Physics 211 Formula Sheet

E1	
$ \vec{F}_{e} = k \frac{ q_{1}q_{2} }{r^{2}}$	\vec{F}_e electrostatic force vector $k = 8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ q_1, q_2 charge of particles r distance between particles
$\vec{F}_e = q\vec{E}$	\vec{F}_e electrostatic force vector q charge of test particle \vec{E} electric field vector
$\vec{E} = k \frac{Q}{ \vec{r}_{PS} ^2} \hat{r}_{PS}$	\vec{E} Electric field vector at a point P due to a single particle $k = 8.99 \times 10^9 \frac{\text{N}\cdot\text{m}^2}{\text{C}^2}$ Q charge of source particle \vec{r}_{PS} position of P relative to source particle \hat{r}_{PS} unit vector in the direction of \vec{r}_{PS}
E2	
$\vec{E} = k \frac{2\vec{p}_e}{ \vec{r}_{PD} ^3}$	\vec{E} Electric field vector at a distant point P along a dipole 's axis $k = 8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ \vec{p}_e dipole moment vector \vec{r}_{DP} position of P relative to dipole's center
$ \vec{p}_e = qs$	\vec{p}_e dipole moment vector q charge of diploe's positive particle s particle's separation
$ec{E} = 2k rac{\lambda}{ ec{r}_{PN} } \hat{r}_{PN}$	\vec{E} Electric field vector at a point P by an infinite linear charge dist. $k = 8.99 \times 10^9 \frac{\text{N}\cdot\text{m}^2}{\text{C}^2}$ λ linear charge density \vec{r}_{PN} position of P relative to the nearest point on the line

 \hat{r}_{PN} unit vector in the direction of $\vec{r}_{PN},$ perpendicularly away from the line

 \vec{E} Electric field vector at a point P by an infinite planar charge dist. $k=8.99\times 10^9~\frac{\rm N\cdot m^2}{\rm C^2}$

 σ charge per unit area

 $\vec{E} = (2\pi k)\sigma\hat{r}_{PN} = \frac{\sigma}{2\epsilon_0}\hat{r}_{PN}$

 \hat{r}_{PN} unit vector points perpendicularly away from the plane, at P $\epsilon_0=8.85\times 10^{-12}\frac{\rm C^2}{\rm N\cdot m^2}$

$$\phi(x, y, z) = \frac{V_e(x, y, z)}{q}$$

$$\phi = k \frac{Q}{|\vec{r}_{PS}|}$$

 $\Delta \phi = -\int \vec{E} \cdot d\vec{r}$

$$\vec{E}(x,y,z) = \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} = \begin{bmatrix} -\partial \phi / \partial x \\ -\partial \phi / \partial y \\ -\partial \phi / \partial z \end{bmatrix} = -\vec{\nabla}\phi$$

 $\mathbf{E4}$

 $C \equiv \left| \frac{Q}{\Delta \phi} \right| = \epsilon_0 \frac{A}{S}$

$$u_E = \frac{1}{2}\epsilon_0 |\vec{E}|^2 = \frac{1}{8\pi k} |\vec{E}|^2$$

 $U = \frac{1}{2}C(\Delta\phi)^2$

 ϕ electric potential at a point with coordinates $x,\,y,\,z$

 V_e total electrostatic potential energy

 \boldsymbol{q} charge of test particle

 ϕ electric potential $k = 8.99 \times 10^9 \ \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ Q charge of fixed particle \vec{r}_{ps} position of the observation point, P, relative to the fixed particle

 $\Delta \phi$ difference in potential between two points \vec{E} Electric field vector $d\vec{r}$ step between the two points

 \vec{E} Electric field vector at a point with coordinates x, y, z ϕ electric potential at a point with coordinates x, y, z

