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Abstract. Let A denote an abelian variety over Q. We give the first known
examples in which #X(A/Q) is neither a square nor twice a square. For
example, let E be the elliptic curve y2 + y = x3 − x of conductor 37. We
prove that for every odd prime p < 25000 (with p 6= 37), there is a twist A
of E × · · · × E (p − 1 copies) such that #X(A/Q) = pn2 for some integer n.
We prove this by showing under certain hypothesis on E and p that there is
an exact sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(E/K)[p∞] → X(E/Q)[p∞] → 0,

where K is a certain abelian extension of Q of degree p.

1. Introduction

The Shafarevich–Tate group of an abelian variety A over a number field F is

X(A/F ) := Ker

(

H1(F,A) →
⊕

all v

H1(Fv, A)

)

.

What are the possibilities for the group structure of X(A/F )? It is conjectured
that X(A/F ) is finite and this is known in some cases.

Theorem 1.1 (Kato, Kolyvagin, Wiles, et al.). Suppose A is an elliptic curve
over Q. (1) If ords=1 L(A, s) ≤ 1, then X(A/Q) is finite. (2) If χ is a char-
acter of the Galois group of an abelian extension K of Q and L(A,χ, 1) 6= 0, then
the χ-component of X(A/K)⊗ZZ[χ] is finite. (Here Z[χ] is generated by the image
of χ.)

The Cassels–Tate pairing X(A/F )×X(A∨/F ) → Q/Z imposes strong con-
straints on the structure of X(A/F ).

Theorem 1.2 (Tate, Flach). Let p be a prime and suppose that there is a polariza-
tion λ : A → A∨ of degree coprime to p. If p = 2 assume also that λ arises from
an F -rational divisor on A (this hypothesis is automatic if A is an elliptic curve,
but can fail in general). If X(A/F )[p∞] is finite then #X(A/F )[p∞] is a perfect
square.

Proof. If λ is F -rational, the Cassels–Tate pairing on X(A/F )[p∞] (induced by λ)
is nondegenerate and alternating (see [Tat63]), so #X(A/F )[p∞] is a perfect
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square. Even when λ is not F -rational, the Cassels–Tate pairing is nondegenerate
and antisymmetric (see [Fla90]), which when p is odd implies that #X(A/F )[p∞]
is a perfect square.

It is tempting to conjecture that #X(A/F ) is always a perfect square. Per-
haps squareness is a fundamental property of Shafarevich–Tate groups? While
implementing algorithms based on [PS97] for computing with Jacobians of hyper-
elliptic curves, M. Stoll was shocked to discover an example of an abelian variety
of dimension two such that #X(A/F )[2∞] = 2. This was surprising because, for
example, one finds in the literature [SD67, pg.149] the following statement: “[The
group X(A/F )] is conjectured to be finite, and Tate [26] has shown that if it is fi-
nite its order is a perfect square.” Stoll and B. Poonen discovered what hid behind
this and other similar examples in which #X(A/F ) is twice a perfect square.

An algebraic curve X of genus g over a local field k is deficient if X has no
k-rational divisor of degree g − 1.

Theorem 1.3 (Poonen-Stoll [PS99]). Suppose A is the Jacobian of an algebraic
curve over F that is deficient at an odd number of places. If #X(A/F ) is finite,
then #X(A/F ) is twice a square.

For example, they prove that the Jacobian J of the nonsingular projective
curve defined by

y2 = −3(x2 + 1)(x2 − 6x + 1)(x2 + 6x + 1)

has Shafarevich–Tate group of order 2 (to see that #X(J) | 2 they observe that J
is isogenous to a product of CM elliptic curves and apply a theorem of Rubin;
see [PS99, Prop. 27] for details). Also, Jordan and Livné [JL99] give an infinite
family of Atkin–Lehner quotients of Shimura curves which are deficient at an odd
number of places.

Though #X(A/F ) need not be square, one might still be tempted to con-
jecture that X(A/F ) must have order either a square or twice a square. Let p
be an odd prime. In this paper, we construct (under certain hypotheses that are
satisfied for p < 25000) abelian varieties A such that #X(A/Q) = pn2 for some
integer n. For example (see Section 3):

Theorem 1.4. Let E be the elliptic curve y2 + y = x3 − x of conductor 37. For
every odd prime p < 25000 (with p 6= 37), there is a twist A of E×(p−1) such that
#X(A/Q) = pn2 for some integer n.

