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Abstract. In this article, we study a homological nature of modular symbols

and present a conjecture on a submodule of the first homology group of a mod-

ular curve. As applications, we study three problems, namely a conjecture of
Mazur-Rubin-Stein on the distribution of period integrals, Greenberg’ conjec-

ture on the Iwasawa µ-invariant of Mazur-Swinnerton-Dyer p-adic L-function,

and its non-equal characteristic analogue. In particular, we first present a proof
of the conjecture of Mazur-Rubin-Stein. Secondly we show that for an ellip-

tic curve over the rationals, there are infinitely many ordinary primes p such
that the corresponding µ-invariants vanish. Finally, we obtain results toward

the non-vanishing problem, namely a stronger version of results of Ash-Stevens

[Modular forms in characteristic ` and special values of their L-functions, Duke
Math. J. 53 (1986), 849–868], Stevens [The cuspidal group and special values

of L-functions, Trans. Amer. Math. Soc. 291 (1985), no. 2, 519–550]; and a

converse of the result of Vatsal [Canonical periods and congruence formulae,
Duke Math. J. 98 (1999), no. 2, 219–261].
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1. Introduction

Ever since introduced by Mazur-Swinnerton-Dyer [24] and Manin [22], modular
symbols have been useful theoretical and algorithmic tools for the study on modular
forms and L-functions. However their homological nature has rarely been studied
except few cases. For example, Merel [27] studied linear independence of a Hecke
orbit of the Eisenstein cycle in the first homology group of a modular curve. Ash-
Stevens [1] and Stevens [34] studied the generation of the homology group over a
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finite field by a large class of modular symbols. These results require new inputs
such as an estimate on the Dedekind sum and Ihara-type result, respectively. It
also should be noticed that these homological results are one of main ingredients
of remarkable results such as a proof of uniform boundedness conjecture, existence
of a non-vanishing residual modular twisted L-value.

Main theme of present paper is a homological study on various modular sym-
bols with a new input originated from a Rorhlich’s work [28]. His idea to use an
approximate functional equation to study non-vanishing of special L-values turned
out to be fruitful as it has been applied to several important cases. For example,
see Luo-Ramakrishnan [21]. In this paper, we develop his method further to study
a homological nature of modular symbols. In particular, we present a conjecture
on the distribution of various modular symbols in the homology group and obtain
several results toward the conjecture.

As applications, we study three problems related to special values of modular
L-functions. First of all, we study a conjecture of Mazur-Rubin-Stein that present
a limiting behavior of period integrals. Secondly, we study the problem of vanishing
of µ-invariant of Mazur-Swinnerton-Dyer p-adic L-function, so called Greenberg’s
conjecture and obtain results toward it. Finally, we study the non-equal charac-
teristic version of Greenberg’s conjecture, namely non-vanishing modulo prime of
modular L-values with cyclotomic twists.

Let us explain briefly how to study the distribution of modular symbols by
adopting Rohrlich’s method.

1.1. Modular symbols and approximate functional equation. Let Γ be a
congruence subgroup of SL2(Z) and XΓ the corresponding modular curve. We

regard the integrating path
∫ β
α

, i.e., geodesic on XΓ between two cusps α and β as
a relative homology class, called a modular symbol.

Roughly speaking, we want to study whether a class of modular symbols generate
the whole homology group. One example is to study whether the modular symbols∫ i∞
r/q

(1 ≤ r < q) generate the first homology group H1(XΓ,R). Using the Poincaré

pairing between the homology group H1(XΓ,R) and de Rham cohomology group
H1
dR(XΓ), this amounts to show that for each cohomology class, there exists a linear

combination of the symbols
∫
r/q

such that their pairing is non-vanishing.

Main idea is to consider additive averages of modular symbols and to show that
the pairing between these modular symbols and a cohomology class is basically
non-vanishing. These averages can be studied by modifying methods of Rohrlich
or Luo-Ramakrishnan as described below.

For a cusp form f of weight 2, level N with a nebentypus δ, and an integer q > 0
relatively prime to N , we have a version of approximate functional equation∫ ∞

r/q

f(z)dz =

∞∑
n=1

an(f)e( rnq )

n
F1

(
n

y

)
(1.1)

− δ(q)
∞∑
n=1

an(f
∣∣WN )e(unq )

n
F2

(
4π2ny

Nq2

)
.

Here u is the inverse of r modulo q and F1, F2 are rapidly decreasing smooth
functions. As in Rohrlich [28] and Luo-Ramakrishnan [21], we split the average of
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(1.1) into two parts. The average of the first sum in (1.1) turns out to be non-
vanishing. A Kloosterman-like sum appears in the average of the second sum in
(1.1).

An immediate consequence of these arguments is a proof for a conjecture of
Mazur-Rubin-Stein on a limiting behavior of an average of period integrals as dis-
cussed in the next part.

When q varies over powers of a prime, then the corresponding homological gen-
eration problems are related to the problems of cyclotomic modular L-values.

1.2. Special modular L-values. Let us recall the integral part of special values
of modular L-values. Let f be a normalized eigen cuspform of weight 2k and level
N with the Fourier coefficients an(f). For a Dirichlet character ψ, let us set

L(s, f ⊗ ψ) =
∑
n≥1

an(f)ψ(n)

ns

for <(s) > k + 1/2. Recall that if f is a newform, there exist Ω+
f ,Ω

−
f ∈ C× such

that

Lf (ψ) :=
G(ψ)L(k, f ⊗ ψ)

Ω
ε(ψ)
f

are algebraic for all Dirichlet characters ψ where ε(ψ) = ± is the sign of ψ(−1). It
is shown by Shimura that for σ ∈ Gal(Q/Q), one has

Lf (ψ)σ = Lfσ (ψσ).(1.2)

Recall that for a newform such periods can be chosen so that they differ by Z×f ,
the unit group of ring Zf of the integers in Qf and the corresponding L-values are
integral.

For a prime number `, let Ξ` be the set of all Dirichlet characters with `-power
conductors and `-power orders. Rohrlich ([28]) showed that Lf (χ) is non-vanishing
for almost all χ ∈ Ξ` and Luo-Ramakrishnan([21]) showed that a modular form f
is determined by the cyclotomic modular L-values Lf (χ).

In order to study modular L-values and modular forms modulo a prime p 6= `, we

need an optimal period Ω̂f ∈ Cp defined by Vatsal, with which we define another
modular L-value

Lf (χ) =
G(ψ)L(k, f ⊗ ψ)

Ω̂
ε(ψ)
f

.

The period depends not only on the form but also on a maximal ideal m of the
Hecke algebra TN of level N that corresponds to f and p. As in Vatsal [39], we
need to assume the Gorenstein property for TN,m, which is guaranteed if we assume

N ≥ 3, ρm is irreducible, and m - 2N(1.3)

for the Galois representation ρm : G(Q/Q)→ GL2(TN/m) attached to m.

1.3. A conjecture of Mazur-Rubin-Stein. During development of a conjecture
on the Diophantine stability of a simple abelian variety for cyclic extensions of
prime power degree, Mazur and Rubin establish heuristics on the distribution of
period integrals (called modular symbols by them) of newforms corresponding to
elliptic curves over the rational numbers.
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Let f be an eigen cuspform of weight 2. For r ∈ Q, define the period integral by

[r]±f :=
1

Ω±f

{∫ i∞

r

f(z)dz ±
∫ i∞

−r
f(z)dz

}
.

Let E be an elliptic curve over Q and fE the corresponding newform. We set

[r]±E = [r]±fE .

Let Σn = { an | 1 ≤ a < n, (a, n) = 1} be the probability space with the uniform
distribution. Mazur-Rubin [23] establish a conjecture that there exist constants CE
and DE,g with g = gcd(n,N) such that the random variable

[r]±E√
CE log n+DE,g

on Σn is asymptotically the normal distribution.
The conjecture of Mazur-Rubin implies that the period integrals are distributed

with certain regularity. Hence one can expect in particular that their partial av-
erages also follow some asymptotic distribution. In fact, the following limiting
behavior is conjectured by Mazur-Rubin-Stein in [23], of which a proof will be
provided in Section 2.3.

Theorem A. Let M be a prime number with (M,N) = 1 and 0 < x < 1. Then
we have

lim
M→∞

1

M

Mx∑
r=1

[ r
M

]+
f

=

∞∑
n=1

an(f) sin(πnx)

2πiΩ+
f n

2
.

Main ingredients of the proof are to use the version of approximate functional
equation of a cusp form and to modify the argument of Rohrlich. A starting point
of the proof is to observe that

lim
M→∞

1

M

Mx∑
r=1

{
e(
rn

M
) + e(

−rn
M

)

}
=

sin(2πnx)

2πin
,

which can be easily guessed from Weyl’s criterion on the equi-distribution. In
present paper, we study only the case of prime M .

1.4. Conjectures and results on the modular symbols. Let us explain the
aforementioned conjecture on modular symbols in detail. For an open subgroup
Z of Z×` and a set W of representatives of µ`−1/{±1}, we define a submodule

M(`n, Z) of H1(XΓ,Z)(`−1)/2 generated by (
∫ i∞
κr/`n

)κ∈W , r ∈ Z. Similarly we define

a submodule M`,n(Z) of H1(XΓ,Z) by
∫ i∞
r/`n

, r ∈ Z. We expect that they basically

generate the whole homology group as follows.

Conjecture A (Conjecture 3.6). Let Γ = Γ0(N) or Γ1(N). Then the indices

[H1(XΓ,Z)
`−1
2 : M(`n, Z)] are constant for all sufficiently large n > 1.

In [35], the author formulates this conjecture for Γ0(N). In this paper we extend
it to Γ1(N). It is worthwhile to mention that at first glance it is not even sure if
the index is finite. Only known result in this direction is one of Stevens ([34]) that∫ i∞
r/q

generates H1(XΓ,Fp) for r ∈ (Z/qZ)× and q in a large class of prime numbers.

We obtain the following partial results toward the conjecture.
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Theorem B (Theorem 4.1 and Theorem 4.6). (1) For any non-empty open sub-

set Z of Z`, M(`n, Z) is of full rank in H1(XΓ,Z)
`−1
2 for all sufficiently large

n > 0.
(2) The indices [H1(XΓ,Z) : M`,n(Z)] are constant for infinitely many n > 0.
(3) Let B > 0 be a fixed integer that is sufficiently large. The indices [H1(XΓ,Z) :

M`,B(Z×` )] are constant for infinitely many ordinary prime `.

Let us set the indices in Conjecture A and Theorem B (2) as νΓ,` and vΓ,`,
respectively. We present numerical computations for the indices using modular
symbol formalism in Section 3.3. The results seem to indicate that νΓ1(N),` = 1. In
particular, the indices do not depend on the primes `.

Let us give brief descriptions on the proof of Theorem B. Using a non-degenerate
pairing between homology group and de Rham cohomology group, we turn the full-
rank problem into non-vanishing one, which can be dealt with the approximate
functional equations for partial L-functions. For a0 ∈ Z with a0 + `vZ` ⊆ Z and
ν ∈ Z×` , we define a special modular symbol

Υn(ν) =
1

`n−v

∑
a≡a0(`v)

ζ−aνn

(∫ i∞

aκ
`n

)
κ

∈M(`n, Z)⊗ C.

For α ∈ Z`, let [α]n be the (n − v)-th partial sum of `-adic expansion of α. For

f = (fκ, gκ)κ∈W ∈ (S2(Γ) + S2(Γ))W ' H1
dR(XΓ)W , the characteristic function IW

of W , and an integer r > 0, the additive adaptation of Rohrlich’s method enables
us to obtain the pairing

〈Υn(rν), f〉 = IW (ν)
ar(fν)

r
+ IW (−ν)

ar(g
∗
ν)

r
(1.4)

+O

( ∑
κ∈W\{ν}

[rκ
ν

]−1/2+ε

n
+

[
−rκ
ν

]−1/2+ε

n

)
+ o(1).

In order to estimate the error terms containing W in (1.4), we use the pairwise Q-
multiplicative independence of W introduced in Washington [43] and Sinnott [32].
Recall that a subset S of Z` is pairwise Q-multiplicative independent if a/b ∈ Q×
for a, b ∈ S implies that a = b. The independence can be interpreted as follows. For
α ∈ Zp, let [α]n be the positive residue of α modulo pn. Pairwise Q-multiplicative
independence of W implies: For κ, ν ∈W , and a positive r ∈ Z we have[rκ

ν

]
n
� `

n
` if and only if κ 6= ν.(1.5)

Non-triviality of f implies the non-vanishing of the pairing in (1.4) for all sufficiently
large n and hence we are able to deduce the full-rank result.

The use of approximate functional equation and property (1.5) to deduce Theo-
rem B is an additive adaptation of the arguments of Rorhlich and Luo-Ramakrishnan
as they play crucial roles in [28] and [21].

Let us explain briefly how to obtain the statements (2) in Theorem B. For a
non-empty open subset Z of Z`, we construct a sequence of the indices nk such that
M`,nk(Z) are increasing and stabilize for all sufficiently large k. Such construction
can be obtained by modifying Stevens’ argument [34]. For the statement (3), we
fix an integer n that is sufficiently large and construct a sequence of ordinary prime
`i such that M`i,n(Z×`i) are increasing and stabilize. For the details, please refer to
Section 4.
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1.5. Greenberg’s conjecture. Let f be a Hecke eigen cuspform of level N and
weight 2. For an ordinary prime p, one can construct a p-adic measure on Zp defined

in terms of the pairing between modular symbols
∫ i∞
a/pn

and a p-stabilization of f .

The distribution property of the p-adic measure amounts to the fact that the p-
stabilization is an eigenform of Up-operator. Then one defines a p-adic analytic
function Lp(f, s, φ) by the Mazur-Mellin transform of the measure. This p-adic L-
function interpolates the values Lf (φ). The function Lp(f, s, φ) is called the Mazur-
Swinnerton-Dyer p-adic L-function. The (analytic) µ-invariant µ(Lp(f, s, φ)) of the
p-adic L-function measures its divisibility by p. In particular, Lp(f, s, φ) is trivial
modulo p if the µ-invariant is positive. The following is a longstanding conjecture
given by Greenberg.

Conjecture B (Greenberg). If ρm is irreducible, then µ(Lp(f, s, φ)) = 0.

The µ-invariants of several p-adic L-functions have been studied by Ferrero-
Washington [7], Sinnott [31], Hida [15], Vatsal [42], and Finis [9]. For several
decades since the result of Washington, the cyclotomic modular case, unlike success
of anti-cyclotomic cases, has not been resolved even without a single partial result
as far as our literature surveys show.