C Capacitance Q charge of either plate of a capacitor

 $\Delta\phi$ difference in potential between the two plates

A Area of one plate s separation of the plates $\epsilon_0 = 8.85 \times 10^{-12}$

$$\begin{split} u_E \mbox{ energy density of an electric field} \\ \epsilon_0 &= 8.85 \times 10^{-12} \ \frac{\text{C}^2}{\text{N} \cdot \text{m}^2} \\ k &= 8.99 \times 10^9 \ \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \\ \vec{E} \ \mbox{Electric field vector} \end{split}$$

U energy stored in the electric field of a capacitor C capacitance of the capacitor $\Delta \phi$ difference in potential between the two plates

	\vec{v}_d drift velocity of an electron <i>e</i> elementary charge
$\vec{v}_d = -\frac{e}{m}\vec{E}\tau$	m_e mass of an electron
nve	\vec{E} Electric field vector
	τ time between collisions
	\vec{J} current density in the neighborhood of a point in a conductor a charge per unit volume
$\vec{I} = \vec{\alpha}\vec{n}$, $= \vec{n}\vec{\alpha}\vec{n}$,	<i>i</i> , drift vologity
$b = p b_d = m q b_d$	n number density (number of carriers per unit volume)
	q charge of each carrier
	\vec{J} current density in the neighborhood of a point in a conductor
$\vec{J} = \sigma_c \vec{E}$	σ_c conductivity
	\vec{E} Electric field at that point
	σ_c conductivity
$na^2\tau$	n number density
$\sigma_c = \frac{m_q - r_c}{m}$	q charge of each carrier
	au time between collisions
	m mass of a carrier
	n number density
N.	N_1 number of electrons per one atom
$n = N_1 \rho_m \frac{N_A}{M_A}$	$ \rho_m $ metal's mass density
	N_A Avagadro's number, 6.02×10^{23}
	M_A atomic weight
→ →	\vec{J}_N number current density
$J_N = n\dot{v}$	\vec{v} velocity
	n number density
	ΔN change in the number of particles
$\Delta N \overrightarrow{\tau} \overrightarrow{t}$	Δt change in time
$\frac{\Delta N}{\Delta t} = J_N \cdot A$	J_N number current density
	A area Vector
	$i \ { m current}$
$i \equiv \int_S J \cdot dA$	S surface
	J current density \vec{A} tile vector
	A the vector

 $|\Delta \phi_{\rm wire}| = |\vec{E}|L$ $R = \frac{|\Delta \phi|}{I}$ $R = \frac{L}{\sigma_c A}$

$$P$$
 = $I |\Delta \phi|$ = $\frac{|\Delta \phi|^2}{R}$ = $I^2 R$

$$I(t) = I_0 e^{-t/RC}$$
$$|\Delta \phi(t)| = |\Delta \phi_0| e^{-t/RC}$$
$$Q(t) = Q_0 e^{-t/RC}$$

E7

$$R_{\text{set}} = R_1 + R_2 + \dots$$

 $\frac{1}{R_{\text{set}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

 $\vec{F}_m = q(\vec{v} \times \vec{B})$

$$R = \frac{|\vec{p}_{\perp}|}{|q||\vec{B}|}$$

$$T = \frac{2\pi m}{|q||\vec{B}|}$$

 $\Delta \phi_{\rm wire}$ potential difference between the ends of a wire \vec{E} Electric field inside the wire L Length of wire R Resistance $|\Delta \phi|$ potential difference I current R Resistance of wire |L| length of wire A Cross sectional area σ_c resistivity of wire P Power dissipated, R Resistance $|\Delta \phi|$ potential difference, I current I current flowing through the circuit $|\Delta\phi|$ potential difference between the plates Q charge on the capacitor's positive plate $I_0 = I(0), Q_0 = Q(0), |\Delta \phi_0| = |\Delta \phi(0)|$

e euler's constant ≈ 2.7183 , t time R Resistance

C Capacitance of capacitor

 $R_{\rm set}$ equivalent resistance of a set of resistors in series R_n resistance of the *n*th resistor

