm{~m}^{3}$
1 gallon $=1 \mathrm{gal}=0.00379 \mathrm{~m}^{3}=3.79 \mathrm{l} \approx 3.8 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$
Weight of 1-kg object near the earth $=9.8 \mathrm{~N}=2.2 \mathrm{lb}$
1 pound $=1 \mathrm{lb}=4.45 \mathrm{~N}$
1 calorie $=$ energy needed to raise the temperature of 1 g of $\mathrm{H}_{2} \mathrm{O}$ by $1 \mathrm{~K}=4.186 \mathrm{~J}$
1 horsepower $=1 \mathrm{hp}=746 \mathrm{~W}$
1 pound per square inch $=6895 \mathrm{~Pa}$
1 food calorie $=1 \mathrm{Cal}=1 \mathrm{kcal}=1000 \mathrm{cal}=4186 \mathrm{~J}$
1 electron volt $=1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

$$
\begin{array}{ll}
T=\left(\frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}}\right)\left(T_{[\mathrm{C}]}+273.15^{\circ} \mathrm{C}\right) & T_{[\mathrm{C}]}=\left(\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\right)\left(T_{[\mathrm{F}]}-32^{\circ} \mathrm{F}\right) \\
T=\left(\frac{5 \mathrm{~K}}{9^{\circ} \mathrm{F}}\right)\left(T_{[\mathrm{F}]}+459.67^{\circ} \mathrm{F}\right), & T_{[\mathrm{F}]}=32^{\circ} \mathrm{F}+\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right) T_{[\mathrm{C}]}
\end{array}
$$

Electromagnetic Units and Conversion Factors

1 coulomb $=1 \mathrm{C}=$ unit of charge $=$ total charge of 6.242×10^{18} protons
$1 \mathrm{~N} / \mathrm{C}=$ unit of electric field strength $=1 \mathrm{~V} / \mathrm{m}$
1 volt $=1 \mathrm{~V}=$ unit of energy per unit charge $=1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{C}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} /\left(\mathrm{C} \cdot \mathrm{s}^{2}\right)$
1 ampere $=1 \mathrm{~A}=$ unit of current $=1 \mathrm{C} / \mathrm{s}$
$1 \mathrm{ohm}=1 \Omega=$ unit of resistance $=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{~J} \cdot \mathrm{~s} / \mathrm{C}^{2}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} /\left(\mathrm{C}^{2} \mathrm{~s}\right)$
1 farad $=1 \mathrm{~F}=$ unit of capacitance $=1 \mathrm{C} / \mathrm{V}=1 \mathrm{~s} / \Omega=1 \mathrm{C}^{2} / \mathrm{J}=\mathrm{C}^{2} \mathrm{~s}^{2} /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
1 watt $=1 \mathrm{~W}=$ unit of power (rate of energy conversion) $=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~V} \cdot \mathrm{~A}=1 \mathrm{~V}^{2} / \Omega$
1 tesla $=1 \mathrm{~T}=$ unit of magnetic field strength $=1 \mathrm{~N} \cdot \mathrm{~s} /(\mathrm{C} \cdot \mathrm{m})=1 \mathrm{~kg} /(\mathrm{C} \cdot \mathrm{s})$
1 gauss $=1 \mathrm{G}=$ unit of magnetic field strength $=10^{-4} \mathrm{~T}$
1 henry $=1 \mathrm{H}=$ unit of inductance $=\mathrm{V} \cdot \mathrm{s} / \mathrm{A}=1 \Omega \cdot \mathrm{~s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}$
units of conductivity $=(\Omega \cdot \mathrm{m})^{-1}$
units of current density $=A / \mathrm{m}^{2}$
$\vec{B}=c \vec{B}=$ represents the magnetic field expressed N/C (same units as electric field)
$\left(\mu_{0} \varepsilon_{0}\right)^{-1}=c^{2} \quad \Rightarrow \quad 1 /\left(4 \pi \varepsilon_{0}\right)=\mu_{0} c^{2} / 4 \pi$
$\left(c \varepsilon_{0}\right)^{-1}=377 \Omega$

