Heuristics for the growth of Mordell-Weil ranks in big extensions of number fields

Barry Mazur, Harvard University Karl Rubin, UC Irvine

Banff, June 2016

Fix an elliptic curve *E* over a number field *K*.

Question

As L runs through abelian extensions of K, how often is rank(E(L)) > rank(E(K))?

< A >

Fix an elliptic curve *E* over a number field *K*.

Question

As L runs through abelian extensions of K, how often is rank(E(L)) > rank(E(K))?

- By considering the action of Gal(*L/K*) on *E*(*L*) ⊗ Q, it is enough to consider the case where *L/K* is cyclic.
- General philosophy: it's hard to find *L* with *E*(*L*) ≠ *E*(*K*).
 For example, suppose *L*/*K* is cyclic of degree *p*, with a large prime *p*. The representation theory of Q[Gal(*L*/*K*)] shows that

 $\mathrm{rank}(E(L)) > \mathrm{rank}(E(K)) \Longrightarrow \mathrm{rank}(E(L)) \geq \mathrm{rank}(E(K)) + (p-1).$

Let $\mathfrak{f}_{L/K}$ denote the (finite part of the) conductor of L/K, and define

 $M_d(X) := #\{L/K \text{ cyclic of degree } d : \mathbf{N}\mathfrak{f}_{L/K} < X\},$

 $N_d(X) := #\{L/K \text{ cyclic of degree } d : \mathbf{N}\mathfrak{f}_{L/K} < X \text{ and } E(L) \neq E(K)\}.$

Conjecture (David-Fearnley-Kisilevsky)

If $K = \mathbb{Q}$ then:

- **1** $\log N_2(X) \sim \log(X)$ (follows from standard conjectures),
- $log N_3(X) \sim \frac{1}{2} \log(X),$
- 3 $\log N_5(X) = o(\log(X) \text{ but } N_5(X) \text{ is unbounded},$
- $N_p(X)$ is bounded if p is a prime, $p \ge 7$.

Let $\mathfrak{f}_{L/K}$ denote the (finite part of the) conductor of L/K, and define

 $M_d(X) := #\{L/K \text{ cyclic of degree } d : \mathbf{N}\mathfrak{f}_{L/K} < X\},$

 $N_d(X) := \#\{L/K \text{ cyclic of degree } d : \mathbf{N}\mathfrak{f}_{L/K} < X \text{ and } E(L) \neq E(K)\}.$

Conjecture (David-Fearnley-Kisilevsky)

If $K = \mathbb{Q}$ then:

log $N_2(X) \sim \log(X)$ (follows from standard conjectures),

$$log N_3(X) \sim \frac{1}{2} \log(X),$$

- 3 $\log N_5(X) = o(\log(X) \text{ but } N_5(X) \text{ is unbounded},$
- $N_p(X)$ is bounded if p is a prime, $p \ge 7$.

If $K = \mathbb{Q}$ and p is prime, then $\log M_p(X) \sim \log(X)$.

Motivation for the conjecture is BSD combined with random matrix theory predictions for the vanishing of twisted *L*-functions.

Mazur & Rubin

Heuristics for growth of Mordell-Weil

Growth of ranks: algebraic approach

Theorem (M-R)

Fix an elliptic curve E/K. For every prime p and every n > 0, there are infinitely many cyclic extensions L/K of degree p^n such that E(L) = E(K).

(We expect E(L) = E(K) for almost all L/K, when p > 2.)

Theorem (M-R)

Fix an elliptic curve E/K. For every prime p and every n > 0, there are infinitely many cyclic extensions L/K of degree p^n such that E(L) = E(K).

(We expect E(L) = E(K) for almost all L/K, when p > 2.)

Idea of proof: If [L : K] = p, then the Weil restriction $\text{Res}_{L/K}E$ decomposes as

 $\operatorname{Res}_{L/K}E \sim A_L \times E$

with an abelian variety A_L of dimension p - 1. Then

$$\operatorname{rank}(E(L)) = \operatorname{rank}(\operatorname{Res}_{L/K}(K)) = \operatorname{rank}(A_L(K)) + \operatorname{rank}(E(K)).$$

Choosing *L* carefully to have prescribed ramification, we can ensure that $\text{Sel}_p(A_L/K) = 0$, so $\text{rank}(A_L(K)) = 0$, so rank(E(L)) = rank(E(K)).