Since the vanishing modulo p of Mazur-Swinnerton-Dyer p-adic L-function im-
plies the vanishing of the p-adic measure twisted by W , it can be easily deduced
that:

Theorem C (Theorem 8.3). Assume (1.3), Conjecture A, and p - νΓ1(N),`. Then
the Greenberg conjecture holds.

Theorem B.(3) is powerful enough to deduce infinitely many cases of Mazur-
Swinnerton-Dyer p-adic L-functions such that the corresponding µ-invariant van-
ishes.

Theorem D (Theorem 6.4). Let E be an elliptic curve over Q and φ a Dirichlet
character with gcd(NE , f(φ)) = 1. We assume (1.3). For infinitely many ordinary
p, we have

µ(Lp(E, s, φω
j)) = 0

for some 0 ≤ j < p− 1.

Using Kato’s result on the Iwasawa main conjecture for elliptic curves over the
rational numbers we can obtain a consequence of Theorem D on the algebraic µ-
invariants of the elliptic curves as follows.

Corollary E (Corollary 6.6). For infinitely many ordinary prime p, we have

µ(Selp(E ⊗ φ)(ω
j)) = 0

for some 0 ≤ j < p− 1.

1.6. Non-vanishing of special L-values modulo p. Let p be a prime ideal
over p in Q(µ`∞). The following non-equal characteristic analogue of Greenberg’s
conjecture is well-known.

Conjecture C (Forklore). If ρm is irreducible, then Lf (χ) 6≡ 0 ( mod p) for almost
all χ ∈ Ξ`.
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This is a generalization of Washington’s theorem [43]. The indivisibility of special
values of several L-functions has been studied by Washington [43], Sinnott [32],
Hida [14], Vatsal [42], Finis [8], Hsieh [17], Burungale-Hsieh [2], and Chida-Hsieh
[3]. Similar as before, no partial result is known for the cyclotomic case. In present
paper, we study a relation between Conjecture A and C; and provide a partial
result toward Conjecture C.

In Sun [38], the second-named author show that Qf (χ) = Q(Lf (χ)) for almost
all χ ∈ Ξ`. Let Ff = Fp({an(f) |n ≥ 1}). Then we have the following finite field
analogue.

Theorem F (Theorem 8.3). Assume (1.3) and Conjecture A. Let the prime p -
νΓ1(N),`. Then we have

Fp(Lf (χ)) = Ff (χ)

for almost all χ ∈ Ξ`. In particular, Conjecture C holds.

Even though Theorem B is far away from a complete proof of Conjecture A,
it is still powerful enough to deduce a positive characteristic analogue of Luo-
Ramakrishnan’s result that the modular L-values with cyclotomic twsits determine
the modular form, or a converse of Vatsal’s result ([39]); and a result toward Con-
jecture C that is an extension of Ash-Stevens [1] and Stevens [34] as follows.

Theorem G (Theorem 7.1 and Corollary 7.4). With the assumption (1.3) and p -
vΓ1(N),`, there exists an infinite set Z` of Dirichlet characters of `-power conductors
such that:

(1) Let m ≥ 1. If

Lf (φ) ≡ Lg(φ) ( mod pm)

for a φ ∈ Z` with sufficiently large conductor, then

f ≡ g ( mod pm).

(2) We have

Fp
(
Lf (φ)

)
= Ff (φ)

for almost all φ ∈ Z`. In particular, we have

Lf (φ) 6≡ 0 ( mod p)

for almost all φ ∈ Z`.

While the authors are preparing this manuscript, they find that a converse of
Vatsal’s result is also obtained by Kramer-Miller [20]. We want to remark that
even if ours is restricted to weight 2, it only requires a single Dirichlet character
of a sufficiently large prime power conductor. On the other hand, a large class of
Dirichlet characters are necessary to obtain the result of Kramer-Miller.

Roughly speaking, the proofs of indivisibility consist of two steps: The arguments
of Galois averages and the results on distribution of algebraic cycles with irrational
twists. Major breakthrough for the second step in the anti-cyclotomic cases has
been achieved by Vatsal, Hida, and Finis who obtain successful dynamical and geo-
metric generalization of the proofs of Washington([43]) and Sinnott ([32]), namely
equi-distribution of Heegner points, Zariski density of CM points, independence of
algebraic functions, all of which are twisted by irrational torsion elements of pro-`
group. The proofs of Theorem F and G are also divided into two similar steps. The
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idea is to replace the distribution result of Hida and Vatsal by Conjecture A and
Theorem B.

Let us briefly explain main ingredients in the proofs of Theorem F. A trick is
to transform the generation problem into non-vanishing one for modular L-values.
We evaluate the following quantity in two different ways:

1

[Ff (χ) : Fp]
TrFf (χ)/Fp(χ(a)Lf (χ)),(1.6)

where a ≡ 1 ( mod `) and a 6≡ 1 ( mod `2). First, we show that the average (1.6)
is non-vanishing for χ ∈ Ξ` with sufficiently large conductor. For this, we use
Conjecture A and Theorem B to deduce the non-vanishing modulo p of (1.6) in
Theorem F and G, respectively. On the other hand, using the transitivity of trace
and the fact that

TrFf (χ)/Fp(Lf (χ))∩Fp(χ)(χ(a)) = 0 unless Fp(χ) ⊆ Fp(Lf (χ)),

the assertion that Fp(χ) 6⊆ Fp(Lf (χ)) for infinitely many χ is reduced to an absurd
equality for (1.6). Hence we obtain that Fp(χ) ⊆ Fp(Lf (χ)). By adopting an
argument of Luo-Ramakrishnan, we can show the remaining part that Ff (χ) =
Fp(χ,Lf (χ)) for almost all χ ∈ Ξ`. For details, please see the proof of Theorem
8.3.

1.7. Organization of the paper. In Section 2, we review general properties of
modular symbols and interpret the period integrals of modular forms along the
modular symbols as an additive twists of L-functions of modular forms. We provide
a proof of the conjecture of Mazur-Rubin-Stein. In Section 3, we explain abelian
modular symbols studied first by Hida [13]. Using this, we present a prototype of
our method for Dirichlet L-values and we present the conjecture on submodules of
the homology group generated by modular symbols including numerical evidences
for the conjecture. In Section 4, we obtain several results toward the conjecture.
In Section 6, the relation between Conjecture A and Greenberg’s conjecture is
discussed. In particular, using the result in Section 3, we present infinitely many
cases of Mazur-Swinnerton-Dyer p-adic L-functions of elliptic curves of which µ-
invariants vanish. In Section 7 and 8, we study the problems related to the special
L-values modulo prime.

Notations and Definitions.

• We use the function e(z) = exp(2πiz).
• For an odd prime number `, we set Ξ` to be the set of wild Dirichlet characters

of `-power conductors and orders.
• For a positive integer Q, let µQ be the set of all Q-th roots of unity and µ×Q the

set of all primitive Q-th roots of unity.
• For a Dirichlet character φ, f(φ) is the conductor and ε(φ) = ± is the sign ± of
φ(−1).

• Let W be a fixed set of representatives of µ`−1/{±1}.
• For a Dirichlet character φ and a prime q | f(φ), φq and φ(q) are q-part and

non-q-part of φ, respectively.
• We use G(ψ) for the Gauss sum of ψ. In this paper all Dirichlet characters are

primitive unless stated explicitly. TN is the Hecke algebra generated by the Hecke
operators T(n), gcd(n,N) = 1.
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• In this paper, we use η for a Dirichlet character with f(η`)
∣∣` and gcd(f(η(`)), N) =

1. That is, η is a character of the first type in Iwasawa’s sense.
• For two functions F and G, we say F �S G if |F/G| ≤ C for some constant C

that depends only on the data S.
• For convenience, in this paper we write the weights of modular forms as 2k > 0,
k ∈ 1

2Z.

Acknowledgements. The authors thank Ming-Lun Hsieh, Ashay Burungale, and
Chan-Ho Kim for helpful discussions and comments. They are grateful to Ashay
Burungale for bring their attention to the conjecture of Mazur-Rubin-Stein and to
Dohoon Choi and Yuichiro Taguchi for pointing out an error in the first draft of
manuscript.

2. Modular symbols and a conjecture of Mazur-Rubin-Stein

In this section, we first collect general properties of modular symbols. We inter-
pret period integrals of cusp forms along the modular symbols as special values of
L-functions with additive twists and deduce approximate functional equations for
them. As an application of the equation, we prove a conjecture of Mazur-Rubin-
Stein for the case of prime level.

2.1. Modular symbols of congruence subgroups. The main references are [4]
and [26]. The modular symbol formalism is first introduced by Birch and Manin. It
is a basic tool to construct a p-adic L-function as a p-adic Mazur-Mellin transform of
suitable measure on Z×p as described by Mazur and Swinnerton-Dyer ([24]). There
are several ways of formulating the theory of modular symbols such as homologi-
cal, cohomological, group-theoretical, and geometrical descriptions. Here we focus
on the homological setting. For comprehensive explanations about these several
settings, please refer to Wiese [44].

For the congruence subgroup Γ = Γ0(N) or Γ1(N) and the upper half plane H,
we set XΓ = (H ∪ P1(Q))/Γ, the modular curve for Γ. Let CΓ = P1(Q)/Γ be the
set of cusps. Since we have the exact sequence

0 = H1(CΓ,Z)→ H1(XΓ,Z)→ H1(XΓ, CΓ,Z),

the homology group H1(XΓ,Z) can be regarded as a submodule of H1(XΓ, CΓ,Z).
By Manin-Drinfeld theorem, we also have H1(XΓ, CΓ,Z) ⊆ H1(XΓ,Q).

Let H∗ = H ∪ P1(Q). To α, β ∈ H∗, we associate a relative homology class
{α, β}Γ which corresponds to a geodesic connecting α and β on XΓ. They enjoy
the following properties: For all α, β, δ ∈ H∗,

(1) {α, β}Γ + {β, δ}Γ + {δ, α}Γ = 0
(2) {α, α}Γ = 0
(3) {α, β}Γ = −{β, α}Γ.

The group SL2(Z) acts on the symbols canonically through the action on H∗ and
the action of Γ is defined to be trivial. It is well known that there is a surjective
homomorphism π : Γ→ H1(XΓ,Z) defined by γ 7→ {z, γz}Γ for any fixed z ∈ H∗.

One can reformulate the above descriptions in an algebraic way as follows. Let
M be the free abelian group generated by abstract symbols {α, β} with relations

{α, β}+ {β, δ}+ {δ, α} = 0
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for α, β, δ ∈ P1(Q). We define a left action of SL2(Z) onM similarly andM2(Γ,Z)
to be a quotient space of M by the relations γξ − ξ for all γ ∈ Γ and ξ ∈ M. The
Z-module M2(Γ,Z) is called the space of (homological) modular symbols of weight
2 for Γ. For a general ring R in which the orders of elements in Γ with finite
order are invertible, we can define M2(Γ, R) in a similar way. Let B be the free
Z-module generated by abstract symbols {α}, α ∈ P1(Q). The action of SL2(Z) on
B is similarly defined. Hence we define B2(Γ, R) in the same way. We consider the
canonical boundary map

∂ :M→ B, {α, β} 7→ {β} − {α}.

Let us set

S2(Γ,Z) = ker ∂.

It is called the space of cuspidal modular symbols. One can show thatM(Γ,Z)⊗R '
M(Γ, R) and S(Γ,Z)⊗R ' S(Γ, R) if R is flat. We have isomorphisms

M2(Γ,Z) ' H1(XΓ, CΓ,Z)

and

S2(Γ,Z) ' H1(XΓ,Z)

(Manin [22]) and

S2(Γ, R) ' H1
p (XΓ, R).

(Wiese [44, Theorem 2.6.1]).
Let us collect some results on the first cohomology group of XΓ, which shall be

useful for the proof of Theorem 4.1. Main reference is Hida [13, Section 6].
Observe that Γ is normalized by j =

(−1 0
0 1

)
. Define an operator ∗ on γ ∈ Γ

and z ∈ H such that γ∗ = jγj ∈ Γ and z∗ = −z ∈ H. One obtains that (γz)∗ =
γ∗z∗. Therefore the operator ∗ gives a well-defined involution on XΓ,M(Γ, R), and
S(Γ, R). Let H±1 (XΓ, R) be submodules of H1(XΓ, R) that consist of eigenvectors
of ∗ with eigenvalues ±1 respectively.

Let H1
dR(XΓ) be the first de Rham cohomology of XΓ. One obtains the Hodge

decomposition S2(Γ) ⊕ S2(Γ) ' H1
dR(XΓ). Similarly as before the involution ∗

has an action on H1
dR(XΓ) and S2(Γ) ⊕ S2(Γ). For h ∈ S2(Γ) ⊕ S2(Γ), we have

h∗(z) = h(z∗). The involution ∗ interchanges S2(Γ) and S2(Γ). We define an
involution ∗ on a parabolic cohomology class ϕ ∈ H1

p (Γ,C) as ϕ∗(γ) = ϕ(γ∗).
The involution ∗ is normal with repect to the cap product

∩ : H1(XΓ,Z)×H1
dR(XΓ)→ C, ξ ∩ ω =

∫
ξ

ω.

The cap product can be interpreted as a pairing between S2(Γ)⊕S2(Γ) and S2(Γ,C)

as follows. For f ∈ S2(Γ), g ∈ S2(Γ), and {α, β}Γ ∈ S2(Γ,C), we set〈
{α, β}Γ, (f, g)

〉
=

∫ β

α

f(z)dz +

∫ β

α

g(z)dz∗

Furthermore, the pairing 〈· , ·〉 is non-degenerate (Merel [26]).
For a positive integer q and r ∈ (Z/qZ)×, let us set

ξ±q,r =

{
i∞, r

q

}
Γ

±
{
i∞,−r

q

}
Γ

∈ H1(XΓ, CΓ,Z).
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For convenience of calculations, let us set

ξ±n (r) = ξ±`n,r.

2.2. Approximate functional equations of additive twists. Let f ∈ S2k(N, δ)
for a Nebentypus δ. Let WN =

(
0 −1
N 0

)
be the Fricke involution. Note that f |WN ∈

S2k(N, δ). For x ∈ Q, We set

t(x) = ( 1 x
0 1 ).

For f(z) =
∑
n≥1 ane(nz), we define f |t(x) as

f |t(x)(z) =
∑
n≥1

an(f)e(n(z + x)),

and for s ∈ C with <(s) > k + 1/2, we define the associated Dirichlet L-series

L(s, f |t(x)) :=
∑
n≥1

an(f)e(nx)

ns

as the additive twist of L-function of f by x. Let q > 0 be an integer that is not
necessarily prime to N . We set Q = lcm(N, q2). For r ∈ Z/qZ, we define the
completed additive twist as

Λ
(
s, f,

r

q

)
= Q

s
2 (2π)−sΓ(s)L

(
s, f
∣∣t(r
q

))
.