 $R_{\rm set}$ equivalent resistance of a set of resistors in parallel R_n resistance of the *n*th resistor

 \vec{F}_m magnetic force on a charged particle q charge of particle \vec{v} velocity of particle \vec{B} magnetic field

R radius of helical motion \vec{p}_{\perp} component of the particle's momentum perpendicular to \vec{B} q charge of particle \vec{B} magnetic field T period of helical motion m mass of particle

 \vec{B} magnetic field q charge of particle **E9**

→ → →	$\vec{F}_{m,seg}$ force on a segment of wire L length of segment of wire
$F_{m,seg} = LI \times B$	\vec{I} current vector \vec{B} magnetic field
	$\vec{\mu}$ magnetic moment vector N number of turns
$\vec{\mu} = N I \vec{A}$	I current $\vec{A} \text{ tile vector of loop}$
→	$\vec{\tau}$ torque on a loop
$\vec{\tau} = \vec{\mu} \times \vec{B}$	$\vec{\mu}$ magnetic moment vector \vec{B} magnetic field
	V_m magnetic potential energy
$V_m = -\vec{\mu} \cdot \vec{B}$	$\vec{\mu}$ magnetic moment vector \vec{B} magnetic field
	P power output of an electric motor
$P = 4 \vec{\mu} \vec{B} f$	μ magnetic moment vector \vec{B} magnetic field f frequency of motor (turns per second)
	$\Delta \phi$ potential difference between a bar's ends \vec{v} velocity of bar
$ \Delta \phi = \vec{v} \vec{B} L$	\vec{B} magnetic field L length of bar
	W Work by a spacially changing magnetic field on a charge carrier in a loop q charge of a carrier
$\frac{W}{q} = \vec{v} \Delta \vec{B} L$	\vec{v} velocity of bar
Ч.,,	$\Delta \vec{B}$ change in magnetic field L length of leg of loop

E10

$$\begin{split} \vec{B} &= \frac{\mu_0}{4\pi} \frac{q}{|\vec{r}_{PS}|^2} (\vec{v} \times \hat{r}_{PS}) & \vec{B} \text{ magnetic field vector created at point } P \text{ by a moving charged particle} \\ \mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C} \\ q \text{ charge of particle} \\ \vec{v} \text{ velocity of the particle} \\ \vec{v} \text{ poly of the particle} \\ \vec{r}_{PS} \text{ position vector of } P \text{ relative to the charged particle} \\ \vec{r}_{PS} \text{ position vector of } P \text{ relative to the charged particle} \\ \vec{r}_{PS} \text{ position vector of } P \text{ relative to the charged particle} \\ \vec{r}_{PS} \text{ unit vector of the in the direction of } \vec{r}_{PS} \\ \vec{B} &= \frac{\mu_0}{4\pi} \sum_{all i} \frac{dL}{|\vec{r}_{Pi}|^2} (\vec{I}_i \times \hat{r}_{Pi}) & \vec{B} \text{ magnetic field vector created at point } P \text{ by a uniform, arbitrarily shaped wire} \\ \mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C} \\ dL \text{ length of the } ith segment of wire} \\ \vec{I}_i \text{ Current flowing through the } ith segment of wire} \\ \vec{I}_i \text{ Current flowing through the } ith segment of wire} \\ \vec{r}_{Pi} \text{ position vector of } P \text{ relative to the charged particle} \\ \vec{r}_{Pi} \text{ magnetic field produced by an infinite, straight wire (with cst. current)} \\ \mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C} \\ \vec{I} \text{ constant current} \\ \vec{I} \text{ dual to the nearest point of the wire} \\ \vec{B} \text{ Magnetic field produced at the center of a circular loop (with cst. current)} \\ \mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C} \\ \vec{I} \text{ constant current} \\ \vec{R} \text{ Radius of loop} \end{aligned}$$