Question

As L runs through cyclic extensions of K, how often is rank(E(L)) > rank(E(K))?

Using the Birch & Swinnerton-Dyer conjecture, this is equivalent to the following:

Question

As χ runs through characters of $Gal(\overline{K}/K)$, how often is $L(E, \chi, 1) = 0$?

When $K = \mathbb{Q}$ (which we assume until further notice), this leads to a study of modular symbols.

Modular symbols

Definition

For $r \in \mathbb{Q}$, define the modular symbol $[r]_E$ by

$$[r]_E := \frac{1}{2} \left(\frac{2\pi i}{\Omega_E} \int_{i\infty}^r f_E(z) dz + \frac{2\pi i}{\Omega_E} \int_{i\infty}^{-r} f_E(z) dz \right)$$

where f_E is the modular form attached to E, and Ω_E is the real period.

Then $[r]_E \in \mathbb{Q}$, with denominators bounded depending only on $E(\mathbb{Q})_{\text{tors}}$.

Modular symbols

Definition

For $r \in \mathbb{Q}$, define the modular symbol $[r]_E$ by

$$[r]_E := \frac{1}{2} \left(\frac{2\pi i}{\Omega_E} \int_{i\infty}^r f_E(z) dz + \frac{2\pi i}{\Omega_E} \int_{i\infty}^{-r} f_E(z) dz \right)$$

where f_E is the modular form attached to E, and Ω_E is the real period.

Then $[r]_E \in \mathbb{Q}$, with denominators bounded depending only on $E(\mathbb{Q})_{tors}$.

Theorem

For every primitive even Dirichlet character χ of conductor m,

$$\sum_{(\mathbb{Z}/m\mathbb{Z})^{\times}} \chi(a)[a/m]_E = \frac{\tau(\chi)L(E,\bar{\chi},1)}{\Omega_E}.$$

Here $\tau(\chi)$ is the Gauss sum.

 $a \in$

$$L(E,\chi,1) = 0 \iff \sum_{a \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \chi(a)[a/m]_E = 0.$$
(*)

We want to know how often this happens.

We will try to understand the distribution of the modular symbols $[a/m]_E$, and use that to predict how often the right-hand side of (*) vanishes.

< @ →

$$L(E,\chi,1) = 0 \iff \sum_{a \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \chi(a)[a/m]_E = 0.$$
 (*)

We want to know how often this happens.

We will try to understand the distribution of the modular symbols $[a/m]_E$, and use that to predict how often the right-hand side of (*) vanishes.

Our philosophy is that the modular symbols should be randomly distributed ... except when they're not (i.e., except for certain relations that we understand).

Let *N* be the conductor of *E*. For every $r \in \mathbb{Q}$, modular symbols satisfy the relations:

- $[r]_E = [r+1]_E$ since $f_E(z) = f_E(z+1)$
- $[r]_E = [-r]_E$ by definition
- Atkin-Lehner relation: if w_E is the global root number of *E*, and $aa'N \equiv 1 \pmod{m}$, then $\boxed{[a'/m]_E = w_E[a/m]_E}$
- Hecke relation: if a prime $\ell \nmid N$ and a_{ℓ} is the ℓ -th Fourier coefficient of f_E , then $a_{\ell}[r]_E = [\ell r]_E + \sum_{i=0}^{\ell-1} [(r+i)/\ell]_E$

We begin by gathering data on modular symbols.

Histogram of $\{[a/m]_E : E = 11A1, m = 10007, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 10007, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 100003, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 100003, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 1000003, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 1000003, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 10000019, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

Histogram of $\{[a/m]_E : E = 11A1, m = 10000019, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$

This looks like a normal distribution.

< 67 ▶

This looks like a normal distribution. How does the variance depend on m?

< (F) >

Plot of variance vs. *m*, for E = 11A1:

Mazur & Rubin

Heuristics for growth of Mordell-Weil

Plot of variance vs. m, for E = 11A1:

Mazur & Rubin

Heuristics for growth of Mordell-Weil

< A 1

Plot of variance vs. *m*, for E = 45A1:

Mazur & Rubin

Banff, June 2016

< (F) >

It looks like the variance in the distribution of the $[a/m]_E$ converges to

 $\alpha_E \log(m) + \beta_{E,(m,N)}$

where the slope α_E depends only on *E*, and $\beta_{E,(m,N)}$ depends on both *E* and the gcd (m, N).