This paper was originally motivated by the problem of relating the conjecture
of Birch and Swinnerton-Dyer about the ranks of elliptic curves E to the Birch and
Swinnerton-Dyer formula for the orders #X(A) for abelian varieties A of analytic
rank 0.

Let p be a prime. Under suitable hypotheses, we construct an abelian va-
riety A and a natural map E(Q)/pE(Q) ↪→ X(A/Q). Thus if E(Q) ∼= Z then
X(A/Q) has a natural subgroup of order p, and no other natural subgroup of
order p presents itself. Moreover, when E is defined by y2 + y = x3 − x, the Birch
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and Swinnerton-Dyer formula predicts that X(A/Q)[3] is of order 3. Further in-
vestigation led to the results of this paper.

Acknowledgement: It is a pleasure to thank Kevin Buzzard, Frank Calegari, Sol
Friedberg, Benedict Gross, Emmanuel Kowalski, Barry Mazur, Bjorn Poonen, and
David Rohrlich for their helpful comments, and in particular Michael Stoll for
Lemma 2.10 and Cristian González for carefully reading this paper, making many
comments, and sending me a proof of Proposition 2.13.

1.1. Notation

If G is an abelian group and n is an integer, then G[n] denotes the subgroup of
elements of order n and G[n∞] is the subgroup of elements of order any power
of n. We refer to elliptic curves using the notation of [C97].

2. Construction of Nonsquare Shafarevich–Tate Groups

For the rest of this paper we will work with an elliptic curve E over Q. Aside from
the significant use of known cases of the Birch and Swinnerton-Dyer conjecture
below, much of the construction should generalize to the situation when E is
replaced by a principally polarized abelian variety over a global field.

For the rest of this section, fix an elliptic curve E over Q. By [BCDT01], E
is modular so there is a newform f =

∑∞
n=1 anqn of level equal to the conduc-

tor N = NE of E such that L(E, s) = L(f, s). For each prime q | N , the Tamagawa
number cq of E at q is the order of the group of rational components of the special
fiber of the Néron model of E at q.

2.1. Twisting By Characters of Prime Order

Let p be a prime number. For any prime ` ≡ 1 (mod p), let

χp,` : (Z/`Z)∗ → µp ⊂ C∗

be one of the p−1 Galois-conjugate Dirichlet characters of order p and conductor `.

Conjecture 2.1. Suppose p is a prime such that ρE,p : Gal(Q/Q) → Aut(E[p])
is surjective. Then there exists a prime ` - N such that L(E,χp,`, 1) 6= 0, ` ≡ 1
(mod p) and a` 6≡ ` + 1 (mod p).

Remarks 2.2.
1. Formulas involving modular symbols imply that L(E,χp,`, 1) 6= 0 if and

only if L(E,χσ
p,`, 1) 6= 0 for any Gal(Q/Q)-conjugate χσ

p,` of χp,`.

2. J. Fearnley proved related nonvanishing results when L(E, 1) 6= 0 in
[Fea01].

3. If E is the elliptic curve y2 + y = x3 − x of conductor 37 and rank 1, then
` = 41 is the only ` ≡ 1 (mod 5) with ` < 1000 for which L(E,χ5,`, 1) = 0.

The following proposition gives evidence for Conjecture 2.1 for the lowest-
conductor elliptic curves of ranks 1, 2, and 3.
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Proposition 2.3. Conjecture 2.1 is true for the rank 1 elliptic curve 37A for every
odd p < 25000 (with p 6= 37). The conjecture is true for the rank 2 curve 389A for
every odd p < 1000 (with p 6= 389). The conjecture is true for the rank 3 curve
5077A for every odd p < 1000.

Proof. Consider the modular symbol

ep,` =
∑

a∈(Z/`Z)∗

χp,`(a) ·
{

0,
a

`

}

∈ H1(X0(N), Q(ζp)).

Then L(E,χp,`, 1) 6= 0 if and only if the image of ep,` under

H1(X0(N), Q(ζp)) → H1(E, Q(ζp))

is nonzero. In any particular case, we can use modular symbols to determine
whether or not this image is nonzero.