Let d = gcd(q,N), N0 = N
d and assume that gcd(Nd , d) = 1. From now on, we use

the decomposition

δ = δ1δ2

corresponding to (Z/NZ)× ' (Z/N0Z)× × (Z/dZ)×. For the remaining part of

present paper, we assume that δ2 is primitive. Hence Q = q2N
d . For x, y ∈ Z with

xd − N
d y = 1, set Wd =

(
dx y
N d

)
. The following description on Wd can be found in

[5, Section 4]. One can show that Wd is a factor of WN , and f |Wd ∈ S2k(N, δ1δ2).
Furthermore Wd commutes with WN . Observe that Wd is a normalizer of Γ0(N).
We set

WN,d = WNWd.

One can easily show that WN,d commutes with the Hecke operators T(n) when
gcd(n,N) = 1. We obtain that

W 2
N,d =

(
−dN 0

0 −dN

)(
dx− N

d y − 1

Nx(1− y) dx− Ny2

d

)
∈
(
−dN 0

0 −dN

)
Γ0(N).(2.1)

Note that f
∣∣WN,d ∈ S2k

(
N, δ1δ2

)
. Furthermore, we have

f
∣∣W 2

N,d = δ(dx−N0y
2)f = δ2(−N0)f.

Note that if f is a newform then f |WN,d = ζf for a ζ ∈ C with ζ2 = δ2(−N0). We
have the following functional equation relating completed additive twists in pairs:

Proposition 2.1. For an integer a > 0 with gcd(a, q) = 1, choose an integer u > 0

such that u ≡ −(aN0)−1 ( mod q2

d ). Then we have

Λ
(
s, f,

a

q

)
= i2kδ1(q)δ2(uN0)Λ

(
2k − s, f

∣∣WN,d,
u

q

)
.(2.2)
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Proof. Set 1 + uaN
d = q2

d v. Then we obtain the following decomposition.

t
(a
q

)
WQ =

q

d
WN

(
q + uNd − qdy − ux
−Na− qvN

d
Nay
d + qvx

)
Dd t

(u
q

)
.

Let C be the matrix between WN and Dd in the above expression. Observe that
C ∈ Γ0(N). Therefore we have

f
∣∣t(r
q

)
WQ = δ (C)f

∣∣WN,dt
(u
q

)
.(2.3)

Since δ(C) = δ(q + uN0) = δ1(q)δ2(uN0), we have the following expression.

Λ
(
s, f,

a

q

)
=Q

s
2

∫ ∞
1√
Q

f
∣∣t(a
q

)(iy)ys
dy

y
(2.4)

+ i2kδ1(q)δ2(uN0)Q
2k−s

2

∫ ∞
1√
Q

f
∣∣WN,dt

(u
q

)
(iy)y2k−s dy

y
.

Now we replace f and a in (2.4) by f
∣∣WN,d and u, respectively and from (2.1)

obtain the proposition. �

We follow Luo-Ramakrishnan [21]. Let Φ be an infinitely differentiable function

on (0,∞) with compact support and
∫∞

0
Φ(y)dyy = 1, and set κ(t) =

∫∞
0

Φ(y)yt dyy .

Let us set

F1,s(x) =
1

2πi

∫ 2+i∞

2−i∞
κ(t)Γ(s+ t)x−t

dt

t
, and

F2,s(x) =
1

2πi

∫ 2+i∞

2−i∞
κ(−t)Γ(s+ t)x−t

dt

t
.

By shifting the contour one can show that F1,s and F2,s satisfy: For each i,

Fi,s(x) = O(Γ(<(s) + j)x−j) for all j ≥ 1 as x→∞.(2.5)

Fi,s(x) = Γ(s) +O(Γ(<(s)− 1

2
)x

1
2 ) as x→ 0.(2.6)

Here the implicit constants in the above estimates depend only on Φ and j. For
<s > k + 1

2 and x ∈ Q, one can show

1

2πi

∫ 2+i∞

2−i∞
κ(t)Γ(t+ s)L(t+ s, f

∣∣t(x))yt
dt

t
=

∞∑
n=1

an(f)e(xn)

ns
F1,s

(
n

y

)
.

Moving the contour to left, one obtains

κ(0)Γ(s)L(s, f
∣∣t(x)) =

1

2πi

∫ 2+i∞

2−i∞
κ(t)Γ(t+ s)L(t+ s, f

∣∣t(x))yt
dt

t

− 1

2πi

∫ −2+i∞

−2−i∞
κ(t)Γ(t+ s)L(t+ s, f

∣∣t(x))yt
dt

t

Using the equation (2.2), we obtain the following approximate functional equation

Γ(s)L
(
s, f
∣∣t(a

q

))
=

∞∑
n=1

an(f)e(anq )

ns
F1,s

(
n

y

)
(2.7)

+ i2kδ1(q)δ2(N0)

(
Q

4π2

)k−s ∞∑
n=1

an(f
∣∣WN,d)e(unq )δ2(u)

n2k−s F2,2k−s

(
4π2ny

Q

)
.
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2.3. A conjecture of Mazur-Rubin-Stein. It is predicted by Mazur-Rubin that
the values (called modular symbol by them)[ r

M

]±
f

=
1

Ω±f

〈
ξ±M,r, f

〉
have normal distribution with variance αf logM + βf,d, d = gcd(N,M) for some
constants αf , βf,d ≥ 0.

Let us set

G±(f ;x) =

∞∑
n=1

an(f) sin(2πnx)

2πiΩ±f n
2

.

The limit of the following sum can be easily guessed as the set { rM | 0 ≤ r < M} is
equi-distributed in [0, 1) as M →∞.

lim
M→∞

1

M

Mx∑
r=1

{
e(
rn

M
) + e(

−rn
M

)

}
=

∫ x

0

(e(nt) + e(−nt))dt =
sin(2πnx)

2πin
.

We need an estimate on the error.

Proposition 2.2. Let n < M . Then we have

1

M

Mx∑
r=1

{
e(
rn

M
) + e(

−rn
M

)

}
=

sin(2πnx)

2πin
+O(

1

M
+

n

M2
).(2.8)

Proof. The L.H.S. of (2.8) is equal to

e( nM )(e( bMxcn
M )− 1)− e(− bMxcn

M ) + 1

M(e( nM )− 1)
.

Since bMxc/M = x+ θ/M with 0 ≤ θ < 1, the last expression is equal to

e(xn)− e(−xn) +O( nM )

2πin+O(n
2

M )
+O(

1

M
).

Hence we finish the proof. �

In the rest of this section we only consider the case that M is a prime number
that is relatively prime to the level N . Let I be a subset of {1, 2, · · · ,M − 1}.
The following estimate on an exponential sum can be obtained from one on the
Kloosterman sum: ∑

r∈I
e(
ar + br′

M
)�M1/2+ε(2.9)

where r′ is the inverse of r modulo M and a, b are integers.

Theorem 2.3. Let M be a prime number with gcd(M,N) = 1 and 0 < x < 1.
Then for any ε > 0, we have

1

M

∑
1≤r≤Mx

[ r
M

]+
f

= G+(f ;x) +O(
1

M1/4−ε ).(2.10)

Proof. Let us set

U(x,M ;n) :=
1

M

Mx∑
r=1

{
e(
rn

M
) + e(

−rn
M

)

}
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and

V (x,M ;n) =
1

M

Mx∑
r=1

{
e(
r′n

M
) + e(

−r′n
M

)

}
.

From (2.7), we have

1

M

Mx∑
r=1

[ r
M

]+
f

=

∞∑
n=1

an(f)U(x,M ;n)

n
F1,1

(
n

y

)
(2.11)

+ i2kδ(M)

∞∑
n=1

an(f
∣∣WN )V (x,M ;n)

n
F2,1

(
4π2ny

NM2

)
.

Let us first consider the first sum of (2.11). We split it into two parts, a sum over
n ≤ y and one over n > y. Let us set [n] be the least positive residue of n modulo
M . By Proposition 2.2, if M - n, we have

|U(x,M ;n)| � 1

[n]
.

Observe that by Proposition 2.2, the sum over n ≤ y is equal to∑
n≤y

an(f)U(M,x;n)

n
F1(

n

y
) =

∑
n≤y
M-n

an(f) sin(2π[n]x)

2π[n]n
F1(

n

y
)

+O

(
1

M

∑
n≤y
M-n

an(f)

n
F1(

n

y
)

)
+O

(∑
n≤y
M|n

an(f)

n
F1(

n

y
)

)

By (2.6), this is equal to∑
n≤y

an(f) sin(2π[n]x)

2πi[n]n
+O

(∑
n≤y
M-n

n1/2+ε

n[n]

(
n

y

)1/2)
+O

(
y1/2+ε

M

)
.(2.12)

Observe that for a non-zero real number b, we obtain∑
n≤y
M-n

nb

[n]
=

M−1∑
r=1

1

r

∑
n≤y

n≡r(M)

nb �
M−1∑
r=1

1

r

∑
q<y/M

(Mq + r)b � (logM)M b
( y
M

)1+b

.

Hence (2.12) is equal to∑
n≤y

an(f) sin(2π[n]x)

2πi[n]n
+O(

(logM)y1/2+ε

M
)

=
∑
n<M

an(f) sin(2πnx)

2πin2
+O(

∑
M<n≤y
M-n

1

n1/2−ε[n]
) +O(

(logM)y1/2+ε

M
)

=
∑
n<M

an(f) sin(2πnx)

2πin2
+O(

(logM)y1/2+ε

M
).

Note that the sum over n > y in the first sum of (2.11) is∑
n>y

an(f)U(M,x;n)

n
F1(

n

y
)�

∑
n>y

n1/2+ε

n

(
n

y

)−1

= y
∑
n>y

1

n3/2−ε �
1

y1/2+ε
.
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Now let us consider the second sum in (2.11). We also divide it into two parts:
a sum over n ≤ NM2/4π2y and one over n > NM2/4π2y. By the estimate (2.9),
one have

V (x,M ;n) =

{
O(M1/2+ε) if M - n
O(1) if M | n

.

Hence from (2.6) the sum over n ≤ NM2/4π2y is

� 1√
M

∑
n≤NM2/4π2y

n 6≡0(M)

1

n1/2−ε +
∑

n≤NM2/4π2y
n≡0(M)

1

n1/2−ε

� 1√
M

∑
n�M2/y

1

n1/2−ε +
1

M1/2−ε

∑
n�M/y

1

n1/2−ε

� M1/2+2ε

y1/2+ε
.

By (2.5) the sum over n > NM2/4π2y is

� 1√
M

∑
n>NM2/4π2y

n6≡0(M)

1

n1/2−ε

( ny
M2

)−1

+
∑

n>NM2/4π2y
n≡0(M)

1

n1/2−ε

( ny
M2

)−1

� M2

y
√
M

∑
n�M2/y

n−3/2+ε +
M2

y

1

M3/2−ε

∑
n�M/y

n−3/2+ε

� M1/2+ε

y1/2+ε
.

In total, setting y = M3/2 we complete the proof. �

3. Submodules generated by modular symbols

In this section, after presenting a prototype of our argument in terms of abelian
modular symbols, we introduce a conjecture on a submodule generated by special
modular symbols that is a modular version of the prototype. Some numerical
evidences are also presented.

3.1. Abelian modular symbols. Let us introduce abelian modular symbols for-
mulated by Hida ([13]). We briefly review its application to alternative proofs of
theorem of Ferrero-Washington on the vanishing of µp-invariant of Kubota-Leopoldt
p-adic L-function and theorem of Washington on non-vanishing mod p of special
Dirichlet L-values twisted by characters in Ξ`. For details, please refer to Hida [13]
and Sun [35].

For a primitive Dirichlet characters ψ, φ with f(ψ) = N , f(φ)|`∞, let us consider
a cohomology class

ω(ψ) =
1

G(ψ)

∑N
s=1 ψ(s)e(sz)

1− e(Nz)
dz ∈ H1(XN ,O)

for an integer ring of O of a suitable finite extension of Q`. We also consider a
homology class

λ(φ) =

f(φ)∑
r=1

φ(r)v(
r

N
) ∈ H1(XN ,Z[φ]).
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For an open subset Z of 1 + `Z`, let us define a submodule of H1(XN ,Z)
`−1
2 as

follows.

m(`n, Z) =

〈(
v
(βκ
`n

))
κ∈W

∣∣∣β ∈ Z〉 ∩H1(XN ,Z)
`−1
2

where 〈S〉 is a submodule generated by S. Recall that W is the set of representatives
of µ`−1/{±1}. The joint-normality of Q-linear independent p-adic integers and
pairwise Q-multiplicative independence of W play a crucial role in the proof of the
following theorem.

Theorem 3.1 ([35], Proposition 4). For an open subset Z of Z`, we have

m(`n, Z) = H1(XN ,Z)
`−1
2

for all sufficiently large n.

Using Theorem 3.1, we obtain alternative proof of the theorem of Washington
as follows. We consider the following expression:

L(0, ηχ) = λ(η`χ) ∩ ω(η(`))

where ∩ : H1(XN , {±i∞},O)×H1(XN ,O)→ O is the cap product that is nothing
but an integration. Recall that L(0, ηχ) = −η(−1)L(0, ηχ).

Theorem 3.2 (Washington [43]). Let η be fixed and η(−1) = −1. For almost all
χ ∈ Ξ`, we have

L(0, ηχ) 6≡ 0 ( mod p).

Sketch of proof. Assume that L(0, ηχ) ≡ 0 ( mod p) for infinitely many χ ∈ Ξ`. By
the arguments of Galois average (for example, see the proof of Theorem 7.3), there
is a fixed integer m > 0 such that∑

κ∈W
v(
κβ

`n
) ∩ ω(η(`))κ,m ≡ 0 ( mod p)

for all β ∈ 1 + `mZ` and infinitely many n. Here ω(η(`))κ,m is the cohomology

class associated to the function
∑
k≡κ−1(`m) η

(`)(k)e(kz). We obtain from Theorem

3.1 that ξ ∩ ω(η(`))κ,m ≡ 0 ( mod p) for each κ and all ξ ∈ H1(XN ,Z). Therefore

we obtain ω(η(`))κ,m ≡ 0 ( mod p), which is absurd. In conclusion, we reprove the
theorem. �

In the next, let us give another proof on the vanishing of µ-invariant of Kubota-
Leopoldt p-adic L-functions.

