
Physics 211 Formula Sheet
E1

F⃗e electrostatic force vector

∣F⃗e∣ = k ∣q1q2∣
r2 k = 8.99 × 109 N⋅m2

C2

q1, q2 charge of particles
r distance between particles

F⃗e electrostatic force vector

F⃗e = qE⃗ q charge of test particle
E⃗ electric field vector

E⃗ Electric field vector at a point P due to a single particle
k = 8.99 × 109 N⋅m2

C2

E⃗ = k Q
∣r⃗PS ∣2 r̂PS Q charge of source particle

r⃗PS position of P relative to source particle
r̂PS unit vector in the direction of r⃗PS

E2
E⃗ Electric field vector at a distant point P along a dipole’s axis

E⃗ = k 2p⃗e
∣r⃗PD ∣3 k = 8.99 × 109 N⋅m2

C2

p⃗e dipole moment vector
r⃗DP position of P relative to dipole’s center

p⃗e dipole moment vector
∣p⃗e∣ = qs q charge of diploe’s positive particle

s particle’s separation

E⃗ Electric field vector at a point P by an infinite linear charge dist.
k = 8.99 × 109 N⋅m2

C2

E⃗ = 2k λ
∣r⃗PN ∣ r̂PN λ linear charge density

r⃗PN position of P relative to the nearest point on the line
r̂PN unit vector in the direction of r⃗PN , perpendicularly away from the line

E⃗ Electric field vector at a point P by an infinite planar charge dist.
k = 8.99 × 109 N⋅m2

C2

E⃗ = (2πk)σr̂PN = σ
2ε0 r̂PN σ charge per unit area

r̂PN unit vector points perpendicularly away from the plane, at P
ε0 = 8.85 × 10−12 C2

N⋅m2



E3
φ electric potential at a point with coordinates x, y, z

φ(x, y, z) = Ve(x,y,z)
q Ve total electrostatic potential energy

q charge of test particle

φ electric potential
k = 8.99 × 109 N⋅m2

C2

φ = k Q
∣r⃗PS ∣ Q charge of fixed particle

r⃗ps position of the observation point, P , relative to the fixed particle

∆φ difference in potential between two points

∆φ = − ∫ E⃗ ⋅ dr⃗ E⃗ Electric field vector
dr⃗ step between the two points

E⃗ Electric field vector at a point with coordinates x, y, z
E⃗(x, y, z) =

⎡⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−∂φ/∂x
−∂φ/∂y
−∂φ/∂z

⎤⎥⎥⎥⎥⎥⎦
= −∇⃗φ φ electric potential at a point with coordinates x, y, z

E4
C Capacitance
Q charge of either plate of a capacitor

C ≡ ∣ Q∆φ ∣ = ε0
A
S ∆φ difference in potential between the two plates

A Area of one plate
s separation of the plates
ε0 = 8.85 × 10−12

uE energy density of an electric field

uE = 1
2ε0∣E⃗∣2 = 1

8πk ∣E⃗∣2 ε0 = 8.85 × 10−12 C2

N⋅m2

k = 8.99 × 109 N⋅m2

C2

E⃗ Electric field vector

U energy stored in the electric field of a capacitor
U = 1

2C(∆φ)2 C capacitance of the capacitor
∆φ difference in potential between the two plates



E5
v⃗d drift velocity of an electron
e elementary charge

v⃗d = − e
me
E⃗τ me mass of an electron

E⃗ Electric field vector
τ time between collisions

J⃗ current density in the neighborhood of a point in a conductor
ρ charge per unit volume

J⃗ = ρv⃗d = nqv⃗d v⃗d drift velocity
n number density (number of carriers per unit volume)
q charge of each carrier