When p is large, it is difficult to compute in the field Q(ζp), so instead we
compute in the residue class field F` = Z[ζp]/m ∼= Z/`Z, where m is one of the
maximal ideals of Z[ζp] that lies over `. (Note that ` splits completely in Z[ζp]
because ` ≡ 1 (mod p).) After reducing modulo m, we compute the image of

ep,` =
∑

a∈(Z/`Z)∗

a(`−1)/p ·
{

0,
a

`

}

∈ H1(X0(N), F`)

in H1(E, F`). If it is nonzero, then the image of ep,` in H1(E, Q(ζp)) is nonzero.
A big computation (that takes hundreds of hours using Magma [BCP97])

shows that the image of ep,` is nonzero in the cases asserted by the proposition. So
the reader can carry out similar computations, we include the following Magma

V2.10-6 code, which illustrates verification of the proposition for 37A for p < 100:

procedure VerifyConjecture(E, p)

assert Type(E) eq CrvEll;

assert Type(p) eq RngIntElt and IsPrime(p) and IsOdd(p);

N := Conductor(E);

assert N mod p ne 0;

M := ModularSymbols(E,+1); // takes a long time if N large!

ell := 3; t := Cputime();

printf "p=%o: ", p;

while true do

while (ell mod p ne 1) or (N mod ell eq 0) or

TraceOfFrobenius(ChangeRing(E,GF(ell))) mod p eq (ell+1) do

ell := NextPrime(ell);

end while;

k := FiniteField(ell);

printf "trying ell=%o...",ell;

psi := DirichletGroup(ell,k).1;

eps := psi^(Order(psi) div p); // order p character

M_k := BaseExtend(M,k);
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phi := RationalMapping(M_k);

e := TwistedWindingElement(M_k,1,eps);

if phi(e) ne 0 then

printf " success! (%o seconds)\n", Cputime(t);

return;

end if;

printf "failed. ";

ell := NextPrime(ell);

end while;

end procedure;

E := EllipticCurve([0,0,1,-1,0]); // 37A

for p in [q : q in [3..100] | IsPrime(q) and q ne 37] do

VerifyConjecture(E,p);

end for;

The above input results in the following abbreviated output:

p=3: trying ell=7... success! (0.021 seconds)

p=5: trying ell=11... success! (0.039 seconds)

p=7: trying ell=29... success! (0.121 seconds)

...

p=89: trying ell=179... success! (0.739 seconds)

p=97: trying ell=389... success! (1.491 seconds)

2.2. A Restriction of Scalars Exact Sequence

As above, E is an elliptic curve over Q. Let p be any prime (note that p = 2 is
allowed). Suppose ` ≡ 1 (mod p) is another prime and that ` - NE . Let K ⊂ Q(µ`)
be the abelian extension of Q that corresponds to χp,` (thus K is the unique
subfield of Q(µ`) of degree p).

Let R = ResK/Q(EK) be the restriction of scalars down to Q of E viewed
as an elliptic curve over K. Thus R is an abelian variety over Q of dimension
p = [K : Q]. It is characterized by the fact that it represents the following functor
on Q-schemes S:

S 7→ EK(SK).

As a Galois module,

R(Q) = E(Q) ⊗Z Z[Gal(K/Q)],

where τ ∈ Gal(Q/Q) acts on
∑

Pσ ⊗ σ by

τ
(

∑

Pσ ⊗ σ
)

=
∑

τ(Pσ) ⊗ τ|K · σ,

where τ|K is the image of τ in Gal(K/Q).



6 W. A. Stein

Proposition 2.4. The identity map induces a closed immerion ι : E ↪→ R, and the
trace Tr : K → Q induces a surjection Tr : R → E whose kernel is geometrically
connected. Thus we have an exact sequence of abelian varieties

(1) 0 → A → R
Tr−→ E → 0.

Proof. The existence of ι and Tr follows from Yoneda’s lemma. The map ι is
induced by the functorial inclusion E(S) ↪→ EK(SK) = R(S), so ι is injective.

The Tr map is induced by the functorial trace map on points R(S) = EK(SK)
Tr−→

E(S).

