LS30A - Lab 5

Aaron

Review about derivatives

1. What are the 3 concepts of a derivative we've discussed? Explain them briefly. Include a sketch or equation if that would be helpful.
a. Instantaneous rate of change
b. Slope of tangent
c. Linear approximation

Review about derivatives

1. What are the 3 concepts of a derivative we've discussed? Explain them briefly. Include a sketch or equation if that would be helpful.
a. Instantaneous rate of change

Instantaneous rate of change
limit of average rate of change as delta-t approaches $0 \lim _{\Delta t \rightarrow 0} \frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t}$
b. Slope of tangent
limit of secant as 2 nd value of t approaches t0
c. Linear approximation
$\mathrm{f}(\mathrm{t})$ looks like a line when we zoom into $(\mathrm{t} 0, \mathrm{f}(\mathrm{t} 0)) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

Review about derivatives

2. What is the equation of the line tangent to $f(x)=2 x^{\wedge} 2$ at $x=3$?

Review about derivatives

2. What is the equation of the line tangent to $f(x)=2 x^{\wedge} 2$ at $x=3$?
point-slope form of the equation for a line: $y-y 0=m(x-x 0)$.

$$
\begin{aligned}
& m=\left.\frac{d f}{d x}\right|_{x=3}=\left.4 x\right|_{x=3}=12 \\
& y_{0}=f(3)=2 \times 3^{2}=18
\end{aligned}
$$

$$
y-18=12(x-3) \longrightarrow y=12 x-18
$$

Review about derivatives (Lab5)

1. Symbolic Calculation
2. Plot Lines and Curves
3. Differentiation