Let ψ be a Dirichlet character of conductor N > 1 with p - N . We define a
Zp[ψ]-valued function σψ on the set of basic open subsets of Zp as follows:

σψ(a+ pmZp) = ψ(p)mv
( a

pm

)
∩ ω(ψ).

Then it can be easily shown that σψ is a p-adic measure on Zp. For a Dirichlet
character φ of a prime power conductor, from [13, Theorem 4.41], we have the
following interpolation formula.∫

Z×p
φ(x)xjdσψ(x) =− φ(N)−1N−j(1− φψ(p)pj)L(−j, φψ)(3.1)
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The Kubota-Leopoldt p-adic L-function is a p-adic analytic function on Zp given
as a Mazur-Mellin transform of a p-adic measure as follows. For χ ∈ Ξp and η of
the conductor pN , we set

Lp(s, ηχ) =

∫
Z×p
χηp(x)〈x〉−sdση(p)(x),(3.2)

Let us define a power series f(T ; η) ∈ Zp[η][[T − 1]] as

f(T ; η) =

∫
Zp
T y

∑
κ∈µp−1

ηp(κ)dση(p)(κγ
y).

where γy : Zp → 1 + pZp is the continuous isomorphism with γ = 1 + p. Then we
have

Lp(s, ηχ) = f
(
χ(γ)γs; η

)
.

Here f(T ; η) is called the Iwasawa power series. The µ-invariant of Lp(s, ηχ) is
that of f(T ; η), i.e., the minimum of p-adic valuations of the coefficients. Let π be
a uniformizer of O.

Theorem 3.3 (Ferrero-Washington [7]). The µ-invariant of Lp(s, ψ) vanishes.

Sketch of proof. Assume that µ > 0. Then we have∑
κ∈µp−1

ηp(κ)dση(p)(κγ
y) ≡ 0 ( mod π).

In other words, for any basic open set a+ pmZp, we have∑
κ

ηp(κ)v
( κa
pm

)
∩ ω
(
η(p)

)
≡ 0 ( mod π).

By Theorem 3.1, this implies that ω(η(p)) ≡ 0 ( mod π) which is absurd. In conclu-
sion, we prove the theorem. �

Using this method, it is proved in Sun [37] that the residual Iwasawa power series
f(T ; η) ( mod π) is transcendental over the rational function field.

3.2. Special modular symbols. In the rest of this section and Section 4, we
study a modular version of Theorem 3.1. For an open subset Z of 1 + `Z`, let us
define submodules of a product of the first homology group as follows.

M(`n, Z) =

〈({
i∞, rκ

`n

}
Γ

)
κ∈W

∣∣∣ r ∈ Z〉 ∩H1(XΓ,Z)
`−1
2 ,

M(`n, Z)± =

〈(
ξ±n (rκ)

)
κ∈W

∣∣∣ r ∈ Z〉 ∩H1(XΓ,Z)
`−1
2 .

In order to get information on generators of M(`n, Z)± when Γ = Γ1(N), we need
the following criterion.

Proposition 3.4 ([30], Proposition 8.13). Two cusps a
b , c

d are equivalent under
Γ1(N) if and only if b ≡ d ( mod N) and a ≡ c ( mod gcd(b,N)).

For α ∈ Z`, let (α)m be the m-th partial sum of α and set (α)0 = 0. Let us set

`e = gcd(N, `∞).
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By Proposition 3.4, we have{
α

`n
,

(α)e
`n

}
Γ1(N)

∈ H1(X1(N),Z)

for all n > e. For such n, let us set

ξ̂±n (α) = ξ±n (α)− ξ±n ((α)e) ∈ H±1 (X1(N),Z).

For a Dirichlet character ψ, let us set

Λ(ψ) =

f(ψ)∑
r=1

ψ(r)
{
i∞, r

f(ψ)

}
Γ1(N)

∈ H1(X1(N), CΓ1(N),Z[ψ]).

Note that Λ(ψ) is, in general, not in the homology group. We have Λ(ψ) ∈
H1(X1(N),Z[ψ]) if ψ is, for example, a Dirichlet character with gcd(f(ψ(`)), N) = 1
and f(ψ`) > `e. In this case with ± = ε(ψ) we have

2Λ(ψ) =
∑

r ( mod `n)

ψ(r)ξ±n (r) ∈ H1(X1(N),Z[ψ]).

We give a new set of generators of M(`n, Z)± when Γ = Γ1(N).

Proposition 3.5. Let Γ = Γ1(N). For m > e and s0 ∈ 1+`Z`, set Z = s0 +`mZ`.
Then M(`n, Z)± is generated by (ξ̂±n (κr))κ∈W , r ∈ Z for n > e.

Proof. Assume that for rj ∈ 1 + `Z`,∑
j

nj

(
ξ±n (κrj)

)
κ
∈ H1(X1(N),Z)

`−1
2 .(3.3)

First of all, let us consider M(`n, Z)+. Applying ∂ to (3.3), we have a relation∑
j 2nj{i∞} =

∑
j nj({

κrj
`n }+{−κrj`n }) for each κ. Since {i∞} is different from any

of { r`n } (r ∈ Z`), we have
∑
j nj = 0 and that∑

j

nj
(
ξ+
n (κrj)

)
κ

=
∑
j

nj

(
ξ̂n(κrj)

)
κ
.

Secondly, observe that if e = 0, then the statement becomes trivial since ξ−n (κr) =

ξ̂−n (κr) for r ∈ Z. If e > 0, then κr
`n and −κs`n (r, s ∈ 1 + `Z`, κ ∈ W ) are inequiv-

alent under Γ1(N). Applying ∂ to (3.3) with rj ∈ Z, we have (
∑
j nj){

(κs0)e
`n } =

(
∑
j nj){

(−κs0)e
`n }. Hence

∑
j nj = 0 and we obtain∑

j

nj
(
ξ−n (κrj)

)
κ

=
∑
j

nj

(
ξ̂−n (κrj)

)
κ
.

This finishes the proof of proposition. �

In Sun [35], the second-named author gives numerical verification that M(`n, Z)

is of full rank for large n and computes the index [H1(XΓ,Z)
`−1
2 : M(`n, Z)] for

Γ = Γ0(N). We are ready to formulate the following conjecture, a modular gener-
alization of Theorem 3.1. It is is a part of conjecture for Γ0(N) in [35]

Conjecture 3.6. Let Z be a non-empty open subset of Z`. The two indices

[H1(XΓ,Z)
`−1
2 : M(`n, Z)], [H±1 (XΓ,Z)

`−1
2 : M(`n, Z)±] are constants for all suf-

ficiently large n.



MODULAR SYMBOLS AND TWISTED MODULAR L-VALUES 19

Let us denote the constants by νΓ,`, ν
±
Γ,`, respectively.

Let us give some numerical verifications for the conjecture are presented in the
next part. Various results toward the conjecture shall be discussed in Section 4.

3.3. Numerical computations. For numerical computations of the indices in
Conjecture 3.6, an explicit presentation of the Z-module H1(XΓ, CΓ,Z) is necessary.
One way is to use Manin’s symbols.

A Manin symbol is defined as [g] = {g ·0, g ·i∞}Γ ∈ H1(XΓ, CΓ,Z) for g ∈ SL2(Z).
The right action of γ ∈ SL2(Z) on Manin symbols [g] is defined as [g] · γ = [gγ].
With the matrices σ =

(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
, we have the following relations

between Manin symbols for all γ ∈ SL2(Z) :

[γ] + [γ]σ = 0, [γ] + [γ]τ + [γ]τ2 = 0.

And these are all possible relations between Manin symbols (see Manin [22]). Let
{γi} be a right coset representative of Γ in SL2(Z). Since [γg] = [g] for all γ ∈ Γ, a
Manin symbol is equal to a unique [γi] for some i.

For an arbitrary modular symbol {α, β}Γ, we split them into two parts {α, β}Γ =
{0, β}Γ − {0, α}Γ. Hence we may consider only the symbols of the form {0, α}Γ.
Let

pj
qj

(−2 ≤ j ≤ k) be the convergents of the continued fraction expansion of α

with the convention p−2 = q−1 = 0 and p−1 = q−2 = 1. Since

δj =
(

(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
∈ SL2(Z),

one obtains a relation

{0, α}Γ =

k∑
j=−1

{
pj−1

qj−1
,
pj
qj

}
Γ

=
∑
j

[δj ].

Therefore any modular symbol in H1(XΓ, CΓ,Z) can be expressed in terms of Manin
symbols. The modular symbol space M2(Γ,Z) is generated by the Manin symbols
and the first homology group is the kernel of ∂ : M2(Γ,Z) → B2(Γ,Z). Once the
basis ofM2(Γ,Z) is chosen explicitly, the computation of null space of the boundary
map ∂ is an elementary linear algebra. With these generators and relations, one
can calculate the indice νΓ,` and ν±Γ,` explcitly. Manin’s method is implemented

in SAGE [29], with which numerical calculations are performed to determine the
indice of submodules in Conjecture 3.6.

Let us specialize the discussion to the case of Γ = Γ1(N) (See Sun [35] for
Γ = Γ0(N)). Since it is impossible to consider all basic open subsets Z of Z×` , we
check the conjecture for a small open set Z = 1 + `n−n0Z` for a relatively small n0.

By Proposition 3.5, it suffices to represent (ξ̂±n (κr))κ∈W , r ∈ Z as Manin symbols
with n− n0 > e.

In practice, we consider 11 ≤ N ≤ 30 and 5 ≤ ` ≤ 23. The size of computations
grows exponentially as the exponent n0 increases. However experience suggests

that it suffices to choose a random subset Z0 of 1+`n−n0Z`
1+`nZ` of a fixed size, say 1000.

We calculate the indices [
H1(Γ1(N),Z)

`−1
2 : M(`n, Z0)

]
for n = 200, n0 = 4 if ` - N ; and for (n, n0) = (200, 110), (300, 160) if `|N . Unlike
the case of Γ = Γ0(N), it turns out that all indices calculated for the previous
data are equal to 1. We summarize the data in Table 1 including the rank 2g of
H1(X1(N),Z). The blanks in the columns “n” and “n − n0” mean the repetition
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Table 1. Verification of H1(Γ1(N),Z)
`−1
2 = M(`n, 1 + `n−n0Z`)

N g ` n n− n0 N g ` n n− n0

11 1 5 200 196 19 5 5 200 196
22 6 7 7

11 (300) 90(140) 11
13 200 196 13
17 17
19 19 (300) 90(140)
23 23 200 196

13 2 5 200 196 23 12 5 200 196
26 10 7 7

11 11
13 (300) 90(140) 13
17 200 196 17
19 19
23 23 (300) 90(140)

14, 15 1 5 200 196 25 12 5 (300) 90(140)
16, 18 2 7 30 9 7 200 196

20 3 11 11
21, 24 5 13 13

27 13 17 17
28 10 19 19
32 17 23 23
17 5 5 200 196 29 22 5 200 196

7 7
11 11
13 13
17 (300) 90(140) 31 26 5 200 196
19 200 196 7
23 33 21 11 200(300) 90(140)

of previous number. The parentheses mean the reulsts for n = 300 in addition to
ones for n = 200.

4. Full-rankness and constancy of the indices

In this section, we first prove that the indices in Conjecture 3.6 are finite. Sec-
ondly, we provide an observation on analogous submodules of H1(X1(N),Z) in
Theorem 4.6 and 4.7 in support of the conjecture.

Theorem 4.1. Let Γ = Γ0(N) or Γ1(N). For any non-empty open subset Z of Z`,
(1) M(`n, Z) is of full rank in H1(XΓ,Z)

`−1
2 for all sufficiently large n.

(2) M(`n, Z)± is of full rank in H±1 (XΓ,Z)
`−1
2 for all sufficiently large n.

The proof shall be given after discussing pairings between these homology groups
and de Rham cohomology groups.

We fix a basis of H1
dR(XΓ) ' S2(Γ)

⊕
S2(Γ) which consists of normalized eigen

cuspforms and consider an identification H1
dR(XΓ) ' C2g for the genus g of XΓ.
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Let V be a finite subset of Z×` . For t = 2g|V |, let

f1, f2, · · · , ft

be a basis ofH1
dR(XΓ)V corresponding to the standard basis of C2g|V |. Let us choose

certain special modular symbol as follows. For the basic open subset U = a0 + `vZ`
and α ∈ Z×` , we define a special modular symbol

Υn(U,α) =
1

`n−v

∑
a≡a0(`v)

ζ−aαn

({aκ
`n
, i∞

})
κ
∈ H1(XΓ,C)V .

Observe that Υn(U,α) ∈ M(`n, Z)⊗ C if V = W . Before we start to study this
symbol, we need the following estimate for a Kloosterman-like sum.

Lemma 4.2. Let v be a positive integer. Let a, b ∈ Zp and set

w = min(vp(a), vp(b)).

Then for all n > 2(v + w), we have∣∣∣∣ ∑
j∈ 1+pvZ

1+pnZ

ζaj+bjn

∣∣∣∣ ≤ 2pd
n
2 e+w.

Proof. Let us set Q(j) := aj + bj and h = dn2 e. Since we have

(r + phα)−1 =
1

r
(1− r−1phα+O(p2h))

in Zp for r ∈ 1 + pvZ, we obtain

Q(r + phα) ≡ Q(r) + (−ar2 + b)phα ( mod pn).

Therefore we have∑
j∈ 1+pvZ

1+pnZ

ζaj+bjh =
∑

r∈ 1+pvZ
1+phZ

ζQ(r)
n

∑
α∈Z/pn−hZ

ζ
(−ar2+b)α
n−h .(4.1)

The second sum in R.H.S vanishes unless ar2 ≡ b ( mod pn−h). Observe that

#

{
r ∈ 1 + pvZ

1 + phZ

∣∣∣∣ ar2 ≡ b ( mod pn−h)

}
≤ 2p2h−n+w.

Hence the absolute value of (4.1) is less than or equal to 2p2h−n+wpn−h ≤ 2ph+w

and finish the proof. �

Let us define the characteristic function of V by

IV (ν) =

{
1 if ν ∈ V
0 otherwise

.(4.2)

The following expression for a pairing between the special modular symbol and a
cohomology class is crucial in our discussion. Even though main idea is to mod-
ify the arguments of Rohrlich and Luo-Ramakrishnan, extra computations for the
implicit constants in the error terms are required for later applications.
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Proposition 4.3. Let r be a positive integer, ν ∈ Z×` , and U = a0 + `vZ` ⊆ Z×` .