To verify that Ker(Tr) is geometrically connected, we base extend the exact
sequence (1) to Q. First, note that there is an isomorphism

RQ
∼= EQ × · · · × EQ.

After base extension, we identify the trace map with the summation map

+ : EQ × · · · × EQ −→ EQ.

Let n = [K : Q]. The map defined by

(a1, . . . , an−1) 7→
(

a1, a2, . . . , an−1,−
n−1
∑

i=1

ai

)

,

is an isomorphism from E
×(n−1)

Q
to Ker(+) = Ker(TrQ). Thus Ker(TrQ) is isomor-

phic to a product of copies of EQ, and hence is connected.

Corollary 2.5. ι(E) ∩ Ker(Tr) = ι(E)[p].

Proof. The composition Q ↪→ K
Tr−→ Q is multiplication by p, so the composition

E
ι−→ R

Tr−→ E is also multiplication by p. Since ι(E) ∩ Ker(Tr) is the kernel
of Tr ◦ι = [p], it equals E[p].

Lemma 2.6. The abelian varieties AK , RK , and (R/ι(E))K are all isomorphic to
a product of copies of EK .

Proposition 2.7. The exact sequence 0 → A → R → E → 0 of Proposition 2.4
extends to an exact sequence 0 → A → R → E → 0 of Néron models over Z.

Proof. We use results of [BLR90, Ch. 7] and the fact that formation of Néron
models commutes with unramified base change (see [BLR90, §1.2, Prop. 2]) to
prove that for every prime q, the complex

(2) 0 → AZq
→ RZq

→ EZq
→ 0

is exact.

First suppose that q 6= `, and let q be a prime of K lying over q. We use the
fact that formation of Néron models commutes with unramified base extension
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and check exactness of (2) after base extension to the unramified extension OK,q

of Zq. By Lemma 2.6, the generic fiber of the base extension of (2) to OK,q is

0 → E
⊕(n−1)
K,q → E⊕n

K,q
Σ−→ EK,q → 0.

Thus the corresponding complex of Néron models over OK,q is

0 → E⊕(n−1)
OK,q

→ E⊕n
OK,q

Σ−→ EOK,q
→ 0,

which is exact, since it is exact on S-points for any ring S.

Suppose that q = `. Since p 6= `, [BLR90, Prop. 7.5.3 (a)] asserts that the
sequence 0 → AZq

→ RZq
→ EZq

is exact. Since p 6= q, the map [p] : EZq
→ EZq

is an étale morphism of smooth schemes. Since E has good reduction at q, we
also know that the fibers of EZq

are geometrically connected, so [p] is surjective
(for more details, see the proof of [AS02, Lem. 3.2]). It follows that RZq

→ EZq
is

surjective.

2.3. The Cokernel of Trace

Let ` be a prime as in Conjecture 2.1. This section is devoted to computing the
cokernel of the trace map R(Q) → E(Q). Note that R(Q) = E(K), so this cokernel
is also E(Q)/TrK/Q(E(K)).

Lemma 2.8. Let K` denote the completion of K at the totally ramified prime of K
lying over `. Then E(K)[p] = E(K`)[p] = 0.

Proof. The characteristic polynomial of Frob` ∈ Gal(Qur
` /Q`) on E[p] = E(Qur

` )[p]
is x2 − a`x + ` ∈ Fp[x]. By hypothesis a` 6≡ ` + 1 (mod p), so +1 is not a root of
x2 − a`x + ` hence

E(Q`)[p] = E(Qur
` )[p]Frob` −1 = 0.

Since K is totally ramified at ` and E has good reduction at `, E(K`)[p] = 0 as
well, so E(K)[p] = 0, as required.

Proposition 2.9. Coker(R(Q) → E(Q)) ∼= E(Q)/pE(Q).

Proof. By Corollary 2.5 the the image of ι(E(Q)) ⊂ R(Q) in E(Q) is pE(Q), so
the cokernel of R(Q) → E(Q) is a quotient of E(Q)/pE(Q). Thus it suffices to
prove that R(Q)/ι(E(Q)) is finite of order coprime to p.

