Sections 0.5–1.2 Lab

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 8 questions for a total of 60 points.

- 1. (20 points) Determine if the following statements are true or false. You must provide a justification for your answer.
 - (a) TRUE / FALSE

If a number is divisible by 6, then it is divisible by 3.

Solution: If a number, x, is divisible by 6, then it can be written of the from $x = 6y, y \in \mathbb{Z}$. This means that $x = 2 \cdot 3 \cdot y$, which is clearly divisible by 3.

(b) TRUE / FALSE

For all real numbers x and y, $\frac{x}{y} = 0$ if and only if x = 0.

Solution: Statement is false because it says for all x and y and this is not possible, since if y = 0, then the value is undefined.

(c) TRUE / FALSE

For all real numbers y there is a real number x such that y = 2x + 4.

Solution: This is true since you can re-write the equation as $x = \frac{y-4}{2}$, which shows that for any value of y, x is going to also be a real number.

(d) $\boxed{\text{TRUE}} / \text{FALSE}$

For all real numbers x > 0 and y > 0, if x > y, then $\frac{1}{x} < \frac{1}{y}$

Solution: This is also true since if x > 0 and y > 0, if we have $x > y \to 1 > \frac{y}{x} \to \frac{1}{y} > \frac{1}{x}$.

2. Consider the following implication:

If x is divisible by 12, then x is divisible by 3.

(a) (2 points) Write the converse of the statement.

Solution: If x is divisible by 3, then x is divisible by 12.

The converse of the implication is TRUE / FALSE.

(b) (2 points) Write the contrapositive of the statement.

Solution: If x is NOT divisible by 3, then x is NOT divisible by 12.

The contrapositive of the implication is **TRUE** / **FALSE**.

- 3. (6 points) Sketch the graph of a function that has the given limits and values. There is more than one correct answer.
 - $\lim_{x \to -1} f(x) = 4$
 - $\lim_{x \to \infty} f(x) = 4$
 - f(0) = 5

4. (6 points) Let g(x) be the function graphed below.

5. (5 points) Give an argument, be it a table of values, or a graph, that justifies your educated guess for the following limit:

$$\lim_{x \to 4} \frac{x - 4}{(x + 1)(x - 4)}.$$

6. (4 points) Let h(x) be the following piecewise-defined function:

$$h(x) = \begin{cases} 3x - 2 & \text{if } x > 2\\ 0 & \text{if } x = 2\\ x^2 & \text{if } x < 2 \end{cases}$$

Using the graph of the function, determine the value of $\lim_{x\to 2} h(x)$.

6. _____4

7. (5 points) Write the following limit using the $\varepsilon - \delta$ definition of a limit.

$$\lim_{x \to 3} \left(x^2 - 4 \right) = 5$$

Solution: For all $\varepsilon > 0$, there exists a $\delta > 0$, such that if $x \in (3 - \delta, 3) \cup (3, 3 + \delta)$, then $(x^2 - 4) \in (5 - \varepsilon, 5 + \varepsilon)$.

8. (10 points) Given that $\lim_{x\to 2} (2x+1) = 5$, use algebra to approximate the largest value of δ such that

if $x \in (2 - \delta, 2) \cup (2, 2 + \delta)$, then $f(x) \in (5 - \varepsilon, 5 + \varepsilon)$ where $\varepsilon = 0.01$.

Solution: Since $\varepsilon = 0.01$, we have an epsilon-band that has been created with an upper *y*-value of 5.01 and a lower *y*-value of 4.99. We can determine the *x*-values that correspond to these values by solving the following linear equations:

2x + 1 = 5.01	2x + 1 = 4.99
2x = 4.01	2x = 3.99
x = 2.005	x = 1.995

Since we are looking for the largest δ , this really means that we are look of rhte distance these x-values are around 2. A quick inspection of these values show that they are both 0.005 units from 2; therefore, we would choose $\delta = 0.005$.