E11

$$\vec{F}_{em} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\begin{bmatrix} E'_{x} \\ E'_{y} \\ E'_{z} \end{bmatrix} = \begin{bmatrix} E_{x} \\ \gamma(E_{y} - \beta \mathcal{B}_{z}) \\ \gamma(E_{z} + \beta \mathcal{B}_{y}) \end{bmatrix}$$

$$\begin{bmatrix} \mathcal{B}'_{x} \\ \mathcal{B}'_{y} \\ \mathcal{B}'_{z} \end{bmatrix} = \begin{bmatrix} \mathcal{B}_{x} \\ \gamma(\mathcal{B}_{y} + \beta E_{z}) \\ \gamma(\mathcal{B}_{z} - \beta E_{y}) \end{bmatrix}$$

 \vec{F}_{em} Electromagnetic force q charge of moving particle \vec{E} Electromagnetic field \vec{v} velocity of moving particle \vec{B} magnetic field

 \vec{E} Electric field in the home frame \vec{B} Magnetic field in the home frame \vec{E}' Electric field in the prime frame \vec{B}' Magnetic field in the prime frame βc velocity of prime frame relative to home frame $\gamma \equiv (1 - \beta^2)^{-1/2}$

$$\vec{B} = c\vec{B}$$

$$\vec{\nabla} \cdot \vec{E} \equiv \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

 $\vec{\nabla} \times \vec{B} \equiv \begin{bmatrix} \frac{\partial}{\partial y} B_z - \frac{\partial}{\partial z} B_y \\ \frac{\partial}{\partial z} B_x - \frac{\partial}{\partial x} B_z \\ \frac{\partial}{\partial x} B_y - \frac{\partial}{\partial y} B_x \end{bmatrix}$

 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

E13

 $\vec{\nabla} \cdot \vec{E} \text{ divergence of the electric field}$ $\vec{\nabla} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$ $\vec{E} \text{ Electric field}$

$$\begin{split} \vec{\nabla} \cdot \vec{E} & \text{divergence of the electric field} \\ \vec{\nabla} &= \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} \\ \vec{E} & \text{Electric field} \\ \rho & \text{charge density} \\ \epsilon_0 &= 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N} \text{m}^2} \end{split}$$

 $\vec{\nabla} \cdot \vec{E}$ divergence of the electric field E_s Electric field component away from the central axis s distance from central axis E_r Electric field component away from the center point r distance from center point

 $\vec{\nabla}\times\vec{B}$ curl of the magnetic field

 \vec{B} magnetic field

$$\vec{\nabla} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$$

 $\vec{\nabla} \times \vec{B} \text{ curl of the magnetic field}$ $\vec{\nabla} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$ $\vec{B} \text{ Magnetic field}$ $\vec{J} \text{ current density}$ $\mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C}$

$$\vec{\nabla} \times \vec{B} = \begin{bmatrix} (\vec{\nabla} \times \vec{B})_x \\ (\vec{\nabla} \times \vec{B})_y \\ (\vec{\nabla} \times \vec{B})_z \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{\partial B_x}{\partial z} \\ \frac{-\partial B_x}{\partial y} \end{bmatrix} \text{ or } \begin{bmatrix} \frac{-\partial B_y}{\partial z} \\ 0 \\ \frac{\partial B_y}{\partial x} \end{bmatrix} \text{ or } \begin{bmatrix} \frac{\partial B_z}{\partial y} \\ \frac{-\partial B_z}{\partial x} \\ 0 \end{bmatrix} \text{ for a unidirectional field}$$

if $\vec{B} = B_x \hat{x}$ if $\vec{B} = B_y \hat{y}$ if $\vec{B} = B_z \hat{z}$

$$\vec{\nabla} \times \vec{B} = \begin{bmatrix} (\vec{\nabla} \times \vec{B})_u \\ (\vec{\nabla} \times \vec{B})_\phi \\ (\vec{\nabla} \times \vec{B})_z \end{bmatrix} = \begin{bmatrix} \frac{-\partial B_\phi}{\partial z} \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial u} (uB_\phi) \end{bmatrix}$$
for a circular field