Let V be any finite subset of Z×` such that ν−1V ∩Q ⊆ {±1}. For a p-adic integer
α we define [α]n as the least positive residue of α modulo `n−v. Let f = (fκ, gκ)κ ∈
H1
dR(C)V . If n > max(2(v + v`(r)), 2(e+ v`(r))) and ε > 0, then we have

〈Υn(U, rν), f〉 =

(
IV (ν)

ar(fν)

r
+ IV (−ν)

ar(g
∗
ν)

r

)(
1 +O

(
1

(`n)
3
2

))
(4.3)

+O

( ∑
κ∈V \{ν}

[rκ
ν

]−1/2+ε

n
+

[
−rκ
ν

]−1/2+ε

n

)
+O

(
`max(e,v)+v`(r)+1

(`n)
1
4−ε

)
,

where the implicit constants in the above equation are all independent of r and n;
and furthermore independent of ` if ` - N .

Proof. We have

〈Υn(U, rν), f〉 =
1

`n−v

∑
a≡a0(`v)

∑
κ∈V

ζ−arνn

(∫ i∞

aκ
`n

fκ(z)dz +

∫ i∞

aκ
`n

gκ(z)dz∗

)
.(4.4)

For x ∈ Q \ {0}, we have∫ i∞

x

fκ(z)dz =

∫ i∞

0

fκ
∣∣t(x)(z)dz = L(1, fκ

∣∣t(x)).

Recall that N0 = N`−e. For a ∈ (Z/`nZ)×, choose u such that u(−aκN0) ≡
1 ( mod `2n−e). Then from the approximate functional equation (2.7) for the partial
L-function with q = `n, d = `e = gcd(N, `∞), and Q = N0`

2n we have

∫ i∞

aκ
`n

fκ(z)dz =

∞∑
m=1

am(fκ)e(aκm`n )

m
F1,1

(
m

y

)
(4.5)

− δ1(`n)δ2(N0)

∞∑
m=1

am(fκ
∣∣WN,`e)e(um`n )δ2(u)

m
F2,1

(
4π2my

N0`2n

)
.

First of all, using (4.5) we divide the following sum in (4.4)

1

`n−v

∑
a≡a0(`v)

∑
κ∈V

ζ−arνn

∫ i∞

aκ
`n

fκ(z)dz = (4.7) + (4.10)(4.6)

into two parts: a double sum (4.7) containing F1,1 and another one (4.10) containing
F2,1. First, we consider the following sum:

1

`n−v

∑
κ∈V

∑
m≥1

∑
a≡a0(`v)

ζa(mκ−rν)
n

am(fκ)

m
F1,1

(
m

y

)
.(4.7)

It is easy to observe that∑
a≡a0(`v)

ζamn =

{
`n−vζa0mn if m ≡ 0 ( mod `n−v)

0 otherwise
.

Then (4.7) is equal to∑
κ∈V

a([rν/κ]n; fκ)

[rν/κ]n
F1,1

(
[rν/κ]n

y

)
+
∑
κ∈V

∑
m

′
ζa0(mκ−rν)
n

am(fκ)

m
F1,1

(
m

y

)
,(4.8)
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where
∑′
m is the sum over the positive integers m such that mκ ≡ rν ( mod `n−v)

and m > [rν/κ]n. By (2.6) and Weil’s bound am(fκ)�ε m
1/2+ε, the first term in

(4.8) is equal to

IV (ν)
ar(fν)

r

(
1 +O

(
1

y

))
+O

∑
κ6=ν

1

[rν/κ]
1
2−ε
n

 .

We divide the second sum in (4.8) into two parts∑
κ,m≤y

(∗∗) +
∑
κ,m>y

(∗∗).

Let us define

Iα(m) =

{
1 if m ≡ α(`n−v)

0 otherwise
, and

Jα(x) =
∑
m≤x

Iα(m) =

{
� x

`n−v if x > [α]n

0 if 0 ≤ x ≤ [α]n
.

Then by the estimate (2.6), and Abel’s summation formula, the first part satisfies∑
κ

∑
m≤y

(∗∗)�ε,fκ,Φ

∑
κ

∑
[rν/κ]n<m≤y

I rν
κ

(m)

m
1
2−ε

�
∑
κ

Jrν/κ(y)

y
1
2−ε

+

∫ y

[rν/κ]n

Jrν/κ(t)( 1
2 − ε)

t
3
2−ε

dt

� `y
1
2 +ε

`n−v
.

For the second sum
∑
κ,m>y(∗∗), note that F1,1(x) �ε x

−1/2−2ε. Similarly as
before, we obtain ∑

κ

∑
m>y

′
(∗∗)� y

1
2 +2ε

∑
κ

∑
m>y

′ Irν/κ(m)

m1+ε

� `y
1
2 +ε

`n−v
.

In total, the sum (4.7) equals

IV (ν)
ar(fν)

r

(
1 +O

(
1

y

))
+O

∑
κ6=ν

1

[rν/κ]
1
2−ε
n

+O

(
y

1
2 +ε

`n−v−1

)
.(4.9)

Observe that the implicit contants in (4.9) are all independent of y, r, n, and `.
Now we consider the second sum including F2,1 in (4.6).∑

κ

∑
m≥1

1

`n−v

{ ∑
a≡a0(`v)

δ2(aNκ)ζarν−aNκmn

}
am(fκ|WN,`e)

m
F2,1

(
4π2my

`2nN

)
(4.10)

We split the sum (4.10) into two parts:∑
κ,m≤N`2n

4π2y

(∗∗) +
∑

κ,m>N`2n

4π2y

(∗∗).
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First of all, since min(v`(r), v`(m)) ≤ v`(r) <
n
2 − v and δ2 is of period `e, from

Lemma 4.2 we have
1

`n−v

∑
a≡a0(`v)

δ2(aNκ)ζarν−aNκmn � `max(e,v)+v`(r)`−n/2.

Note that we have am(fκ|WN,`e)� m1/2+ε and the implicit constant is independent
of ` if ` - N . Since F2,1(x)� 1, we obtain∑

κ,m≤N`2n
4π2y

(∗∗)� `max(e,v)+v`(r)+1

`n/2

∑
m≤N`2n

4π2y

m−
1
2 +ε � `n/2+2ε+max(e,v)+v`(r)+1

y
1
2 +ε

.

Similarly, since F2,1(x)� x−1 as x→∞ we also have∑
κ,m>N`2n

4π2y

(∗∗)� `max(e,v)+v`(r)+1y

`3n/2

∑
m>N`2n

4π2y

m−
3
2 +ε � `n/2+2ε+max(e,v)+v`(r)+1

y
1
2 +ε

.

Hence (4.10) is equal to

O

(
`n/2+2ε+max(e,v)+v`(r)+1

y
1
2 +ε

)
(4.11)

The implicit constants are independent of r and n; and independent of ` if ` - N .
Setting y = (`n)3/2 in (4.9) and in (4.11), the sum of the first integration in (4.4)

equals

IV (ν)
ar(fν)

r

(
1 +O

(
1

(`n)
3
2

))
+O

∑
κ 6=ν

1

[rν/κ]
1
2−ε
n

(4.12)

+O

(
`v+1

(`n)
1
4−

3
2 ε

)
+O

(
`max(e,v)+v`(r)+1

(`n)
1
4−

1
2 ε

)
The last two error terms in (4.12) can be arranged so that (4.12) equals

IV (ν)
ar(fν)

r

(
1 +O

(
1

(`n)
3
2

))
+O

∑
κ 6=ν

1

[rν/κ]
1
2−ε
n

+O

(
`max(e,v)+v`(r)+1

(`n)
1
4−

3
2 ε

)
.

The implicit constants are independent of r and n; and independent of ` if ` - N .
We obtain similar formula for gκ since we have g∗κ ∈ S2(Γ) and∫ i∞

x

gκ(z)dz∗ =

∫ i∞

−x
g∗κ(z)dz.

In conclusion, we complete the proof of proposition. �

The independence of ` in the implicit constants plays a crucial role in the proofs
of Corollary 4.5 and Theorem 4.7.

We also need the following easy lemma.

Lemma 4.4. Let {Vn} be a sequence of proper subspaces of Cm with the standard
inner product 〈·, ·〉. Then there exists a non-zero w ∈ Cm and a sequence {nk >
0} ⊆ Z such that for any bounded uk ∈ Vnk we have

lim
k→∞

〈uk, w〉 = 0.
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Proof. For each Vn, we can find wn ∈ Cm such that wn ⊥ Vn and |wn| = 1. Hence
there exists a subsequence wnk converges to a w with |w| = 1. Since 〈uk, w〉 =
〈uk, w − wnk〉, we obtain the lemma from Cauchy-Schwartz inequality. �

We are ready to provide the proof of the full-rank result.

Proof of Theorem 4.1. In order to prove Theorem 4.1, it suffices to show that

M(`n, Z)⊗ C = H1(X1(N),C)
`−1
2

for all sufficiently large n. Let us assume the contrary, that is, M(`n, Z)⊗ C is
proper in H1(X1(N),C)W for infinitely many n. Choose a basic open subset U =
a0 + `mZ` ⊆ Z. Then the coordinate of Υn(U, rν) with respect to the dual of the
basis fi = (fiκ, giκ)κ∈W is

IW (ν)
ar(fiν)

r
+ IW (−ν)

ar(g
∗
iν)

r
+ o(1)(4.13)

as `n → ∞ by Proposition 4.3 with V = W . For κ ∈ W the norm of Υn(U, rν) in
Cg(`−1) is

1

r

(
t∑
i=1

(
IW (ν)ar(fiν) + IW (−ν)ar(g

∗
iν)

)2
) 1

2

+ o(1).

Note that as `n getting large, these norms are bounded. Then Lemma 4.4 together
with the assumption enables us to find a non-trivial f = (fκ, gκ)κ ∈ H1

dR(XΓ)W

such that there exists a sequence {nk} satisfying limk→∞ 〈Υnk(U, rν), f〉 = 0 for all
r and ν. From Proposition 4.3, however, we have

lim
k→∞

〈Υnk(U, rκ), f〉 = IW (κ)
ar(fκ)

r
+ IW (−κ)

ar(g
∗
κ)

r

=
ar(fκ)

r

for each κ ∈ W and r. Hence fκ = 0 for all κ ∈ W . Taking V = −W , we also
obtain gκ = 0 for each κ. Therefore it follows f = 0 and this is a contradiction.
This proves the first part of theorem.

The second statement follows from the first one since H1
dR(XΓ)± is orthogonal

to H∓1 (XΓ,C) with respect to the pairing. �

For an open subset Z of 1 + `Z`, we define submodules of H1(XΓ,Z) as follows.

M`,n(Z) =
〈{
i∞, r

`n

}
Γ

∣∣∣ r ∈ Z〉 ∩H1(XΓ,Z),

M`,n(Z)± =
〈
ξ±n (r)

∣∣∣ r ∈ Z〉 ∩H1(XΓ,Z).

Recall that if f ∈ S2(Γ) and ar(f) = 0 for all r less than or equal to the Sturm

bound, [SL2(Z):Γ]
6 , then one obtains f = 0. We have a full-rank result for single copy

case.

Corollary 4.5. (1) The submodules M`,n(Z)± are of full rank in H±1 (XΓ,Z) for
all sufficiently large n.

(2) The submodules M`,6(Z×` )± are of full rank in H±1 (XΓ,Z) for all sufficiently
large `.
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Proof. Proceeding in the same way as the proof of Theorem 4.1 with V = {1} and
V = {−1}, we obtain the first statement.

For the second statement, let us choose (f, g) ∈ S2(Γ) ⊕ S2(Γ). By the similar
argument to Theorem 4.1, we need to show that

〈
Υ6(Z×` , r), (f, g)

〉
is not zero for

some r ≤ [SL2(Z) : Γ]/6 if (f, g) is non-zero as `→∞. Choose ` so that

` > max

(
N,

[SL2(Z) : Γ]

6

)
.

Taking V = {1}, n = 6, v = 0, e = 0, and r ≤ [SL2(Z) : Γ]/6 in Proposition 4.3,
we obtain 〈

Υ6(Z×` , r), (f, g)
〉

=
ar(f)

r

(
1 +O

(
1

`9

))
+O

(
`

`
3
2−ε

)
,

where the implicit constants are independent of `. With V = {−1}, we have the
same expression for g. Therefore we are able to conclude the proof in the same way
as Theorem 4.1. �

In the rest of this section, we discuss results related to the indices of submodules
in Corolalry 4.5. Observe that Conjecture 3.6 implies that their indices are constant
for all sufficiently large n. Regarding this observation, we have the following partial
result, which is essentially related to a problem of non-vanishing mod p of special
modular L-values with cyclotomic twists, studied in Section 7 and 8.

Theorem 4.6 (Vertical direction). The indices [H±1 (XΓ,Z) : M`,n(Z)±] are same
for infinitely many n. Let us set the index as v±Γ,`.

Proof. We define a sequence of integers nk > 0 inductively as follows. Let n0 be
any positive integer greater than e and nk assumed to be defined. Let N ′ = N`−e.
For an integer r which is a lift of an element in (Z/`nkZ)×, set m = ϕ(N ′r)s+ nk
for a positive integer s and Euler’s function ϕ. Hence `m−nk = 1 +N ′rz for some
integer z. Let us set

g =

(
1 0

±N ′`nkz 1

)
∈ Γ1(N).

It can be easily checked that g·± r
`nk = ± r

`m . Therefore {i∞,± r
`nk }Γ = {i∞,± r

`m }Γ
and

ξ±nk(r) = ξ±m(r) ∈M`,m(Z)±.

Let us set

nk+1 = nk +
∏

r∈(Z/`nkZ)×

ϕ(Nr).

We can conclude that M`,nk(Z)± ⊆M`,nk+1
(Z)±. Now we set

M(Z)± =
⋃
k≥0

M`,nk(Z)±.

Clearly M(Z)± is a submodule of H±1 (XΓ,Z) and M(Z)± = M`,nk(Z)± for all
sufficiently large k.

From Theorem 4.1, we obtain that M(Z)± is of full rank in H±1 (XΓ,Z). In total,
we prove the corollary. �
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Another implication of the conjecture is that for a fixed n, the indices are con-
stant for all sufficiently large prime `. Regarding this, we obtain a horizontal version
of Theorem 4.6. In other words, we show that the indices are constant for infin-
itely many primes `. From this we can obtain a partial result on the cyclotomic
µ-invariant problem, which will be studied in Section 6.

Basic strategy is to construct a sequence of primes `i such that

M`i,n(Z×`i)
± ⊆M`i+1,n(Z×`i+1

)± ⊆ H1(X1(N),Z)

for a fixed N and n.
Let f be the newform associated to an elliptic curve over Q. Then we have

Theorem 4.7 (Horizontal direction). There exists a sequence X of ordinary primes
such that the indices [H±1 (XΓ,Z) : M`,6(Z×` )±] are same for all ` ∈ X. Let us set
the index as w±(Γ,X).