< A >

It looks like the variance in the distribution of the $[a/m]_E$ converges to

 $\alpha_E \log(m) + \beta_{E,(m,N)}$

where the slope α_E depends only on *E*, and $\beta_{E,(m,N)}$ depends on both *E* and the gcd (m, N).

What is this constant α_E ?

∢ ⁄⁄⊐ → <mark>3 / 37</mark>

Table of α_E , where the variance $\sim \alpha_E \log(m) + \beta_{E,(m,N)}$:

E	α_E	E	α_E
11A1	0.366	1058A1	1.07
14A1	0.108	1058 <i>B</i> 1	3.38
15A1	0.180	1058 <i>C</i> 1	0.060
17A1	0.189	1058D1	95.4
19A1	0.290	1058E1	0.235
20A1	0.043	1059A1	0.790
21A1	0.123	1060A1	0.156
24A1	0.062	1062A1	0.593
26A1	0.206	1062 <i>B</i> 1	0.842
26 <i>B</i> 1	0.038	1062 <i>C</i> 1	0.173
27A1	0.092	1062D1	1.05
30A1	0.038	1062 <i>E</i> 1	0.037
32A1	0.040	1062F1	11.3
33A1	0.220	1062 <i>G</i> 1	0.250

∢ 🗗 →

Table of α_E , where the variance $\sim \alpha_E \log(m) + \beta_{E,(m,N)}$:

E	α_E	E	α_E
11A1	0.366	1058A1	1.07
14A1	0.108	1058 <i>B</i> 1	3.38
15A1	0.180	1058 <i>C</i> 1	0.060
17A1	0.189	1058D1	95.4
19A1	0.290	1058E1	0.235
20A1	0.043	1059A1	0.790
21A1	0.123	1060A1	0.156
24A1	0.062	1062A1	0.593
26A1	0.206	1062 <i>B</i> 1	0.842
26 <i>B</i> 1	0.038	1062 <i>C</i> 1	0.173
27A1	0.092	1062D1	1.05
30A1	0.038	1062 <i>E</i> 1	0.037
32A1	0.040	1062F1	11.3
33A1	0.220	1062 <i>G</i> 1	0.250

< 🗇 →

Among all isogeny classes with conductor between 1000 and 1100:

largest α_E		largest mo	largest modular degrees	
Ε	α_E	E	mod. degree	
1015 <i>B</i> 1	26.0	1012A1	13776	
1017 <i>G</i> 1	15.2	1014 <i>E</i> 1	6720	
1026 <i>N</i> 1	18.4	1015 <i>B</i> 1	18720	
1045 <i>B</i> 1	64.8	1020 <i>F</i> 1	6720	
1050 <i>N</i> 1	35.2	1023A1	6840	
1058D1	95.4	1026 <i>D</i> 1	8568	
1062F1	11.3	1050 <i>N</i> 1	11400	
1078 <i>B</i> 1	33.2	1058 <i>D</i> 1	19320	
1085 <i>F</i> 1	38.3	1062 <i>F</i> 1	12672	
1089 <i>1</i> 1	14.4	1085 <i>F</i> 1	13056	

< @ →

Among all isogeny classes with conductor between 1000 and 1100:

largest α_E		largest mo	largest modular degrees	
Ε	α_E	E	mod. degree	
1015 <i>B</i> 1	26.0	1012A1	13776	
1017 <i>G</i> 1	15.2	1014 <i>E</i> 1	6720	
1026N1	18.4	1015 <i>B</i> 1	18720	
1045 <i>B</i> 1	64.8	1020 <i>F</i> 1	6720	
1050 <i>N</i> 1	35.2	1023A1	6840	
1058D1	95.4	1026 <i>D</i> 1	8568	
1062 <i>F</i> 1	11.3	1050 <i>N</i> 1	11400	
1078 <i>B</i> 1	33.2	1058 <i>D</i> 1	19320	
1085 <i>F</i> 1	38.3	1062 <i>F</i> 1	12672	
1089/1	14.4	1085 <i>F</i> 1	13056	

Back to E = 11A1, histogram of $[a/m]_E/\sqrt{.366 \log(m) + .333}$ for 10^6 random values of a/m with *m* prime to 11 and $0 < m < 10^{16}$:

OK, it seems pretty convincing that, properly normalized, the $[a/m]_E$ satisfy a normal distribution with variance 1.