 $\vec{\nabla} \cdot \vec{E} = \begin{cases} \frac{\partial E_z}{\partial z} & \text{for a unidirectional field} \\ \frac{1}{s} \frac{d}{ds} (sE_s) & \text{for an axial field} \\ \frac{1}{r^2} \frac{d}{dr} (r^2E_r) & \text{for an radial field} \end{cases}$

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0}$$

$$\oint \vec{E} \cdot d\vec{S} = \mu_0 i_{\text{enc}}$$

$$\vec{E} \text{ Electric field}$$

$$d\vec{A} \text{ tile vector}$$

$$q_{\text{enc}} \text{ net charge enclosed}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$$

$$\vec{B} \text{ Magnetic field}$$

$$d\vec{S} \text{ tile vector}$$

$$i_{\text{enc}} \text{ signed current that flows through gaussian surface}$$

$$\mu_0 \text{ magnetic permeability, } \mu_0/4\pi = 10^{-7} \text{ Tsm/C}$$

E15

Maxwell's Equations

$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$	$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$
$\vec{\nabla} \times \vec{B} - \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J}$	$\vec{\nabla} \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{1}{\epsilon_0} \left(\frac{\vec{J}}{c} \right)$
$\vec{\nabla} \cdot \vec{B} = 0$	$\vec{\nabla} \cdot \vec{B} = 0$
$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$	$\vec{\nabla} \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$
$\vec{\nabla} \cdot \vec{E}$ divergence of the electric field	$\vec{\nabla} \cdot \vec{B}$ divergence of the magnetic field
$\vec{\nabla} \times \vec{B}$ curl of the magnetic field	$\vec{\nabla} \times \vec{E}$ curl of the electric field
$\vec{\nabla} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$	\vec{E} Electric field
\vec{B} Magnetic field	$\vec{B} = c\vec{B}$
ρ charge density	\vec{J} current density
$c = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$	μ_0 magnetic permeability, $\mu_0/4\pi = 10^{-7}$ Tsm/C
$\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$	
E16	

$F_{\perp} = \int \frac{-1}{2} \frac{\partial B_z}{\partial t}$	-u for $u < R$
$L_{\phi} = \left\{ \frac{-1}{2} \frac{\partial B_z}{\partial t} \right\}$	$\frac{k^2}{u}$ for $u > R$

 $\mathcal{E} = -\frac{d\Phi_B}{dt}$

u distanc	e from the solenoids axis
B_z Magn	etic field along axis direction
R radius	of solenoid
E_{ϕ} Electric	ric field in the counterclockwise ϕ direction
,	

٦

 $\begin{aligned} \mathcal{E} &= \oint \, \vec{E} \cdot d\vec{r} \text{ emf induced in a closed loop} \\ \Phi_B &= \int \vec{B} \cdot d\vec{A} \text{ magnetic flux} \end{aligned}$

 $\mathbf{E17}$

avg EM wave intensity =
$$c\epsilon_0 [|\vec{E}|^2]_{\text{avg}}$$

= $\frac{1}{A} \frac{\Delta U_{\text{EM}}}{\Delta t} = c[u_{\text{EM}}]_{\text{avg}}$
 $u_{\text{EM}} = \epsilon_0 |\vec{E}|^2$
 $|\vec{E}_w| = c|\vec{B}_w| = \frac{1}{4\pi\epsilon_0} \frac{|q||\vec{a}|\sin\theta}{c^2R}$
 $U_{\text{EM}} = \frac{|q|^2 |\vec{a}|^2 [\sin^2\theta]_{\text{avg}}\tau}{4\pi\epsilon_0 c^3}$

$$P = \frac{q^2 |\vec{a}|^2}{6\pi\epsilon_0 c^3}$$

c speed of light

 $[|\vec{E}|^2]_{\text{avg}}$ average of the electric field's squared magnitude $\Delta U_{\text{EM}}/\Delta t$ Average power per unit time A area that the EM wave deposits energy onto