We have an exact sequence 0 → E → R → A′ → 0, with A′ an abelian variety
that is isogenous to A (in fact, A′ is the abelian variety dual of A since R is self

dual, but we will not use this fact.) The L-series of A′ is
∏p−1

i=1 L(E,χi
p,`, s), so

by hypothesis L(A′, 1) 6= 0 and it follows from Kato’s theorem (see [Rub98, §8.1])
that A′(Q) is finite. Thus R(Q)/ι(E(Q)) is finite since R(Q)/ι(E(Q)) ⊂ A′(Q).

By Lemma 2.6, A′
K ≈ E

×(p−1)
K and by Lemma 2.8 E(K)[p] = 0, so A′(Q)[p] = 0,

which proves the proposition.
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2.4. Étale Cohomology and Shafarevich–Tate Groups

Fix an elliptic curve E over Q and a prime p -
∏

cE,q.
In this section, we use results mostly due to Mazur to relate the Shafarevich–

Tate groups of A, R, and E to certain étale cohomology groups. We maintain the
notation and assumptions of the previous sections, except that we abuse notation
slightly and let A, R, and E also denote the étale sheaves on Spec(Z) defined by
the Néron models A, R, and E . Let B be either A, R, or E and let B = BQ be the
corresponding abelian variety. Let Hq(Z,B) be the qth étale cohomology group
of B.

Lemma 2.10. There is an isomorphism B(Q`)[p] ∼= B(F`)[p].

Proof. This follows from [ST68, Lem. 2, pg. 495], but we sketch a proof for the
convenience of the reader. Let B1(Q`) denote the kernel of the natural reduction
map r : B(Q`) → B(F`). Using formal groups and that p 6= `, one sees that
[p] : B1(Q`) → B1(Q`) is an isomorphism. Since B is smooth over Q`, Hensel’s
lemma (see [BLR90, §2.3 Prop. 5]) implies that the reduction map is surjective,
so we obtain an exact sequence

0 → B1(Q`) → B(Q`) → B(F`) → 0.

The snake lemma applied to the multiplication-by-p diagram attached to this exact
sequence yields the exact sequence

0 → B(Q`)[p] → B(F`)[p] → 0 → B(Q`)/pB(Q`) → B(F`)/pB(F`) → 0,

which proves the lemma.

The Tamagawa number of B at a prime q is cB,q = #ΦB,q(Fq), where ΦB,q

is the component group of the closed fiber of the Néron model of B at q.

Lemma 2.11. p - cB,q.

Proof. First suppose q = `. The cokernel of B(F`) → ΦB,`(F`) is contained in
H1(F`,B0), which is 0 by Lang’s theorem (see [Lan56] or [Ser88, §VI.4]), so if
ΦB,`(F`)[p] 6= 0 then B(F`)[p] 6= 0. But by Lemmas 2.6, 2.8, and 2.10,

B(F`)[p] ∼= B(Q`)[p] ⊂ B(K`)[p] ∼= E(K`)[p] × · · · × E(K`)[p] = 0.

Next suppose that q 6= `. Since formation of Néron models commutes with
unramified base extension, we have

ΦB,q(Fq)[p] ∼= ΦE,q(Fq)[p] × · · · × ΦE,q(Fq)[p] = 0,

by our hypotheses on p.

Following the appendix to [Maz72], let

Σ(B/Q) = ker



H1(Q, B) →
⊕

all finite q

H1(Qq, B)



 ,
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where the sum is over all finite primes q of Q. If p is an odd prime, then Σ(B/Q)[p∞] =
X(B/Q)[p∞]; also one can see easily using Tate cohomology for the cyclic group
Gal(C/R) that

Σ(B/Q)[2]/X(B/Q)[2] ⊂ H1(R, B(C)) ∼= B(R)/B(R)0,

where B(R)/B(R)0 has order 2e for some e ≤ dim B.

Proposition 2.12 (Mazur). Suppose that a` 6≡ ` + 1 (mod p). If p is odd, then

H1(Z,B)[p∞] ∼= X(B/Q)[p∞].

Also, #H1(Z,B)[2∞]/X(B/Q)[2∞] divides #(B(R)/B(R)0).