What does this tell us about the vanishing of $L(E, \chi, 1)$, for a Dirichlet character χ ?

< A >

Distribution of θ -coefficients

Suppose L/\mathbb{Q} has conductor *m*, so there is a canonical surjection

$$\rho_L: (\mathbb{Z}/m\mathbb{Z})^{\times} \cong \operatorname{Gal}(\mathbb{Q}(\boldsymbol{\mu}_m)/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(L/\mathbb{Q}).$$

Define

$$egin{aligned} &c_g := \sum_{a \in
ho_L^{-1}(g)} [a/m]_E & ext{for } g \in ext{Gal}(L/\mathbb{Q}), \ & heta_L := \sum_{g \in ext{Gal}(L/\mathbb{Q})} c_g g \in \mathbb{Q}[ext{Gal}(L/\mathbb{Q})]. \end{aligned}$$

Then for all $\chi : \operatorname{Gal}(L/\mathbb{Q}) \hookrightarrow \mathbb{C}^{\times}$,

$$\chi(\theta_L) = \frac{\tau(\chi)L(E,\bar{\chi},1)}{\Omega_E}.$$

We want to know how often this vanishes.

Mazur & Rubin

Heuristics for growth of Mordell-Weil

Banff, June 2016
If $[L:\mathbb{Q}] = d$, then each θ -coefficient c_g is a sum of $\varphi(m)/d$ modular symbols. We (think we) know how the modular symbols are distributed, but are they independent? If so, then the

$$\frac{c_g}{\sqrt{(\alpha_E \log(m) + \beta_{E,(m,N)})(\varphi(m)/d)}}$$

should satisfy a normal distribution with variance 1.

There are two ways to get data to test this:

- choose *d* large (so there are many data points) and try one or more *m*,
- choose any *d*, and try many different *m*.

E = 11A1, m = 25035013, L is the field of degree 5003 in $\mathbb{Q}(\mu_m)$:

E = 11A1, m = 49063009, L is the field of degree 7001 in $\mathbb{Q}(\mu_m)$:

 $E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$$

20000 < m < 40000:

The red curve is the expected normal distribution. < 🗇 > -3 -1 з Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21/37

1.5

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\mu_m), [L : \mathbb{Q}] = 3,$$

40000 < m < 80000:

1.5 The red curve is the expected normal distribution. < 🗇 > -3 -1 з Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21/37

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$$

80000 < m < 160000:

1.5 The red curve is the expected normal distribution. < 🗇 > -3 -1 2 з Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21/37

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$$

160000 < m < 320000:

The red curve is the expected normal distribution.

Mazur & Rubin

-3

2

з

Banff, June 2016

-1

< 🗇 >

21/37

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$$

320000 < m < 640000:

The red curve is the expected normal distribution. < 🗇 > -3 -1 2 з Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21/37

$$E = 11A1, m \equiv 1 \pmod{3}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = 3,$$

10000 < m < 640000:

The red curve is the expected normal distribution. < 🗇 > -3 -1 2 з Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21/37

1.5

Doesn't look normal when d = 3.

Fix

- m prime, $m \equiv 1 \pmod{3}$,
- cubic $L \subset \mathbb{Q}(\boldsymbol{\mu}_m)$,
- $H \subset (\mathbb{Z}/m\mathbb{Z})^{\times}$ the subgroup of cubes,

Then the coefficients of θ_L are the three sums

$$c_b := \sum_{a \in bH} [a/m]_E, \quad b \in (\mathbb{Z}/m\mathbb{Z})^{\times}/H.$$

The pictures seem to say that the $[a/m]_E$ are not independently distributed among these three sums.

$$c_b := \sum_{a \in bH} [a/m]_E, \quad b \in (\mathbb{Z}/m\mathbb{Z})^{\times}/H.$$

Recall that if $aa'N \equiv 1 \pmod{m}$, then $[a/m]_E = w_E[a'/m]_E$. Therefore

$$c_{bN} = w_E c_{b^{-1}N}.$$

So there are really only 2 coefficients, and one of them is zero if $w_E = -1$.