 $u_{\rm EM}$ energy density of EM wave

 $u_{\rm EM}$ energy density of EM wave \vec{E} Electric field

 \vec{E}_w, \vec{B}_w Electric, Magnetic field of the EM wave at at a point P, caused by an accelerating particle q charge of particle

 \vec{a} acceleration of particle

R distance from the accelerating particle to P θ angle between \vec{a} and \vec{P}

 $U_{\rm EM}$ Energy contained in an EM wave q charge of particle \vec{a} acceleration of particle

 τ brief time

R distance from the accelerating particle to P θ angle between \vec{a} and \vec{P} c speed of light

 ${\cal P}$ power that a particle radiates in the form of an EM wave

q charge of particle \vec{a} acceleration of particle c speed of light

Some Physical Constants

Speed of light .	С	3.00	$\times 10^8 \mathrm{m/s}$
Gravitational constant	G	6.67	$\times 10^{-11} \mathrm{N \cdot m^2/kg^2}$
Coulomb's constant	$1/4\pi\varepsilon_0$	8.99	$\times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$
Permittivity constant	ε_{0}	8.85	$\times 10^{-12} \mathrm{C}^2/(\mathrm{N}\cdot\mathrm{m}^2)$
Permeability constant	μ_0	4π	$\times 10^{-7} \text{N/A}^2$
Planck's constant	h	6.63	$ imes 10^{-34}$ J·s
Boltzmann's constant	k _B	1.38	$\times 10^{-23} \text{J/K}$
Elementary charge	е	1.602	$\times 10^{-19} \mathrm{C}$
Electron mass	m_e	9.11	$\times 10^{-31} \text{kg}$
Proton mass	m_p	1.673	$\times 10^{-27} \text{kg}$
Neutron mass	m_n	1.675	$\times 10^{-27} \text{kg}$
Avogadro's number	N_A	6.02	$\times 10^{23}$

Commonly Used Physical Data

Gravitational field strength $g = \vec{g} $	$9.80 \text{ N/kg} = 9.80 \text{ m/s}^2$
(near the earth's surface)	
Mass of the earth M_e	$5.98 \times 10^{24} \mathrm{kg}$
Radius of the earth R_e	6380 km (equatorial)
Mass of the sun M_{\odot}	$1.99 \times 10^{30} \text{ kg}$
Radius of the sun R_{\odot}	696,000 km
Mass of the moon	$7.36 \times 10^{22} \text{ kg}$
Radius of the moon	1740 km
Distance to the moon	$3.84 \times 10^8 \mathrm{m}$
Distance to the sun	$1.50 \times 10^{11} \text{ m}$
Density of water [†]	$1000 \text{ kg/m}^3 = 1 \text{ g/cm}^3$
Density of air [†]	1.2 kg/m^3
Absolute zero	$0 \text{ K} = -273.15^{\circ}\text{C} = -459.67^{\circ}\text{F}$
Freezing point of water [‡]	$273.15 \text{ K} = 0^{\circ}\text{C} = 32^{\circ}\text{F}$
Boiling point of water [‡]	$373.15 \text{ K} = 100^{\circ}\text{C} = 212^{\circ}\text{F}$
Normal atmospheric pressure	101.3 kPa

[†]At normal atmospheric pressure and 20°C. [‡]At normal atmospheric pressure.