Proof. It follows from the appendix to [Maz72] that there is an exact sequence

(3) 0 → Σ(B)[p∞] → H1(Z,B)[p∞] →
⊕

all finite q

H1
(

Fq,ΦB,q(Fq)
)

[p∞],

where ΦB,q is the component group of the fiber of B at q. By [Ser79, VIII.4.8],

#H1(Fq,ΦB,q(Fq)) = #ΦB,q(Fq) = cB,q,

so the proposition follows from Lemma 2.11.

Proposition 2.13. H2(Z,A)[p] = 0.

Proof. We apply the lemmas in [Sch83, §III.6]. Note that A has good reduc-
tion at p by [Mil72, Prop. 1], and H1(Z,A)[p∞] is finite by Kato’s theorem (see
[Rub98, §8.1]) and Proposition 2.12. In the proof of Proposition 2.9, we showed
that A′(Q) is finite of order coprime to p, where A′ is the abelian variety dual
of A. We now use1 Lemma 7 of [Sch83, §III.6], which because A′(Q)[p] = 0
implies that H2(Z,A[p∞]) = 0 (Schneider uses Hq

fpqf, but this is not a prob-

lem since étale and fpqf cohomology agree on the smooth scheme A.) It is easy
to see (see, e.g., the proof of Lemma 6 of [Sch83, §III.6]) that the natural map
Hq(Z,A[p∞]) → Hq(Z,A)[p∞] is surjective for any q > 0, in particular, for q = 2,
so H2(Z,A)[p∞] = 0 which proves the proposition.

2.5. The Main Theorem

Fix an elliptic curve E over Q and a prime p -
∏

cE,q such that ρE,p : GQ →
Aut(E[p]) is surjective. If p = 2 assume also that E(R) is connected. Assume
that ` is one of the primes whose existence is predicted by Conjecture 2.1. Let A
and R be the corresponding abelian varieties, which fit into an exact sequence
0 → A → R → E → 0, and recall that L(A, 1) 6= 0 so A(Q) and X(A/Q) are
both finite (by [Rub98, §8.1] and [Kat, Cor. 14.3]).

1Note that the proof of Lemma 7 of [Sch83, §III.6] relies on a theorem of Artin and Mazur whose

proof they never published; generalizations of this theorem have been published by McCallum

[McC86, §5] and Milne [Mil86, §III.3.4], and Mazur assures the author that he and Milne both

know the proof of Artin-Mazur duality well.
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Theorem 2.14. There is an exact sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(E/K)[p∞] → X(E/Q)[p∞] → 0.

In particular, if E has odd rank and X(E/Q)[p∞] is finite, then #X(A/Q)[p∞]
is not a perfect square.

Proof. By Proposition 2.7 we have an exact sequence of étale sheaves

0 → A → R → E → 0,

which gives rise to an exact sequence of étale cohomology groups

H0(Z,R) → H0(Z, E) → H1(Z,A) → H1(Z,R) → H1(Z, E) → H2(Z,A).

We have
H0(Z,R) = R(Z) = R(Q)

and likewise for E , so by Propositions 2.9, 2.12, and 2.13 we obtain an exact
sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(R/Q)[p∞] → X(E/Q)[p∞] → 0.

By Shapiro’s lemma, there is an isomorphism X(R/Q) ∼= X(E/K) (see [AS02,
§1.3]), which yields the claimed exact sequence.

Kato’s theorem ([Rub98, §8.1] and [Kat, Cor. 14.3]) implies that X(E/K)[p∞]
is finite (for the trivial character use our hypothesis that X(E/Q)[p∞] is finite,
and for the nontrivial characters use our hypothesis that L(E,χp,`, 1) 6= 0). The-
orem 1.2 then implies that #X(E/K)[p∞] is a perfect square. If E(Q) has odd
rank then #(E(Q)/pE(Q)) is an odd power of p (since E[p] is irreducible), so
#X(A/Q)[p∞] cannot be a perfect square.

Remark 2.15. In the language of visibility of Shafarevich-Tate groups (see [CM00]),
Theorem 2.14 asserts that the visible subgroup of X(A) with respect to the embed-
ding A ↪→ R is canonically isomorphic to the Mordell-Weil quotient E(Q)/pE(Q).

Proposition 2.16. If q 6= p is a prime, then

(4) X(E/K)[q∞] ∼= X(E/Q)[q∞] ⊕ X(A/Q)[q∞].