J⃗ current density in the neighborhood of a point in a conductor

J⃗ = σcE⃗ σc conductivity
E⃗ Electric field at that point

σc conductivity
n number density

σc = nq2τ
m q charge of each carrier

τ time between collisions
m mass of a carrier

n number density
N1 number of electrons per one atom

n = N1ρm
NA
MA

ρm metal’s mass density
NA Avagadro’s number, 6.02 × 1023

MA atomic weight

J⃗N number current density

J⃗N = nv⃗ v⃗ velocity
n number density

∆N change in the number of particles
∆t change in time

∆N
∆t = J⃗N ⋅ A⃗ J⃗N number current density

A⃗ area Vector

i current

i ≡ ∫S J⃗ ⋅ dA⃗ S surface
J⃗ current density
A⃗ tile vector



E6
∆φwire potential difference between the ends of a wire

∣∆φwire∣ = ∣E⃗∣L E⃗ Electric field inside the wire
L Length of wire

R Resistance

R = ∣∆φ∣
I ∣∆φ∣ potential difference

I current

R Resistance of wire
R = L

σcA
∣L length of wire
A Cross sectional area
σc resistivity of wire

P Power dissipated, R Resistance

P = I ∣∆φ∣ = ∣∆φ∣2
R = I2R ∣∆φ∣ potential difference, I current

I current flowing through the circuit
I(t) = I0e−t/RC ∣∆φ∣ potential difference between the plates

Q charge on the capacitor’s positive plate
∣∆φ(t)∣ = ∣∆φ0∣e−t/RC I0 = I(0), Q0 = Q(0), ∣∆φ0∣ = ∣∆φ(0)∣

e euler’s constant ≈ 2.7183, t time
Q(t) = Q0e−t/RC R Resistance

C Capacitance of capacitor

E7
Rset equivalent resistance of a set of resistors in series

Rset = R1 +R2 + . . . Rn resistance of the nth resistor

1
Rset

= 1
R1
+ 1
R2
+ . . . Rset equivalent resistance of a set of resistors in parallel

Rn resistance of the nth resistor

E8
F⃗m magnetic force on a charged particle
q charge of particle

F⃗m = q(v⃗ × B⃗) v⃗ velocity of particle
B⃗ magnetic field

R radius of helical motion
p⃗⊥ component of the particle’s momentum perpendicular to B⃗

R = ∣p⃗⊥∣
∣q∣∣B⃗∣ q charge of particle

B⃗ magnetic field

T period of helical motion
T = 2πm

∣q∣∣B⃗∣ m mass of particle

B⃗ magnetic field
q charge of particle



E9
F⃗m,seg force on a segment of wire
L length of segment of wire

F⃗m,seg = LI⃗ × B⃗ I⃗ current vector
B⃗ magnetic field

µ⃗ magnetic moment vector
N number of turns

µ⃗ = NIA⃗ I current
A⃗ tile vector of loop

τ⃗ torque on a loop

τ⃗ = µ⃗ × B⃗ µ⃗ magnetic moment vector
B⃗ magnetic field

Vm magnetic potential energy

Vm = −µ⃗ ⋅ B⃗ µ⃗ magnetic moment vector
B⃗ magnetic field

P power output of an electric motor
µ⃗ magnetic moment vector

P = 4∣µ⃗∣∣B⃗∣f B⃗ magnetic field
f frequency of motor (turns per second)

∆φ potential difference between a bar’s ends
v⃗ velocity of bar

∣∆φ∣ = ∣v⃗∣∣B⃗∣L B⃗ magnetic field
L length of bar

W Work by a spacially changing magnetic field on a charge carrier in a loop
q charge of a carrier

W
q = ∣v⃗∣∣∆B⃗∣L v⃗ velocity of bar

∆B⃗ change in magnetic field
L length of leg of loop



E10
B⃗ magnetic field vector created at point P by a moving charged particle
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

B⃗ = µ0
4π

q
∣r⃗PS ∣2(v⃗ × r̂PS) q charge of particle

v⃗ velocity of the particle
r⃗PS position vector of P relative to the charged particle
r̂PS unit vector of the in the direction of r⃗PS

B⃗ magnetic field vector created at point P by a uniform, arbitrarily shaped wire
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

B⃗ = µ0
4π ∑all i

dL
∣r⃗Pi∣2(I⃗i × r̂Pi) dL length of the ith segment of wire

I⃗i Current flowing through the ith segment of wire
r⃗Pi position vector of P relative to the charged particle
r̂Pi unit vector of the in the direction of r⃗Pi

B⃗ Magnetic field produced by an infinite, straight wire (with cst. current)
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

∣B⃗∣ = µ0Ir
4π

2
r2 = µ0I

2πr I constant current
r distance to the nearest point of the wire

B⃗ Magnetic field produced at the center of a circular loop (with cst. current)
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

∣B⃗∣ = µ0I
2R I constant current

R Radius of loop

E11
F⃗em Electromagnetic force
q charge of moving particle

F⃗em = q(E⃗ + v⃗ × B⃗) E⃗ Electromagnetic field
v⃗ velocity of moving particle
B⃗ magnetic field