Useful Conversion Factors

1 meter = 1 m = 100 cm = 39.4 in = 3.28 ft1 mile = 1 mi = 1609 m = 1.609 km = 5280 ft1 inch = 1 in = 2.54 cm $1 \text{ light-year} = 1 \text{ ly} = 9.46 \text{ Pm} = 0.946 \times 10^{16} \text{ m}$ 1 minute = 1 min = 60 s1 hour = 1 h = 60 min = 3600 s1 day = 1 d = 24 h = 86.4 ks = 86,400 s1 year = 1 y = $365.25 \text{ d} = 31.6 \text{ Ms} = 3.16 \times 10^7 \text{ s}$ $1 \text{ newton} = 1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 0.225 \text{ lb}$ 1 joule = $1 J = 1 N \cdot m = 1 \text{ kg} \cdot m^2 / s^2 = 0.239 \text{ cal}$ 1 watt = 1 W = 1 J/s1 pascal = 1 Pa = $1 \text{ N/m}^2 = 1.45 \times 10^{-4} \text{ psi}$ 1 kelvin (temperature difference) = $1 \text{ K} \doteq 1^\circ\text{C} = 1.8^\circ\text{F}$ $1 \text{ radian} = 1 \text{ rad} = 57.3^{\circ} = 0.1592 \text{ rev}$ 1 revolution = 1 rev = 2π rad = 360° $1 \text{ cycle} = 2\pi \text{ rad}$ 1 hertz = 1 Hz = 1 cycle/s

1 m/s = 2.24 mi/h = 3.28 ft/s 1 mi/h = 1.61 km/h = 0.447 m/s = 1.47 ft/s $1 \text{ liter} = 11 = (10 \text{ cm})^3 = 10^{-3} \text{ m}^3 = 0.0353 \text{ ft}^3$ $1 \text{ ft}^3 = 1728 \text{ in}^3 = 0.0283 \text{ m}^3$ $1 \text{ gallon} = 1 \text{ gal} = 0.00379 \text{ m}^3 = 3.791 \approx 3.8 \text{ kg H}_2\text{O}$ Weight of 1-kg object near the earth = 9.8 N = 2.2 lb 1 pound = 1 lb = 4.45 N 1 calorie = energy needed to raise the temperature of 1 g $0 \text{ of } H_2\text{O by 1 K} = 4.186 \text{ J}$ 1 horsepower = 1 hp = 746 W 1 pound per square inch = 6895 Pa 1 food calorie = 1 Cal = 1 kcal = 1000 cal = 4186 J $1 \text{ electron volt} = 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ $T = \left(\frac{1\text{ K}}{1^{10}\text{ C}}\right)(T_{\text{[C]}} + 273.15^{\circ}\text{C})$ $T_{\text{[C]}} = \left(\frac{5^{\circ}\text{C}}{0^{\circ}\text{F}}\right)(T_{\text{[F]}} - 32^{\circ}\text{F})$

$$T = \left(\frac{5K}{9^{\circ}F}\right)(T_{[F]} + 459.67^{\circ}F), \qquad T_{[F]} = 32^{\circ}F + \left(\frac{9^{\circ}F}{5^{\circ}C}\right)T_{[C]}$$

Standard Metric Prefixes (for powers of 10)

Power	Prefix	Symbol
10 ¹⁸	exa	E
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	Μ
10 ³	kilo	k
10^{-2}	centi	с
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10^{-12}	pico	р
10^{-15}	femto	f
10^{-18}	atto	а

Electromagnetic Units and Conversion Factors

1 coulomb = 1 C = unit of charge = total charge of 6.242×10^{18} protons 1 N/C = unit of electric field strength = 1 V/m 1 volt = 1 V = unit of energy per unit charge = 1 V = 1 J/C = 1 N·m/C = 1 kg·m²/(C·s²) 1 ampere = 1 A = unit of current = 1 C/s 1 ohm = 1 Ω = unit of resistance = 1 V/A = 1 J·s/C² = 1 kg·m²/(C²s) 1 farad'= 1 F = unit of capacitance = 1 C/V = 1 s/\Omega = 1 C²/J = C²s²/(kg·m²) 1 watt = 1 W = unit of power (rate of energy conversion) = 1 J/s = 1 V·A = 1 V²/\Omega 1 tesla = 1 T = unit of magnetic field strength = 1 N·s/(C·m) = 1 kg/(C·s) 1 gauss = 1 G = unit of magnetic field strength = 10⁻⁴ T 1 henry = 1 H = unit of inductance = V·s/A = 1 Ω ·s = kg·m²/C² units of conductivity = (Ω ·m)⁻¹ units of current density = A/m² $\vec{B} = c\vec{B}$ = represents the magnetic field expressed N/C (same units as electric field) ($\mu_0 \varepsilon_0$)⁻¹ = c² \Rightarrow 1/(4 $\pi \varepsilon_0$) = $\mu_0 c^2/4\pi$ ($c\varepsilon_0$)⁻¹ = 377 Ω

