Section 1.4: Continuity

E.A. Smith
Catawba Valley Community College

Summer 2018

Definition of Continuity

Definition (Continuity)

A function $f(x)$ is said to be continuous at a point $x=c$ if and only if $\lim _{x \rightarrow c} f(x)=f(c)$.

Example (Continous Functions)

1. $\lim _{x \rightarrow 2}\left(x^{2}+4\right)=8$
2. $\lim _{z \rightarrow-4}(7 z-12)=-40$
3. $\lim _{h \rightarrow 0}\left(\frac{3 x-1}{7 x-2}\right)=\frac{1}{2}$

Graphical Examples

Example

Using the graph of f, determine the values below. Use them to discuss the continuity of f.

1. $\lim _{x \rightarrow-2} f(x)=$
2. $f(-2)=$
3. Is $f(x)$ continuous at

$$
x=-2 ?
$$

4. $\lim _{x \rightarrow 2^{-}} f(x)=$
5. $\lim _{x \rightarrow 2^{+}} f(x)=$
6. Is $f(x)$ continuous at $x=2$?

Figure: Graph of $f(x)$

Types of Discontinuity

Definition (Discontinuity)

A function is discontinuous if and only if it is NOT continuous. The three types of discontinuities are

1. removable:

$$
\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x) \neq f(c)
$$

2. infinite:

$$
\lim _{x \rightarrow c^{-}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow c^{+}} f(x) \pm \infty,
$$

3. jump:

$$
\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x) .
$$

Types of Discontinuities - Examples

Let $g(x)$ be the function graphed below.

The function $g(x)$ has the following types of discontinuities at the specified value of x. For clarification, there is not a discontinuity $x=-5$.

1. Removable discontinuity at

$$
x=-5
$$

2. Infinite discontinuity at

$$
x=-1
$$

3. Jump discontinuity at $x=4$

Figure: Graph of $g(x)$

Types of Discontinuities - You Try

The function $h(x)$ is graphed below. Determine where $h(x)$ is discontinuous and specify the discontinuity.

x-value			
discontinuity			

Figure: Graph of $h(x)$

Left- and right-continuity

Definition (Left- and right-continuity)

1. A function is said to be left-continuous if

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c)
$$

2. A function is said to be right-continuous if

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

Left- and right-continuity - Example

Let $g(x)$ be the function graphed below.

The following are true about $g(x)$.

1. $g(x)$ is neither left- nor right-continuous at $x=-5$.
2. $g(x)$ is right-continuous at

$$
x=-1 .
$$

3. $g(x)$ is left-continuous at

$$
x=4 .
$$

Figure: Graph of $g(x)$

