\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 8 questions for a total of 60 points.

1. (20 points) Determine if the following statments are true or false. You must provide a justification for your answer.
(a) TRUE / FALSE

If a number is divisible by 6 , then it is divisible by 3 .
Solution: If a number, x, is divisible by 6 , then it can be written of the from $x=6 y, y \in \mathbb{Z}$. This means that $x=2 \cdot 3 \cdot y$, which is clearly divisible by 3 .
(b) TRUE / FALSE

For all real numbers x and $y, \frac{x}{y}=0$ if and only if $x=0$.
Solution: Statement is false because it says for all x and y and this is not possible, since if $y=0$, then the value is undefined.
(c) TRUE / FALSE

For all real numbers y there is a real number x such that $y=2 x+4$.
Solution: This is true since you can re-write the equation as $x=\frac{y-4}{2}$, which shows that for any value of y, x is going to also be a real number.
(d) TRUE / FALSE

For all real numbers $x>0$ and $y>0$, if $x>y$, then $\frac{1}{x}<\frac{1}{y}$
Solution: This is also true since if $x>0$ and $y>0$, if we have $x>y \rightarrow 1>\frac{y}{x} \rightarrow \frac{1}{y}>\frac{1}{x}$.
2. Consider the following implication:

$$
\text { If } x \text { is divisible by 12, then } x \text { is divisible by } 3 .
$$

(a) (2 points) Write the converse of the statement.

Solution: If x is divisible by 3 , then x is divisible by 12 .
The converse of the implication is TRUE / FALSE.
(b) (2 points) Write the contrapositive of the statement.

Solution: If x is NOT divisible by 3 , then x is NOT divisible by 12 .
The contrapositive of the implication is TRUE / FALSE.
3. (6 points) Sketch the graph of a function that has the given limits and values. There is more than one correct answer.

- $\lim _{x \rightarrow-1} f(x)=4$
- $\lim _{x \rightarrow \infty} f(x)=4$
- $f(0)=5$

4. (6 points) Let $g(x)$ be the function graphed below.

(a) $\lim _{x \rightarrow-1} g(x)=\underline{1}$
(c) $g(-1)=$ \qquad (e) $\lim _{x \rightarrow-\infty} g(x)=-\infty$
(b) $\lim _{x \rightarrow 1} g(x)=\underline{1}$
(d) $\lim _{x \rightarrow 2} g(x)=$ \qquad
(f) $\lim _{x \rightarrow \infty} g(x)=\underline{\infty}$
5. (5 points) Give an argument, be it a table of values, or a graph, that justifies your educated guess for the following limit:

$$
\lim _{x \rightarrow 4} \frac{x-4}{(x+1)(x-4)}
$$

Solution: the graph of the function, shown below, indicates that a hole is created from the

cancellation in the rational function.
Therefore, if we look at the table of values, and values incrediably close to 4, then we have the following.

x	3.9	3.99	3.999	4	4.0001	4.01	4.01
$f(x)$	0.20408	0.204008	.020004001	undefined	0.199996	0.19996001	0.1996008

This indicates that the function is approaching 0.2 , or $\frac{1}{5}$, as the x-values get closer and closer to $x=4$.
6. (4 points) Let $h(x)$ be the following piecewise-defined function:

$$
h(x)= \begin{cases}3 x-2 & \text { if } x>2 \\ 0 & \text { if } x=2 \\ x^{2} & \text { if } x<2\end{cases}
$$

Using the graph of the function, determine the value of $\lim _{x \rightarrow 2} h(x)$.

Solution: Below is the graph of $h(x)$.

7. (5 points) Write the following limit using the $\varepsilon-\delta$ definition of a limit.

$$
\lim _{x \rightarrow 3}\left(x^{2}-4\right)=5
$$

Solution: For all $\varepsilon>0$, there exists a $\delta>0$, such that if $x \in(3-\delta, 3) \cup(3,3+\delta)$, then $\left(x^{2}-4\right) \in(5-\varepsilon, 5+\varepsilon)$.
8. (10 points) Given that $\lim _{x \rightarrow 2}(2 x+1)=5$, use algebra to approximate the largest value of δ such that

$$
\text { if } x \in(2-\delta, 2) \cup(2,2+\delta) \text {, then } f(x) \in(5-\varepsilon, 5+\varepsilon) \text { where } \varepsilon=0.01 \text {. }
$$

Solution: Since $\varepsilon=0.01$, we have an epsilon-band that has been created with an upper y-value of 5.01 and a lower y-value of 4.99 . We can determine the x-values that correspond to these values by solving the following linear equations:

$$
\begin{array}{rlrl}
2 x+1 & =5.01 & 2 x+1 & =4.99 \\
2 x & =4.01 & 2 x & =3.99 \\
x & =2.005 & x & =1.995
\end{array}
$$

Since we are looking for the largest δ, this really means that we are look of rhte distance these x-values are around 2. A quick inspection of these values show that they are both 0.005 units from 2 ; therefore, we would choose $\delta=0.005$.