 $E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d_{\mathfrak{P}}$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d_{\mathfrak{P}}$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d_{\mathfrak{P}}$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d,$$

$$E = 11A1, m \equiv 1 \pmod{d}, L \subset \mathbb{Q}(\boldsymbol{\mu}_m), [L : \mathbb{Q}] = d_{\mathfrak{P}}$$

Oversimplified picture

Suppose L/\mathbb{Q} is a cyclic extension of degree *d* and conductor *m*. Very roughly, θ_L lies in a cube of side $\sqrt{\alpha_E \log(m)\varphi(m)/d}$ in the *d*-dimensional lattice $\mathbb{Z}[\operatorname{Gal}(L/\mathbb{Q})]$.

< 47 →

Oversimplified picture

Suppose L/\mathbb{Q} is a cyclic extension of degree *d* and conductor *m*. Very roughly, θ_L lies in a cube of side $\sqrt{\alpha_E \log(m)\varphi(m)/d}$ in the *d*-dimensional lattice $\mathbb{Z}[\operatorname{Gal}(L/\mathbb{Q})]$.

Suppose $\chi : \operatorname{Gal}(L/\mathbb{Q}) \twoheadrightarrow \mu_d$ is a faithful character. Then

$$L(E,\chi,1)=0\iff \theta_L\in \ker(\chi:\mathbb{Z}[\operatorname{Gal}(L/\mathbb{Q})]\to\mathbb{C}).$$

That kernel is a sublattice of codimension $\varphi(d)$, so we might expect the "probability" that $L(E, \chi, 1) = 0$ should be about

$$\left(\frac{C_E}{\sqrt{\log(m)\varphi(m)/d}}\right)^{\varphi(d)}$$

for some constant C_E .

Oversimplified picture

Suppose L/\mathbb{Q} is a cyclic extension of degree *d* and conductor *m*. Very roughly, θ_L lies in a cube of side $\sqrt{\alpha_E \log(m)\varphi(m)/d}$ in the *d*-dimensional lattice $\mathbb{Z}[\operatorname{Gal}(L/\mathbb{Q})]$.

Suppose $\chi : \operatorname{Gal}(L/\mathbb{Q}) \twoheadrightarrow \mu_d$ is a faithful character. Then

$$L(E, \chi, 1) = 0 \iff \theta_L \in \ker(\chi : \mathbb{Z}[\operatorname{Gal}(L/\mathbb{Q})] \to \mathbb{C}).$$

That kernel is a sublattice of codimension $\varphi(d)$, so we might expect the "probability" that $L(E, \chi, 1) = 0$ should be about

$$\left(\frac{C_E}{\sqrt{\log(m)\varphi(m)/d}}\right)^{\varphi(d)}$$

for some constant C_E .

This goes to zero *very* fast as *d* and *m* grow.

This isn't quite right:

 The previous argument ignores the Atkin-Lehner relation, which "pairs up" the coefficients and forces θ_L into a sublattice of Z[Gal(L/Q)] with rank approximately d/2. Taking this into account changes the expectation to

$$\left(\frac{C_E d}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

This isn't quite right:

 The previous argument ignores the Atkin-Lehner relation, which "pairs up" the coefficients and forces θ_L into a sublattice of Z[Gal(L/Q)] with rank approximately d/2. Taking this into account changes the expectation to

$$\left(\frac{C_E \, d}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

 The distribution of the (normalized) θ_L is not uniform in a box, and we don't fully understand what the correct distribution is.
 Fortunately, for applications, it doesn't seem to matter very much what the distribution is, only that there is one.

Fix *d* and let $G := \mu_d$. Suppose L/\mathbb{Q} is a cyclic extension of degree *d*. Suppose (only to avoid dealing with lots of cases)

- d is odd,
- the conductor *m* of L/\mathbb{Q} is prime to the conductor *N* of *E*,
- the root number $w_E = +1$.