Proof. We define a sequence

X = {`i}
of ordinary primes inductively as follows.

Since there are ordinary primes for f of density one (Refer to [16, Section 7]),
we can find `0 > N that is an ordinary prime congruent to 1 modulo N . Assume
`i is defined for i > 0. Set

Di =
∏

r∈(Z/`6iZ)×

r

We can find an ordinary prime `i+1 such that

`i+1 ≡ `i ( mod NDi).

We have `6i+1 = `6i +NDis for some s and that for 1 ≤ r ≤ `6i with `i - r,(
1 0

±sNDi/r 1

)
· ± r

`6i
= ± r

`6i+1

.

Furthermore, note that `i+1 - r. Hence we have

M`i,6(Z×`i)
± ⊆M`i+1,6(Z×`i+1

)±

for each i. Let us set

M± =
⋃
i≥1

M`i,6(Z×`i)
±.

It is a submodule of H±1 (X1(N),Z). Furthermore, M± = M`i,6(Z×`i)
± for all suffi-

ciently large i. From Corollary 4.5.(2) again, we are able to conclude that M± is
of full rank in H±1 (X1(N),Z).

�

5. Parabolic cohomology and special L-values

In this section, we restrict ourselves to the case of weight 2. Let f be a newform
of weight 2 for Γ0(N) with a Nebentypus δ. Let p, ` be distinct odd prime numbers.
We first fix an isomorphism Cp ' C. Let O be the integer ring of a finite extension
of Qp containing Kf . Let m be a maximal ideal of the Hecke algebra TN such that
the characteristic of TN/m is p. Let ρm : GQ → GL2(T/m) be the associated Galois
representation.
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5.1. Parabolic cohomology. Let TN,m be the completion of Hecke algebra TN
at m and

δ± : S2(Γ1(N),O)m → H1(Γ1(N),O)±m(5.1)

be the (not necessarily Galois equivariant) isomorphism mentioned in Vatsal [39].
Observe that the existence of isomorphism (5.1) follows from the perfect pairing
S2(Γ1(N),O) × TN → O, (f, T ) 7→ a1(f |T ), H1(Γ1(N),O)±m ' TN,m, and Goren-
stein property of TN,m, i.e., HomO(TN,m,O)m ' TN,m. Faltings-Jordan [6, Theo-
rem 2.1] show that TN,m is Gorenstein if

N ≥ 3,m - 2N and ρm is irreducible.(5.2)

From now on, we assume the existence of δ±. Note that for a commutative ring R
one hasH1(Γ1(N), R) ' H1(X1(N), R) (See [13, Appendix]) and hence also obtains
that the cap product H1(X1(N), R)×H1(Γ1(N), R)→ R is a perfect pairing.

5.2. Special L-values. Recall that ωf = 2πif(z)dz and the periods Ω±f in Section
1 are chosen so that the first cohomology classes

ω(f)± =
1

Ω±f
(ωf ± ω∗f )

are in H1(Γ1(N),O)±. Using the integral representation of the L-function and
inversion formula for the Gauss sum, one obtains

G(ψ)L(1, f ⊗ ψ) = 2πi

q∑
r=1

ψ(r)

∫ i∞

r
q

f(z)dz.(5.3)

Using the cap product between H1(X1(N),Z[ψ]) and H1(Γ1(N),O), we have the
following expression

Lf (ψ) = Λ(ψ) ∩ ω(f)± =
∑

r∈(Z/qZ)×/{±1}

ψ(r)ξ±q,r ∩ ω(f)±(5.4)

where ± = ε(ψ). For a character φ with gcd(f(ψ), f(φ)) = 1, we have

Lf (ψφ) = ψ(f(φ))φ(f(ψ))Lf ⊗ φ(ψ).(5.5)

Here we use the period

Ω±f ⊗ φ = G(φ)−1Ω
±ε(φ)
f .

Using the isomorphism (5.1), Vatsal ([39]) defines canonical periods Ω̂±f ∈ Cp such
that

Ω̂±f δ
±(f) = ω±f .(5.6)

Let us define another algebraic L-values

Lf (ψ) = Λ(ψ) ∩ δ±(f) =
G(ψ)L(1, f, ψ)

Ω̂±f
∈ O[ψ].

Since ω(f)± and δ±(f) have the same Hecke eigenvalues, by strong multiplicity

one, we can find u(f) ∈ Q×p such that

ω(f)± = u(f)δ±(f).

From (5.4), for all Dirichlet character ψ, we have

Lf (ψ) = u(f)Lf (ψ)(5.7)
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Let Q = lcm(N, f(φ)2) and M be the maximal ideal of TQ that corresponds to p and
f ⊗ φ. If ρm is irrerducible then so is ρM. We also obtain the isomorphism δ± for
M. And that there exists u(f ⊗ φ) ∈ Qp such that ω(f ⊗ φ)± = u(f ⊗ φ)δ±(f ⊗ φ).
Combining previous discussion, we have:

Proposition 5.1. (1) For σ ∈ G(Q/Q), We have

Lf (ψ)σ =
u(fσ)

u(f)σ
Lfσ (ψσ).

(2) In particular, for r ∈ Z/QZ, we obtain

(ξ±Q,r ∩ δ
±(f))σ =

u(fσ)

u(f)σ
ξ±Q,r ∩ δ

±(fσ).(5.8)

(3) With gcd(f(φ), N f(ψ)) = 1, we have

Lf (φψ) = ψ(f(φ))φ(f(ψ))
u(f ⊗ φ)

u(f)
Lf ⊗ φ(ψ).

Proof. The first and second statements follow from (5.7) and the inversion formula.
The third statement follows from (5.5). �

5.3. Non-vanishing modulo p of quotients of u(f). Note that we have a
twisted reciprocity for the integral L-values as described in Proposition 5.1. In
order to study the L-values modulo prime, it is required to study the ratios u(f)
appeared in Proposition 5.1.

For an integer q > 0, a ∈ (Z/qZ)× and f ∈ S2(Γ1(N)), we define a partial
modular form

fa(z) =
∑

c∈Z/qZ

e(
c

q
)f
∣∣t(ca

q
)(z) =

∑
n≡a−1(q)

ane(nz).(5.9)

Let Q = lcm(N, q2). One can easily show that fa ∈ S2(Γ1(Q)) for each a.
Let α ∈ GL2(Q) satisfy αΓ1(M)α−1 ⊆ Γ1(N) for an integer M with N |M . For

δ ∈ H1(Γ1(N),O), we define a cohomology class for Γ1(M) as follows:

δ
∣∣α(γ) = δ

(
αγα−1

)
.

We also set

δ
∣∣Pq,a(γ) =

∑
c ( mod q)

e(
c

q
)δ
∣∣∣t(ac

q

)
(γ).

Hence δ|Pq,a ∈ H1(Γ1(Q),O) and we easily obtain

ωf |Pq,a = ωfa .(5.10)

If φ is a Dirichlet character with f(φ) = q and ε(φ) = ±, then
∑
c φ(c)ω(f)±|Pq,c ∈

H1(Γ1(Q),O) and ∑
c ( mod q)

φ(c)ω(f)±|Pq,c = qφ(−1)ω(f ⊗ φ)±ε(φ).(5.11)

We define the operator t( sq ) on H1(X1(Q), R) for an integer s in a similar way. For

ξ ∈ H1(X1(Q), R), we define

ξ
∣∣Pφ =

∑
r

φ(r)ξ
∣∣t(r
q

)
∈ H1(X1(Q), R[φ]).
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If gcd(f(ψ), Nq) = 1, then Λ(ψ) ∈ H1(X1(Q),Z[ψ]) and

Λ(φψ) = Λ(ψ)
∣∣Pφ ∈ H1(X1(Q),Z[φ, ψ]).(5.12)

For Dirichlet characters φ, ψ of same modulus q and an integer t, let us recall
the definition of Jacobi sum

J(φ, ψ; t) =
∑

r+s≡t(q)

φ(r)ψ(s).

Then for all ξ ∈ H1(X1(Q),Fp), we obtain

ξ
∣∣PψPφ =

q∑
u=1

J(φ, ψ;u)ξ
∣∣t(u
q

).

We need the following lemma:

Lemma 5.2. Let q be prime and f(φ) = f(ψ) = qm. Set t = qdt0, 0 ≤ d ≤ m,
q - t0. We obtain

J(φ, ψ; t) =

q
mψφ(t0)

G(φψ)

G(φ)G(ψ)
if f(φψ) = qm−d

0 otherwise

.

In particular, we have

J(φ, φ; t) =


φ(−1)(qm − qm−1) if t = qm

−φ(−1)qm−1 if t 6= qm and t ≡ 0 ( mod qm−1)

0 otherwise

.

Proof. This comes from the inversion formula for the Gauss sum. �

Following Stevens [34], let us set Y to be the collection of Dirichlet characters
such that

(1) For all ψ ∈ Y, f(ψ) is prime, f(ψ) ≡ 3 ( mod 4), and gcd(f(ψ), N) = 1.
(2) For any M with N |M , there exists a ψ ∈ Y such that f(ψ) ≡ −1 ( mod M).

Stevens show that

Theorem 5.3 (Stevens [34]). (1) For any finite subset T ⊂ Y, we have

H1(X1(N),Fp) = 〈Λ(ψ) |ψ ∈ Y \ T 〉.(5.13)

(2) There exists a ψ ∈ Y such that

Lf (ψ) 6≡ 0 ( mod p)

We show a variant of Theorem 5.3 as follows.

Lemma 5.4. Let f(φ) be a prime-power. Then there exists a ψ ∈ Y such that

Lf (ψφ) 6≡ 0 ( mod p)

Proof. Assume that Λ(φψ)∩δ±(f) = 0 in Fp for all character ψ with gcd(f(ψ), pN f(φ)) =
1. Let f(φ) = qm and Q = lcm(N, q2m). Then from (5.12) and (5.13), for all
ξ ∈ H1(X1(Q),Fp) we obtain

ξ
∣∣Pφ ∩ δ±(f) = 0.(5.14)
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Here δ±(f) is regarded as an element of H1
p (Γ1(Q),O)±M. Replacing ξ by ξ

∣∣Pφ in

(5.14), we have from Lemma 5.2 that

ξ ∩
( q∑
r=1

δ±(f)
∣∣t(r
q

)− qδ±(f)
)

= 0(5.15)

for all ξ. Note that since f is an eigenform of Tq, we obtain

q∑
r=1

δ±(f)
∣∣t(r
q

) = aq(f)δ±(f)
∣∣∣(1 0

0 1
q

)
− δ±(f)

∣∣∣(q 0
0 1

q

)
.

Setting ξ = Λ(ψ) in (5.15), we obtain(
ψ(q)2 − aq(f)ψ(q) + q

)
Lf (ψ) = 0.(5.16)

From (5.13), we can find a ψ ∈ Y with sufficiently large f(ψ) such that both factors
in (5.16) are non-vanishing. This is a contradiction. Hence we prove the lemma. �

We obtain properties on u(f) as follows.

Proposition 5.5. Let σ ∈ Gal(Q/Q) and φ a Dirichlet character. Then u(fσ)/u(f)σ

and u(f ⊗ φ)/u(f) are p-adic units.

Proof. From Theorem 5.3, we are able to find two Dirichlet characters ψ, ψ′ such
that Lf (ψ′) 6≡ 0 ( mod p) and Lfσ (ψσ) 6≡ 0 ( mod p). Hence from Proposition 5.1,
u(fσ)/u(f)σ is a p-adic unit.

Let f(φ) be a prime-power. Then by Lemma 5.4, we are also able to find
two Dirichlet characters ψ, ψ′ such that Lf (ψφ) 6≡ 0 ( mod p) and Lf ⊗ φ(ψ′) 6≡
0 ( mod p). Hence u(f ⊗ φ)/u(f) is a p-adic unit by Proposition 5.1. Let q be a
prime. From the decomposition

u(f ⊗ φ)

u(f)
=
u(f ⊗ φq ⊗ φ(q))

u(f ⊗ φq)
u(f ⊗ φq)
u(f)

,

we obtain the result for general φ. �

Remark 5.1. Theorem 5.3 or Proposition 5.5 corresponds to technical results of
Vatsal [42, Proposition 5.3] and Chida-Hsieh [3, Lemma 5.5] on non-vanishing mod
p of partial modular forms. Main ingredient is the strong approximation on a
definite quaternion algebra. It is worth of noting that the proof of Propsition 5.5 is
based on the result of Fricke and Wohlfahrt (see the proof of Stevens [34, Theorem
2.1]), namely the generation of Γ1(N) by a subgroup of Γ(N) and the parabolic
subgroup.

6. µ-Invariants of Mazur-Swinnerton-Dyer p-adic L-functions

In this section, assuming the existence of δ±, we show that Conjecture 3.6 im-
plies Greenberg’s conjecture. We also show that there are infinitely many cases of
the vanishing µ-invariants of Mazur-Swinnerton-Dyer p-adic L-functions and con-
sequently deduce that there are infinitely many cases of the vanishing algebraic
µ-invariants of Selmer groups.



32 MYOUNGIL KIM AND HAE-SANG SUN

6.1. Mazur-Swinnerton-Dyer p-adic L-function. Let f be a newform of level
N , weight 2. Let p be an odd ordinary prime relativey prime to N . Let αp, βp be
two roots of x2 − ap(f)x+ p = 0 such that αp = αp(f) is a p-adic unit. Note that
in Section 5 we assume the existence of the isomorphism δ± : S2(Γ1(N),O)m →
H1(Γ1(N),O)±m, with which we define the canonical period Ω̂±f of Vatsal in (5.6).
For example, recall that the existence is guaranteed when the associated Galois
representation ρm is irreducible, N ≥ 3, and m - N .

We define a function ν±f on the set of basic open sets by

ν±f (a+ pmZp) = αp(f)−m(ξ±m(a)− αp(f)−1ξ±m−1(a)) ∩ δ±(f) ∈ O.

It is well-known that ν±f is a p-adic measure on Zp. Let ω be the Teichmüller char-

acter and 〈x〉 = xω(x)−1. Define the Mazur-Swinnerton-Dyer p-adic L-functions
as a p-adic Mazur-Mellin transform of the p-adic measure ν±f . In other words, for

a Dirichlet character φ with gcd(f(φ), N) = 1, we set

Lp(f, s, φ) =

∫
Z×p
〈x〉−sφp(x)dν±

f ⊗ φ(p)(x).(6.1)

Note that it has the following interpolation of the special modular L-values of f .
Let f(φp) = pn. Then we have

Lp(f, 0, φ) =
∑

r∈(Z/pnZ)×

φp(r)ν
±
f ⊗ φ(p)(r + pnZp)

=
∑
r

φp(r)α
−n
p (ξ±n (r)− α−1

p ξ±n−1(r)) ∩ δ±(f)

=2α−np Lf ⊗ φ(p)(φp)

=2α−np φp(f(φ
(p)))φ(p)(f(φp))Lf (φ).