⎡⎢⎢⎢⎢⎢⎢⎣

E′
x

E′
y

E′
z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

Ex

γ(Ey − β��Bz)
γ(Ez + β��By)

⎤⎥⎥⎥⎥⎥⎥⎦

E⃗ Electric field in the home frame
B⃗ Magnetic field in the home frame
E⃗′ Electric field in the prime frame
B⃗′ Magnetic field in the prime frame
βc velocity of prime frame relative to home frame
γ ≡ (1 − β2)−1/2⎡⎢⎢⎢⎢⎢⎢⎣

��B′
x

��B′
y

��B′
z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

��Bx

γ(��By + βEz)
γ(��Bz − βEy)

⎤⎥⎥⎥⎥⎥⎥⎦
�⃗�B = cB⃗



E12
∇⃗ ⋅ E⃗ divergence of the electric field

∇⃗ ⋅ E⃗ ≡ ∂Ex
∂x + ∂Ey

∂y + ∂Ez
∂z ∇⃗ = [ ∂

∂x
∂
∂y

∂
∂z ]

E⃗ Electric field

∇⃗ ⋅ E⃗ divergence of the electric field
∇⃗ = [ ∂

∂x
∂
∂y

∂
∂z ]

∇⃗ ⋅ E⃗ = ρ
ε0

E⃗ Electric field
ρ charge density
ε0 = 8.85 × 10−12 C2

N⋅m2

E13
∇⃗ ⋅ E⃗ divergence of the electric field
Es Electric field component away from the central axis

∇⃗ ⋅ E⃗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ez
∂z for a unidirectional field

1
s
d
ds(sEs) for an axial field

1
r2

d
dr(r2Er) for an radial field

s distance from central axis
Er Electric field component away from the center point
r distance from center point

∇⃗ × B⃗ curl of the magnetic field

∇⃗ × B⃗ ≡

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂yBz − ∂

∂zBy

∂
∂zBx − ∂

∂xBz
∂
∂xBy − ∂

∂yBx

⎤⎥⎥⎥⎥⎥⎥⎦

B⃗ magnetic field

∇⃗ = [ ∂
∂x

∂
∂y

∂
∂z ]

∇⃗ × B⃗ curl of the magnetic field
∇⃗ = [ ∂

∂x
∂
∂y

∂
∂z ]

∇⃗ × B⃗ = µ0J⃗ B⃗ Magnetic field
J⃗ current density
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

∇⃗ × B⃗ =

⎡⎢⎢⎢⎢⎢⎢⎣

(∇⃗ × B⃗)x
(∇⃗ × B⃗)y
(∇⃗ × B⃗)z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0
∂Bx
∂z

−∂Bx
∂y

⎤⎥⎥⎥⎥⎥⎥⎦

or

⎡⎢⎢⎢⎢⎢⎢⎣

−∂By
∂z

0
∂By
∂x

⎤⎥⎥⎥⎥⎥⎥⎦

or

⎡⎢⎢⎢⎢⎢⎢⎣

∂Bz
∂y

−∂Bz
∂x

0

⎤⎥⎥⎥⎥⎥⎥⎦

for a unidirectional field

if B⃗ = Bxx̂ if B⃗ = By ŷ if B⃗ = Bz ẑ

∇⃗ × B⃗ =

⎡⎢⎢⎢⎢⎢⎢⎣

(∇⃗ × B⃗)u
(∇⃗ × B⃗)φ
(∇⃗ × B⃗)z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

−∂Bφ
∂z

0
1
u
∂
∂u(uBφ)

⎤⎥⎥⎥⎥⎥⎥⎦

for a circular field



E14
E⃗ Electric field
dA⃗ tile vector

∮ E⃗ ⋅ dA⃗ = qenc
ε0

qenc net charge enclosed
ε0 = 8.85 × 10−12 C2

N⋅m2

B⃗ Magnetic field
dS⃗ tile vector

∮ B⃗ ⋅ dS⃗ = µ0ienc ienc signed current that flows through gaussian surface
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

E15

Maxwell’s Equations

∇⃗ ⋅ E⃗ = ρ
ε0

∇⃗ ⋅ E⃗ = ρ
ε0

∇⃗ × B⃗ − ε0µ0
∂E⃗
∂t = µ0J⃗ ∇⃗ × �⃗�B − 1

c
∂E⃗
∂t =

1
ε0
( J⃗c )