Some Useful Indefinite Integrals

$\int x^{n} d x=\frac{1}{n+1} x^{n+1} \quad(n \neq-1) \quad \int \frac{d x}{\left(x^{2}+a^{2}\right)^{1 / 2}}=\ln \left[x+\left(x^{2}+a^{2}\right)^{1 / 2}\right] \quad \int \frac{x d x}{\left(x^{2}+a^{2}\right)^{1 / 2}}=\left(x^{2}+a^{2}\right)^{1 / 2}$
$\begin{array}{lll}\int \frac{d x}{x}=\ln |x| & \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) & \int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{-1}{\left(x^{2}+a^{2}\right)^{1 / 2}} \\ \int e^{a x} d x=\frac{1}{a} e^{a x} & \int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{1}{a^{2}} \frac{x}{\left(x^{2}+a^{2}\right)^{1 / 2}} & \cdot \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{-x}{\left(x^{2}+a^{2}\right)^{1 / 2}}+\ln \left[x+\left(x^{2}+a^{2}\right)^{1 / 2}\right]\end{array}$

Standard Electric and Magnetic Field Patterns

Field pattern $(\vec{F}=\vec{E} \text { or } \vec{B})$	Created by	Divergence	Curl	Gaussian Surface (G'S) Amperian Loop (AL)
General	(anything)	$\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}$	$\vec{\nabla} \times \vec{F}=\left[\begin{array}{l}\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z} \\ \frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x} \\ \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\end{array}\right]$	(not applicable)
Unidirectional $\left(\vec{F}=F_{z} \hat{z}\right)$	infinite flat plate (both \vec{E} and \vec{B}) infinite solenoid (\vec{B})	$\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{z}}{\partial z}$	$\vec{\nabla} \times \vec{F}=\left[\begin{array}{c}\frac{\partial F_{z}}{\partial y} \\ -\frac{\partial F_{z}}{\partial x} \\ 0\end{array}\right]$	GS: rectangular solid AL: rectangle
$\begin{aligned} & \text { Axial } \\ & \left(\vec{F}=F_{s} \hat{s}\right) \end{aligned}$	infinite cylindrically symmetric object (\vec{E})	$\vec{\nabla} \cdot \vec{F}=\frac{1}{s} \frac{\partial}{\partial s}\left(s F_{s}\right)$	$\vec{\nabla} \times \vec{F}=0$ (identically) ${ }^{\text {c }}$	GS: cylindrical can AL: (not applicable)
$\begin{aligned} & \text { Radial } \\ & (\vec{F}=F, \hat{r}) \end{aligned}$	spherically symmetric object (\vec{E})	$\vec{\nabla} \cdot \vec{F}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F_{r}\right) .$	$\vec{\nabla} \times \vec{F}=0 \text { (identically) }$	GS: sphere AL: (not applicáble)
Circular $\left(\vec{F}=F_{\phi} \hat{\phi}\right)$	infinite cylindrically symmetric situation where current flows parallel to its axis (\vec{B}) or where $\partial \vec{B} / \partial t$ is parallel to the axis (\vec{E})	$\vec{\nabla} \cdot \vec{F}=0$ (identically)	$\vec{\nabla} \times \vec{F}=\left[\begin{array}{c}{[\vec{\nabla} \times \vec{F}]_{u}} \\ \vdots \vec{\nabla} \times \vec{F}]_{\phi} \\ \vdots \vec{i} \times \vec{F}]_{z}\end{array}\right]=\left[\begin{array}{c}-\frac{\partial F_{\phi}}{\partial z} \\ 0 \\ {\left[\begin{array}{l}\text { a }\end{array}\right.} \\ \frac{1}{u} \frac{\partial}{\partial u}\left(u F_{\phi}\right)\end{array}\right]$	GS: (not applicable) AL: circle

Updated: 12/12/18