The last equality comes from (5.5).
Let Z×p = µp−1×(1+pZp) and γ be a topological generator of 1+pZp. Let γy be

the isomorphism Zp ' 1 + pZp. The Iwasawa power series associated to Lp(f, s, φ)
is given as

Lp(f, T, φ) :=

∫
Zp
T yφp(γ

y)
∑

κ∈µp−1

φp(κ)dν±
f ⊗ φ(p)(κγ

y) ∈ O[[T − 1]].

Note that ν 7→
∫
Zp T

ydν(y) is the ring-isomorphism between the space of O-valued

p-adic measures on Zp and O[[T − 1]]. Recall that by the Weierstrass preparation
theorem, a nonzero power series F (T ) ∈ O[[T − 1]] can be written as

F (T ) = πµ(F )U(T )
∏
i

Pi(T )

where µ(F ) is a non-negative integer, U(T ) ∈ O[[T − 1]]×, and Pi(T ) are distin-
guished polynomials. Here µ(F ) is called the µ-invariant of F (T ). Note that the
measure corresponding to a power series F (T ) is trivial modulo π if and only if the
µ(F ) is positive.

Let us define the µ-invariant of Lp(f, s, φ) by that of Lp(f, T, φ), denoted by
µ(Lp(f, s, φ)). Note that the corresponding measure on Zp of the power series
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Lp(f, T, φ) is

φp(γ
y)

∑
κ∈µp−1

φp(κ)dν±
f ⊗ φ(p)(κγ

y).

The following is a long standing conjecture.

Conjecture 6.1 (Greenberg[12]). If the Galois representation ρf,p associated to f
is residually irreducible, then µ(Lp(f, s, φ)) = 0.

There has been no example for the conjecture except an example of Greenberg-
Vatsal [11]. Using the results in Section 3, we study the Greenberg conjecture.

Theorem 6.2. Let f be a newform of level N , weight 2 and φ a Dirichlet character
with gcd(N, f(φ)) = 1. Assume Conjecture 3.6 and the existence of δ±. Then we
have µ(Lp(f, s, φ)) = 0.

Proof. Since we have (6.1) and gcd(f(φ(p)), N) = 1, we may assume that φ is of
p-power conductor. Suppose that µ(Lp(f, s, φ)) > 0. Then we have∫

U

φ(γy)
∑

κ∈µp−1

φ(κ)dν±f (κγy) ≡ 0 ( mod π)

for each open subset U of Zp. We have∑
κ∈µp−1

φ(κ)ν±f (κa+ pmZp) ≡ 0 ( mod π)

for a ≡ 1 ( mod p) and any basic open sets a+ pmZp. In other words,∑
κ

φ(κ)α−mp (ξ±m(κa)− α−1
p ξ±m−1(κa)) ∩ δ±(f) ≡ 0 ( mod π).(6.2)

Observe that

ξ±m(b) ∩ δ±(f) = ξ±m+1(b) ∩ δ±(f)
∣∣∣(p 0

0 1

)
).

Therefore (6.2) is equivalent to∑
κ

φ(κ)ξ±m(κa) ∩
{
δ±(f)− α−1

p δ±(f)
∣∣∣(p 0

0 1

)}
≡ 0 ( mod π)

for all m and a. Hence by Conjecture 3.6, we obtain

δ±(f)− α−1
p δ±(f)

∣∣∣(p 0
0 1

)
≡ 0 ( mod π)

By taking a cap product between the last congruence and Λ(ψ) for a character ψ
we have

(1− α−1
p ψ(p))Lf (ψ) ≡ 0 ( mod π).

However this contradicts to Theorem 5.3. In total, we prove the theorem. �

For an elliptic curve E over Q, there exists a newform fE of weight 2. For an
ordinary prime p we define Lp(E, s, φ) as Lp(fE , s, φ).

In the next part, for a fixed elliptic curve E we show that there are infinitely
many cases of vanishing µ-invariant of Lp(E, s, φ). Since we need to consider the
p-stabilization of f , of which the level pN is no longer constant as the prime p
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varies, we modify the definition of the submodules. Let p - N , i.e., e = 0. Let us
define another submodules which is now dependent on f .

M̃p,n(Z) =

〈
ap(f)

{
i∞, r

pn

}
Γ
−
{
i∞, r

pn−1

}
Γ

∣∣∣ r ∈ Z〉 ∩H1(X1(N),Z),

M̃p,n(Z)± =
〈
ap(f)ξ±n (r)− ξ±n−1(r)

∣∣∣ r ∈ Z〉 ∩H1(X1(N),Z).

We have the following variation of Theorem 4.7. Recall that X is the set of
ordinary primes defined in Theorem 4.7.

Theorem 6.3. Let km = TN/m. For each p ∈ X with p - w±(Γ,X), there exists a0

mod p5 such that

M̃p,6(a0 + p5Zp)± ⊗ km = H±1 (X1(N), km).

Proof. Let us define

Rp,n(Z)± =
〈
ξ±n (a)

∣∣ a ∈ Z〉.
By Manin-Drinfeld, there exists an integer E > 0 such that

E{0, i∞} ∈ H1(X1(N),Z).

For p ≡ 1 ( mod N), a
pn is equivalent to 0. Since E{ apn , i∞} = E{ apn , 0}+E{0, i∞} ∈

H1(X1(N),Z) for each a ∈ Z, we have

EMp,n(Z)± ⊆ ERp,n(Z)± ⊆Mp,n(Z)±.

Clearly we have

Rp,n(Z1 ∪ Z2)± = Rp,n(Z1)± +Rp,n(Z2)±.

Hence we obtain

EMp,n(Z1 ∪ Z2)± ⊆Mp,n(Z1)± +Mp,n(Z2)±.

Since Mp,6(Z×p )± ⊗ km = H±1 (X1(N), km) for all sufficiently large p ∈ X by Theo-

rem 4.7, there exists a0 mod p5 such that Mp,6(a0 + p5Zp)± ⊗ km 6= 0 and hence

Mp,6(a0 + p5Zp)± ⊗ km = H±1 (X1(N), km).(6.3)

Let ξ =
∑
j njξ

±
6 (a0 + bjp

5) ∈ H±1 (X1(N),Z). Applying ∂, we have
∑
j nj = 0.

Hence we have

ap(f)ξ =
∑
j

nj(ap(f)ξ±6 (a0 + bjp
5)− ξ±5 (a0)) ∈ M̃p,6(a0 + p5Zp)±.

In other words, we obtain

ap(f)Mp,6(a0 + p5Zp)± ⊆ M̃p,6(a0 + p5Zp)±.

From (6.3), we complete the proof of the theorem. �

We give infinite examples of p-adic L-function of which µ-invariants vanish.

Theorem 6.4. Assume the existence of δ±. Let E be an elliptic curve over Q and
φ a Dirichlet character with gcd(NE , f(φ)) = 1. For infinitely many ordinary p, we
have

µ(Lp(E, s, φω
j)) = 0

for some 0 ≤ j < p− 1.
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Proof. Let f = fE . As done in the proof of Theorem 6.2 we also assume that φ is
of p-power conductor. Note that µ(Lp(E, s, φω

j)) > 0 for all j implies∫
U

φ(γy)
∑

κ∈µp−1

φ(κ)ω(κ)jdν±f (κγy) ≡ 0 ( mod π)

for each open subset U of Zp and j. Therefore it follows that∑
j

∑
κ∈µp−1

φ(κ)ω(κν−1)jν±f (κa+ pmZp) ≡ 0 ( mod π)

for any ν ∈ µp−1, a ≡ 1 ( mod p), and m. Hence in particular we have

ν±f (b+ p6Zp) ≡ 0 ( mod π)

for any b ∈ (Z/p6Z)×. In other words, we have

(ap(f)ξ±6 (b)− ξ±5 (b)) ∩ δ±(f) ≡ 0 ( mod π).

Here we use the fact ap(f) ≡ αp(f) ( mod π). Therefore by Theorem 6.3, we reach
a contradiction and conclude the proof of theorem. �

Remark 6.1. In [16, Section 7], Hida shows that there are ordinary primes of density
one. Using his result, we can extend Theorem 4.7 and 6.4 to a general newform of
weight 2.

6.2. Selmer group. In this subsection, we want to discuss algebraic Selmer groups.
To given f one can attach its Galois representation ρf : GQ → Aut(Vf ) where

GQ = Gal(Q/Q) and Vf is a two-dimensional vector space over the local Hecke
field Kf . One can choose a Galois stable Of -lattice Tf ⊂ Vf .

Since f is ordinary at p, ρf is locally reducible at p, and thus one can have an
exact sequence of GQ-representations

0→ Of (ψ−1εk−1)→ Tf → Of (ψ)→ 0

where ψ is an unramified character which sends the Frobenious element to αp, the
unit root of x2 − apx+ pk−1.

Set Af = Vf/Tf which is isomorphic to (Kf/Of )
2
, but endowed with an action

of GQ. Then there is an exact sequence of GQ-representations

0→ Kf/Of (ψ−1εk−1)→ Af → Kf/Of (ψ)→ 0

Following Greenberg, one can use the previous sequence to define the Selmer
group

Sel(Q∞, Af ) = Ker
(
H1(QΣ/Q∞, Af )→ H1(QΣ/Q∞, Af )→ H1(Ip,∞,Kf/Of )

)
In fact, there are several different definitions of Selmer groups. For instance, one

can instead consider the Selmer group defined by Bloch and Kato. For f = fE , one
can even consider the classical Selmer group using p-power isogenies. Fortunately,
those three Selmer groups become equal when p is a good ordinary prime for f = fE .
Therefore we will not distinguish them and denote them all simply by Sel(E).

Conjecture 6.5 (Iwasawa Main Conjecture).

charΛ[ 1
p ] Sel(E)∧ = (Lp(f)) .
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Due to Kato [19, (1) and (2) of Theorem 17.4], we have the following partial
result toward the above main conjecture: The Pontryagin dual Sel(E)∧ of the
Selmer group is a finitely generated torsion Λ-module, and

charΛ[ 1
p ] Sel(Af )∧

∣∣∣ (Lp(f))

If the image of ρf is large in the sense of Serre, i.e. if it contains SL2(Zp), then
one can get even stronger(integral) results:

charΛ Sel(E)∧ | (Lp(f)) ,

due to Kato [19, (3) of Theorem 17.4] again.
For a Dirichlet character φ, consider ρf,φ := ρf⊗φ. One can attach similar exact

sequences
0→ Of (ψ−1φεk−1)→ Tf,φ → Of (ψφ)→ 0

and
0→ Kf/Of (ψ−1φεk−1)→ Af,φ → Kf/Of (ψφ)→ 0.

Using the latter sequence one can similarly define Sel(E ⊗ φ).
Under the same assumptions, basically following Kato’s idea, one can get the

similar divisibility:
charΛ Sel(E ⊗ φ)∧ | (Lp(f, φ)) .

By the result of Serre, when E has no complex multiplication, the Galois represen-
tation ρE = ρfE is surjective for all sufficiently large p. Therefore one can deduce
the following easy consequence of Theorem 6.4:

Corollary 6.6. Under the same condition with Theorem 6.4. For infinitely many
ordinary prime p, we have

µ(Selp(E ⊗ φ)(ω
j)) = 0

for some 0 ≤ j < p− 1.

7. Determining a modular form modulo p by special L-values

Let ℘ be a prime above p in O. Using the canonical periods and the assumption
on the existence of δ±, Vatsal shows that

Theorem 7.1 ([39], Corollary 1.11). Let f ≡ g ( mod pm) for two newforms of a
same level N and m the maximal ideal of TN corresponding to f and g, then

Lf (ψ) ≡ Lg(ψ) ( mod pm)

for all Dirichlet characters ψ.

In this section, we deduce a finite field analogue of Luo-Ramakrishnan’s result
that cyclotomic L-values determine the modular form. In other words, we prove a
stronger version of the converse of Theorem 7.1.

Before proving main result of this section, we collect some properties on newforms
modulo prime.

Proposition 7.2. (1) Let f and g be normalized newforms of level N . Let Dirich-
let characters φ1 and φ2 be of `-power conductors. If we have f ⊗ φ1 ≡
g ⊗ φ2 ( mod pm), then f ≡ g ( mod pm).

(2) Let f1, f2, · · · , ft be normalized newforms that are distinct modulo p. Then
they are linearly independent over Fp.
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Proof. Let `v = lcm(f(φ1), f(φ2)) and s ∈ (Z/`vZ)×. Let ρf , ρg be p-adic residual
Galois representations attached to f and g, respectively such that Trρf (Frr) =
ar(f) for a prime r and Frobenius Frr and same for ρg. By Chebotarev density
theorem, we can find primes r - Np` such that Frr = id, i.e., ar(f) = ar(g) = 2
and r ≡ s ( mod `v). Applying Tr to both sides of the given congruence, we obtain
φ1(s) ≡ φ2(s) ( mod pm). Hence an(f) ≡ an(g) ( mod pm) for all positive integer n,
` - n. Since a`(f) = aq(f) and a`(g) = aq(g) for some prime q 6= ` by Cebotarev
density theorem, we obtain the first statement.

The proof for the second statement is standard. Let
∑
i cifi ≡ 0 ( mod p). We

may assume that this is a minimal relation among fi. Then applying Tn−an(f1) to
the congruence, we have

∑
i≥2 ci(an(fi)− an(f1))fi ≡ 0 ( mod p), which is absurd.

Hence they are linearly independent modulo ℘. �

Recall that `e = gcd(N, `∞). From now on, we set

Γn = 1 + `nZ`.

Let χ ∈ Ξ` with f(χ) > `e and η be of the first type in Iwasawa’s sense. Note that
we have Λ(ηχ) ∈ H1(X1(N),Z[ηχ]) and

Lf (ηχ) = G(η(`))
∑
κ∈W

∑
r∈Γ1

η`(κ)χ(r)ξ̂±n (rκ) ∩ δ±(f ⊗ η(`)).(7.1)

Let us define a subset Ξ◦` of Ξ` as

Ξ◦` = {χ ∈ Ξ` | f(χ) = `nk}

for the index set {nk} defined in the proof of Theorem 4.6.