In particular, if X(E/Q)[q∞] is finite, then X(A/Q)[q∞] has order a perfect
square.

Proof. The intersection of E and A in R is E[p], so the summation map E×A → R
is an isogeny with kernel E[p]. Considering the long exact sequence associated to
0 → E[p] → E × A → R → 0, we see that

(5) H1(Q, E × A)[q∞] ∼= H1(Q, R)[q∞],

and likewise for any completion Qv of Q. We then obtain (4) by combining (5) with
the fact that cohomology commutes with products and that H1(Q, R) ∼= H1(K,E).

If X(E/Q)[q∞] is finite, then since X(A/Q)[q∞] is finite (since L(A, 1) 6= 0,
by construction), it follows from (4) that X(E/K)[q∞] is finite. We have by The-
orem 1.2 that both X(E/K)[q∞] and X(E/Q)[q∞] have order a perfect square,
so (4) implies that X(A/Q)[q∞] has order a perfect square.
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3. An Example

Combining Proposition 2.3, Theorem 2.14, and Proposition 2.16 yields the follow-
ing theorem.

Theorem 3.1. Let E be the elliptic curve y2 + y = x3 − x of conductor 37. For
every odd prime p < 25000 (with p 6= 37), there is a twist A of E×(p−1) such that
#X(A/Q) = pn2 for some integer n.

Remark 3.2. Using the elliptic curve of conductor 43 in place of E one can con-
struct an abelian variety A with X(A/Q) = 37n2 for some integer n.

Though unnecessary for Theorem 3.1, we prove below that X(E/Q) = 0,
which removes our dependence on Proposition 2.13. We show that X(E/Q)[p∞] =
0 for all odd p using [Kol90, Thm. A], and we use a 2-descent (with [CrB]) to see
that X(E/Q)[2] = 0.

Theorem 3.3 (Kolyvagin). Let E be an elliptic curve and let L = Q(
√
−D) be an

imaginary quadratic field of odd discriminant −D, where all primes dividing the
conductor of E split, and assume that D 6= 3, 4. If the Heegner point yL ∈ E(L)
has infinite order (equivalently, by [GZ86], L′(E/L, 1) 6= 0), then #X(E/L) |
t · [E(L) : ZyL]2, where the only primes that divide t are 2 or primes where ρE,p

is not surjective.

By [C97], E is isolated in its isogeny class, so ρ : Gal(Q/Q) → Aut(E[p])
is surjective for all primes p (see [RS01, §1.4]) hence t is a power of 2. Let L =
Q(

√
−7). To compute [E(L) : ZyL] up to a power of 2 we use the Gross-Zagier

formula and the fact that [E(L) : E(Q) + ED(Q)] is a power of 2. By [GZ86,
Thm. 6.3],

h(yL) =
u2|D| 12
‖ωf‖

L′(E, 1)L(ED, 1),

where D = −7, u = 1, and ‖ωf‖ is the Peterson norm of the newform f cor-
responding to E. Generators for the period lattice of E are ω1 ∼ 2.993459 and
ω2 ∼ 2.451389i, so ‖ωf‖ ∼ 7.338133. The quadratic twist ED is the curve 1813B1

in [CrA], and ED(Q) = 0. From [CrA] we find that L′(E, 1) ∼ 0.306000 and
L(ED, 1) ∼ 1.853076, so h(yL) ∼ 0.204446. The height of a generator of E(Q) is
∼ 0.051111 ∼ h(yL)/4, so [E(L) : ZyL] is a power of 2. (As a double check, and to
avoid dependence on the Gross-Zagier formula, we wrote a program using [BCP97]
to compute Heegner points and found that yL = (0, 0), which is a generator for
E(Q).) Thus #X(E/L) is a power of 2.

To connect X(E/L) with X(E/Q), use the inflation-restriction exact se-
quence

0 → H1(L/Q, E(L)) → H1(Q, E(Q)) → H1(L,E(Q)).

Let p be an odd prime. Since H1(L/Q, E(L)) is a 2-group, the above sequence
leads to an injective map

H1(Q, E(Q))[p] ↪→ H1(L,E(Q))[p],
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which induces an inclusion

X(E/Q)[p] ↪→ X(E/L)[p] = 0.
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