∇⃗ ⋅ B⃗ = 0 ∇⃗ ⋅ �⃗�B = 0

∇⃗ × E⃗ + ∂B⃗
∂t = 0 ∇⃗ × E⃗ + 1

c
∂�⃗�B
∂t = 0

∇⃗ ⋅ E⃗ divergence of the electric field ∇⃗ ⋅ B⃗ divergence of the magnetic field
∇⃗ × B⃗ curl of the magnetic field ∇⃗ × E⃗ curl of the electric field
∇⃗ = [ ∂

∂x
∂
∂y

∂
∂z ] E⃗ Electric field

B⃗ Magnetic field �⃗�B = cB⃗
ρ charge density J⃗ current density
c = 3.00 × 108 m

s µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C
ε0 = 8.85 × 10−12 C2

N⋅m2

E16
u distance from the solenoids axis
Bz Magnetic field along axis direction

Eφ =
⎧⎪⎪⎨⎪⎪⎩

−1
2
∂Bz
∂t u for u < R

−1
2
∂Bz
∂t

R2

u for u > R
R radius of solenoid
Eφ Electric field in the counterclockwise φ direction

E = ∮ E⃗ ⋅ dr⃗ emf induced in a closed loop
E = −dΦB

dt ΦB = ∫ B⃗ ⋅ dA⃗ magnetic flux



E17
E = ∮ E⃗ ⋅ dr⃗ self-induced emf in a coil or loop

∣E ∣ = L ∣dIdt ∣ L inductance
I current flowing through the loop

L inductance of a long solenoid
µ0 magnetic permeability, µ0/4π = 10−7 Tsm/C

L = µ0πr2N2

` r radius of solenoid
N number of turns
` length of solenoid

I current in an inductor whose E pushes this current through a resister
I0 = I(0)

I(t) = I0e−(R/L)t R resistance of the resistance
L inductance of the inductor

U th Energy dissipated by a resistor in an LR circuit
U th = 1

2LI
2
0 L inductance

I0 initial current

UB0 magnetic field’s energy inside a long solenoid at t = 0

UB
0 = πr2`

2µ0
∣B⃗0∣2 r radius of solenoid, ` length of solenoid

B⃗0 initial magnetic field

uEM energy density of an electromagnetic field

uEM = 1
2 (ε0∣E⃗∣2 + ∣B⃗∣2

µ0
) ε0 = 8.85 × 10−12 C2

N⋅m2

E⃗ Electric field

= ε0
2 (∣E⃗∣2 + ∣�⃗�B∣2) B⃗ Magnetic Field

�⃗�B = cB⃗

i = −dQ
dt i current in an LC circuit

Q positive charge on one of the capacitor’s plates

Q positive charge on one of the capacitor’s plates
Q(t) = Q0 cos(ωt) ω = 1/

√
LC

L inductance, C capacitance

Esrc(t) = E0 sin(ωt) Esrc emf that the source imposes on the primary coil

E2 = (N2
N1

)E1 E1, E2 emf in coil 1,2
N1, N2 number of turns in coil 1,2

i1(t) = E0
Lω sin(ωt − 1

2π) i1 current flowing in the primary coil



E18
c speed of light

avg EM wave intensity = cε0[∣E⃗∣2]avg [∣E⃗∣2]avg average of the electric field’s squared magnitude
∆UEM/∆t Average power per unit time

= 1
A

∆UEM
∆t = c[uEM]avg A area that the EM wave deposits energy onto

uEM energy density of EM wave

uEM = ε0∣E⃗∣2 uEM energy density of EM wave
E⃗ Electric field

E⃗w, B⃗w Electric, Magnetic field of the EM wave at at a point P ,
caused by an accelerating particle
q charge of particle

∣E⃗w∣ = c∣B⃗w∣ = 1
4πε0

∣q∣∣a⃗∣ sin θ
c2R a⃗ acceleration of particle

R distance from the accelerating particle to P
θ angle between a⃗ and P⃗

UEM Energy contained in an EM wave
q charge of particle
a⃗ acceleration of particle

UEM = ∣q∣2∣a⃗∣2[sin2 θ]avgτ
4πε0c3 τ brief time

R distance from the accelerating particle to P
θ angle between a⃗ and P⃗
c speed of light

P power that a particle radiates in the form of an EM wave

P = q2∣a⃗∣2
6πε0c3 q charge of particle

a⃗ acceleration of particle
c speed of light
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