Theorem 7.3. Assume the existence of δ±. Let f and g be normalized newforms
corresponding to a maximal ideal m. Let u be a p-adic unit, F = Q(η, η′, u, u(f), u(g)),
K = FQfQg, and p a prime over p in K(µ`∞).

(1) Assume Conjecture 3.6 and p - νε(η)
Γ,` for Γ = Γ1(N). Let η, η′ be Dirichlet

characters of the first kind, ε(η) = ε(η′), f(η) = f(η′), and u a p-adic unit. If

Lf (ηχ) ≡ uLg(η′χ) ( mod pm)

for a χ ∈ Ξ` of sufficiently large conductor, then η` = η′` and

f ⊗ η(`) ≡ g ⊗ η′(`) ( mod pm).

(2) Let p - v+
Γ,`v

−
Γ,` for Γ = Γ1(N). If

Lf (ηχ) ≡ uLg(ηχ) ( mod pm)

for a χ ∈ Ξ◦` with sufficiently large conductor and for all η of conductor `, then

f ≡ g ( mod pm).

Remark 7.1. Luo-Ramakrishnan’s result is stated as “for almost all χ” and Kramer-
Miller for all characters in the large class Y. But ours with the conjecture is “for
a single χ” of sufficiently large conductor. Without the conjecture, the ` special
L-values are enough to determine the modular form.

Proof. Since f ⊗ η(`) is a newform and u(f ⊗ η(`))/u(f) is a p-adic unit, from
Proposition 5.1.(3) we may assume that η, η′ are of modulus ` in this proof. Let v
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be an integer such that µ`∞ ∩K = µ`v . We have Gal(K(µ`∞)/K) = Γv. In particu-
lar from Proposition 5.1.(1), we have Lf (ηχ)σ = Lf (ηχσ) for σ ∈ Gal(K(µ`∞)/K)
and same for Lg(η′χ).

Assume that we have a congruence Lf (ηχ) ≡ uLg(η′χ) ( mod pm) for a χ of
conductor `n and n ≥ 2v. Let ± = ε(η). Multiplying both sides of the given
congruence by χ(s) for s ∈ 1 + `Z`, applying σ ∈ Gal(F/K), and then using the
decomposition (Z/`nZ)× = µ`−1 × Γ1/Γn, we have∑
κ

∑
r∈Γ1/Γn

TrK(χ)/K(χ(rs−1)) (η(κ)δ±(f)− uη′(κ)δ±(g)) ∩ ξ̂±n (rκ) ≡ 0 ( mod pm).

As before, the traces of characters are non-vanishing only when r ∈ sΓn−v and then
their values are [K(χ) : K]χ(r)χ(s). Therefore the last congruence reduces to∑

κ

∑
r∈Γn−v/Γn

χ(r) ξ̂±n (rsκ) ∩ (η(κ)δ±(f)− uη′(κ)δ±(g)) ≡ 0 ( mod pm).

Writing down the representatives of Γn−v/Γn explicitly, we have∑
κ

∑
c∈Z/`vZ

ζcv ξ̂
±
n (sκ+ `n−vcsκ) ∩

(
η(κ)δ±(f)− uη′(κ)δ±(g)

)
≡ 0 ( mod pm).

Here note that since n ≥ 2v, χ−1(1 + c`n−v) = ζcv for a primitive `v-th root ζv of
unity. We arrange the last congruence as∑

κ

ξ̂±n (sκ) ∩
(
η(κ)δ±(f)− uη′(κ)δ±(g)

)∣∣∣P`v,s0κ ≡ 0 ( mod pm).

Here s ∈ s0Γv for a fixed s0 ∈ Γ1/Γv. From Conjecture 3.6, we deduce

η(κ)δ±(f)|P`v,cκ ≡ uη′(κ)δ±(g)|P`v,cκ ( mod pm)(7.2)

for each c ∈ 1 + `Z`. Let ψ be a Drichlet character of conductor `v and order `v−1.
Let M be the maximal ideal of TN ′ , N ′ = lcm(N, `2v), given by p and f ⊗ ηψ and
g ⊗ η′ψ. From (5.11), (7.2), and Proposition 5.5, we have

u′f ⊗ ηψ ≡ uu′′g ⊗ η′ψ ( mod pm)

for the p-adic units u′ = u(f ⊗ ηψ)/u(f) and u′′ = u(f ⊗ η′ψ)/u(f). Since f and
g are normalized newforms, we obtain u′ ≡ uu′′ ( mod pm) and hence f ⊗ ηψ ≡
g ⊗ η′ψ ( mod pm). By Proposition 7.2, we obtain the first result.

Let us consider the second statement. Let `n = f(χ). Summing up the given
congruence over η and σ after multiplying it by η(κ)χ(s), we obtain∑

r∈Γ1/Γn

TrK(χ)/K(χ(rs−1)) ξ̂±n (rκ) ∩ (δ±(f)− uδ±(g)) ≡ 0 ( mod pm)

for all s ∈ Z×` and κ ∈ W . Similarly as above, we can also deduce from Theorem
4.6 that

δ±(f)|P`v,cκ ≡ uδ±(g)|P`v,cκ ( mod pm)

for all sufficiently large n = nk and κ ∈ W . Similarly as above again, we obtain
the second statement. �

As an immediate consequence of the theorem, we reduce Conjecture C to Con-
jecture 3.6. Furthermore, without assuming the conjecture, we obtain an extension
of Theorem 5.3 as follows.



MODULAR SYMBOLS AND TWISTED MODULAR L-VALUES 39

Corollary 7.4. Assume the same condition as Theorem 7.3.

(1) Assume Conjecture 3.6 and p - νε(η)
Γ,` for Γ = Γ1(N). Then for all but finitely

many χ ∈ Ξ`, we have

Lf (ηχ) 6≡ 0 ( mod p).

(2) Let p - v+
Γ,`v

−
Γ,` for Γ = Γ1(N). Then for infinitely many φ of `-power conduc-

tors we have

Lf (φ) 6≡ 0 ( mod p).

Proof. Setting g = 0 in the proof of previous theorem we obtain the corollary. �

Remark 7.2. There exists a constant EN dependent only on N such that p is
non-Eisenstein, i.e., ρm is irreducible if p - EN . For example, if N is prime, then
EN = N − 1 ([25]) and if N is square-free, EN =

∏
p|N (p2 − 1) for prime divisors

p of N ([45]). Hence the conditions in Theorem 7.3 hold if p - 2`NEN in addition
that p - ν±Γ,` or p - v±Γ,`.

8. Generation of Hecke fields by special L-values

In this section, we show that the residual Hecke fields are generated by the special
L-values with cyclotomic twists over the finite fields.

Let us set K = Q(η) and Kf = KQf . Let F = Fp(η`) and p a prime in Kf

over p. Set Ff = F(an ( mod p)). Note that Ff is the residue field of p in Qf if
p -
[
OKf : OK [an|n ≥ 1]

]
. By abuse of notation, let us use Lf (ψ) again for their

residual values modulo p.
First, we show that the L-values generate the Hecke field with the help of the

character values.

Proposition 8.1. Ff (ηχ) = F(χ,Lf (ηχ)) for almost all χ ∈ Ξ`

Proof. Let S be any subset of Ξ` with |S| = ∞ and Mf the Galois closure of Qf
over Q. Let Lf,χ = F(χ,Lf (ηχ)) and D be the decomposition group of a prime
over p in Mf (χ). There is a surjection

G(Mf (χ)/Mf (χ)D)→ G(Ff (χ)/Lf,χ), σ 7→ σ̃.

Note that G(Ff (χ)/Lf,χ) ' G(Ff/Lf,χ∩Ff ). Since Ff is finite, there exist infinitely
many χ ∈ S such that Lf,χ ∩Ff = L for a fixed subfield L. Then for σ̃ ∈ G(Ff/L),
we have

Lf (ηχ) = Lf (ηχ)σ̃ ≡ Lfσ (ησχ) ( mod p).

From Theorem 7.3, we obtain f ⊗ η(`) ≡ fσ ⊗ η(`)σ ( mod p). By applying Propo-
sitioin 7.2 repeatedly, we are able to verify that η(s) and am(f) ( mod p) are in L
for each m ≥ 1 and s. Hence Ff (η) ⊆ L ⊂ Lf,χ and the equality Ff (ηχ) = Lf,χ
follows for infinitely many χ ∈ S. Since S is arbitrary, we obtain the assertion. �

We show that the L-values generate the character values.

Proposition 8.2. Assume the conditions of Theorem 7.3. Then F(Lf (ηχ)) ⊇ F(χ)
for almost all χ ∈ Ξ`.
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Proof. Let us set Lχ = F(Lf (χ)). We begin with the following expression

TrFf (ηχ)/F(χ(s)Lf (ηχ)).(8.1)

where s ≡ 1 ( mod `) and s 6≡ 1 ( mod `2). Then (8.1) is equal to

TrLχ/F

(
Lf (ηχ)TrFf (ηχ)/Lχ(χ(s))

)
= TrLχ/F

(
Lf (ηχ)TrF(χ)/Lχ∩F(χ)(χ(s))

)
(8.2)

Here [Ff (ηχ) : F(χ)Lχ] = 1 by Proposition 8.1. Therefore we conclude that for any
s ≡ 1(`) with s 6≡ 1(`2), TrF(χ)/Lχ∩F(χ)(χ(s)) is 0 if F(χ) 6⊆ Lχ and χ(s) otherwise.

On the other hand, we are going to show that (8.1) is non-vanishing modulo p
for almost all χ ∈ Ξ`. Assume the contrary, i.e., that (8.1) vanishes modulo p for
infinitely many χ. Let `n = f(χ). Since we have

Lf (ηχ) = u

`n∑
r=1

η`χ(r)ξ±n (r) ∩ δ±(f ⊗ η(`))

with u = u(f ⊗ η(`))/u(f), we may assume in this proof that η is of modulus ` and
u ∈ O×. Let m be the integer such that Ff ∩ µ`∞ = µ`m . Choose a sufficiently
large n. Then (8.1) is also equal to∑

r

TrFf/F

(
uξ̂±n (r) ∩ δ±(f)TrFf (χ)/Ff (χ(s)ηχ(r))

)
=`n

∑
κ∈W

η(κ)
∑

r∈sΓn−m/Γn

TrFf/F

(
uχ(s)χ(r)ξ̂±n (rsκ) ∩ δ±(f)

)
(8.3)

By abuse of notation, for σ ∈ G(Ff/F), we use the symbol again to represent σ ∈ Z`
such that χ(1 + c`n−m)σ = ζcσm . For each s ≡ 1 ( mod `) with s 6≡ 1 ( mod `2) and
κ ∈W , from (5.8) we have∑

κ∈W
η(κ)ξ̂±n (sκ) ∩

(∑
σ

vσδ
±(fσ)|P`m,sκσ

)
≡ 0 ( mod p)

for some p-adic units vσ. Conjecture 3.6 implies that∑
σ

vσδ
±(fσ)|P`m,sκσ ≡ 0 ( mod p)(8.4)

for each s ≡ 1 ( mod `) with s 6≡ 1 ( mod `2). For ζ ∈ µ×`2 and τ ∈ G(Q(ζ)/Q(ζ`)),
set cτ = −1 if τ 6= id and cid = ` − 1. Let φ be a Dirichlet character of con-
ductor `2 and order `. Then for s ≡ 1 ( mod `), the sum

∑
τ cτφ

τ (s) is equal to
`φ(s) if s 6≡ 1 ( mod `2) and to 0 otherwise. Combining this with (8.4), we have∑
τ,σ cτvτ,σδ

±(fσ ⊗ φτ ) ≡ 0 ( mod p) for some p-adic units vτ,σ. In other words,∑
τ,σ

cτvτ,σf
σ ⊗ φτ ≡ 0 ( mod p).(8.5)

By Proposition 7.2, we conclude that cτvτ,σ ≡ 0 ( mod p) for each σ and τ , which
is absurd. Hence (8.1) is non-vanishing modulo p for almost all χ ∈ Ξ`. �

We are ready to show that the Hecke fields are generated by special L-values.

Theorem 8.3. Assume the conditions in Theorem 7.3.

(1) Assume the Conjecture 3.6. If p - νε(η)
Γ,` for Γ = Γ1(N), then for almost all

χ ∈ Ξ` we have
Ff (ηχ) = F(Lf (ηχ)).
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(2) Let p - v+
Γ,`v

−
Γ,` for Γ = Γ1(N). Then for infinitely many φ of `-power conduc-

tors, we have

F(Lf (φ)) = Ff (φ).

Proof. The first statement comes from Proposition 8.1 and 8.2.
For the second statement, let us set

Lf,χ = F(χ,Lf (ηχ) | η ∈ ̂(Z/`Z)×).

First we show that

Lf,χ ⊇ Ff
for almost all χ ∈ Ξ◦` . The proof goes in a similar way as the proofs of Proposition
8.1 and 8.2. Let us use the same notations. Let S ⊂ Ξ◦` with |S| = ∞. For
σ̃ ∈ G(Ff (χ)/Lf,χ), we have Lf (ηχ) ≡ Lfσ (ηχ) ( mod p) for all χ ∈ S and all η.
By Theorem 7.3, we have f ≡ fσ ( mod ℘) and hence Ff ⊆ Lf,χ for a χ ∈ Ξ◦` with
suffciently large conductor. Secondly, we show that there exists an η such that

F(Lf (ηχ)) ⊇ F(χ)

for almost all χ ∈ Ξ◦` . Assume the contrary, i.e., there are infinitely many χ ∈ Ξ◦`
such that F(Lf (ηχ)) 6⊇ F(χ) for all η. Then the expression (8.1) vanishes due to
the same reason as before. Summing (8.3) up over η, we obtain (8.4) again using
Theorem 4.6. As before we deduce a contradiction. Hence we prove the assertion.

In total, we show that

F(Lf (ηχ) | η) = Ff (χ)

for almost all χ ∈ Ξ◦` . There exists η such that F(Lf (ηχ)) is the largest subfield of
Ff (χ) which contains other F(Lf (η′χ)) for η′ 6= η. This concludes the proof. �

Using Theorem 8.3.(2), we can deduce a modular generalization of a result on
the distribution of special L-values given in Sun [36]: Let F be a finite field with
F∩µ`∞ = µ`m . Let f , p, and ` be given as Theorem 7.3. Let α1, · · · , αt ∈ 1+`mZ`
be linearly independent over Q. Then the set{(

Lf (φα1), · · · ,Lf (φαt)
) ∣∣ f(φ) is an `-power.

}
is Zariski dense in Ft. This can be regarded as an algebraic version of universality
of complex modular L-values.
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