Some Useful Indefinite Integrals

$$\begin{aligned} \int x^n dx &= \frac{1}{n+1} x^{n+1} \quad (n \neq -1) \qquad \int \frac{dx}{(x^2 + a^2)^{1/2}} = \ln[x + (x^2 + a^2)^{1/2}] \qquad \int \frac{x \, dx}{(x^2 + a^2)^{1/2}} = (x^2 + a^2)^{1/2} \\ \int \frac{dx}{x} &= \ln|x| \qquad \qquad \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) \qquad \qquad \int \frac{1}{(x^2 + a^2)^{3/2}} = \frac{-1}{(x^2 + a^2)^{1/2}} \\ \int e^{ax} dx &= \frac{1}{a} e^{ax} \qquad \qquad \int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{1}{a^2} \frac{x}{(x^2 + a^2)^{1/2}} \qquad \qquad \int \frac{x^2 \, dx}{(x^2 + a^2)^{3/2}} = \frac{-x}{(x^2 + a^2)^{1/2}} + \ln[x + (x^2 + a^2)^{1/2}] \end{aligned}$$

Standard Electric and Magnetic Field Patterns

Field pattern $(\vec{F} = \vec{E} \text{ or } \vec{B})$	Created by	Divergence	Curl	Gaussian Surface (GS) Amperian Loop (AL)
General	(anything)	$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\vec{\nabla} \times \vec{F} = \begin{bmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{bmatrix}$	(not applicable)
Unidirectional $(\vec{F} = F_z \hat{z})$	t infinite flat plate (both \vec{E} and \vec{B}) infinite solenoid (\vec{B})	$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_z}{\partial z}$	$\vec{\nabla} \times \vec{F} = \begin{bmatrix} \frac{\partial F_z}{\partial y} \\ -\frac{\partial F_z}{\partial x} \\ 0 \end{bmatrix}$	GS: rectangular solid AL: rectangle
Axial $(\vec{F} = F_s \hat{s})$	infinite cylindrically symmetric object (\vec{E})	$\vec{\nabla} \cdot \vec{F} = \frac{1}{s} \frac{\partial}{\partial s} (sF_s)$	$\vec{\nabla} \times \vec{F} = 0$ (identically)	GS: cylindrical can AL: (not applicable)
Radial $(\vec{F} = F, \hat{r})$	spherically symmetric object (\vec{E})	$\vec{\nabla} \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) .$	$\vec{\nabla} \times \vec{F} = 0$ (identically)	GS: sphere AL: (not applicable)
Circular $(\vec{F} = F_{\phi}\hat{\phi})$	infinite cylindrically symmetric situation where current flows parallel to its axis (\vec{B}) or where $\partial \vec{B} / \partial t$ is parallel to the axis (\vec{E})	$\vec{\nabla} \cdot \vec{F} = 0$ (identically)	$\vec{\nabla} \times \vec{F} = \begin{bmatrix} [\vec{\nabla} \times \vec{F}]_u \\ [\vec{\nabla} \times \vec{F}]_\phi \\ [\vec{\nabla} \times \vec{F}]_z \end{bmatrix} = \begin{bmatrix} -\frac{\partial F_\phi}{\partial z} \\ 0 \\ \frac{1}{u \partial u} (uF_\phi) \end{bmatrix}$	GS: (not applicable) AL: circle