For every faithful character $\chi : \operatorname{Gal}(L/\mathbb{Q}) \xrightarrow{\sim} G$, define

$$\theta_{L,\chi}^* := \frac{\chi(\rho_L(N)^{(d+1)/2}\theta_L)}{\sqrt{(\alpha_E \log(m) + \beta_{E,1})(\varphi(m)/d)}} = \sum_{g \in G} c_{L,\chi,g} \cdot g \in \mathbb{R}[G]$$

which has been normalized for size and so that the Atkin-Lehner relation gives $c_{L,\chi,g} = c_{L,\chi,g^{-1}}$. Then

$$\theta_{L,\chi}^* \in \mathbb{R}[G]^+$$

where the superscript "+" denotes the space fixed under $g \mapsto g^{-1}$.

Define

 $S(X) := \{(L, \chi) : \operatorname{conductor}(L/\mathbb{Q}) < X, \ \chi : \operatorname{Gal}(L/\mathbb{Q}) \xrightarrow{\sim} G\}.$

Questions

As $X o \infty$,

- for each $g \in G$, does the distribution of the $c_{L,\chi,g} \in \mathbb{R}$ for $(L,\chi) \in S(X)$ converge to a bounded function f_g ?
- **2** is the bound on f_g independent of d?
- Solution of the θ^{*}_{L,χ} ∈ ℝ[G]⁺ for (L, χ) ∈ S(X) converge to $\prod_{\{g,g^{-1}\}} f_g$?

Questions and Remarks

As $X \to \infty$,

If or each g ∈ G, does the distribution of the c_{L,χ,g} ∈ ℝ for (L, χ) ∈ S(X) converge to a bounded function f_g?

2 is the bound on f_g independent of d?

Observe the distribution of the $θ_{L,\chi}^* ∈ ℝ[G]^+$ for $(L, \chi) ∈ S(X)$ converge to $\prod_{\{g,g^{-1}\}} f_g$?

Questions and Remarks

As $X \to \infty$,

for each g ∈ G, does the distribution of the c_{L,χ,g} ∈ ℝ for (L, χ) ∈ S(X) converge to a bounded function f_g?
 The data make this look plausible.

2 is the bound on f_g independent of d?

Observe the distribution of the $θ_{L,\chi}^* ∈ ℝ[G]^+$ for $(L, \chi) ∈ S(X)$ converge to $\prod_{\{g,g^{-1}\}} f_g$?

Questions and Remarks

As $X \to \infty$,

for each g ∈ G, does the distribution of the c_{L,χ,g} ∈ ℝ for (L, χ) ∈ S(X) converge to a bounded function f_g?
 The data make this look plausible.

- is the bound on f_g independent of d?
 Since the f_g seem to get closer and closer to a fixed normal distribution as d grows, this seems plausible too.
- does the distribution of the $\theta^*_{L,\chi} \in \mathbb{R}[G]^+$ for $(L,\chi) \in S(X)$ converge to $\prod_{\{g,g^{-1}\}} f_g$?

Questions and Remarks

As $X \to \infty$,

for each g ∈ G, does the distribution of the c_{L,χ,g} ∈ ℝ for (L, χ) ∈ S(X) converge to a bounded function f_g?
 The data make this look plausible.

is the bound on f_g independent of d?
 Since the f_g seem to get closer and closer to a fixed normal distribution as d grows, this seems plausible too.

Ones the distribution of the θ^{*}_{L,χ} ∈ ℝ[G]⁺ for (L, χ) ∈ S(X) converge to ∏_{g,g⁻¹} f_g?
 The third question is equivalent to asking that the coefficients be independent.

If the answer to these questions is "Yes", we get a heuristic estimate:

Heuristic

There is a constant C_E , depending only on E, such that

$$\operatorname{Prob}[L(E,\chi,1)=0] \le \left(\frac{C_E d}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

where *d* is the order of χ and *m* its conductor.

This should hold for all χ of order greater than 2.
Heuristic

$$\operatorname{Prob}[L(E,\chi,1)=0] \le \left(\frac{C_E d}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

Example (d = 3)

$$\sum_{X \text{ conductor } < X} \operatorname{Prob}[L(E, \chi, 1) = 0] \ll \sum_{m=2}^{X} \frac{1}{(\log(m)\varphi(m))^{1/2}} \ll \sqrt{X}.$$

Example (d = 5)

 χ order 3,

$$\sum_{\chi \text{ order 5, conductor < } X} \operatorname{Prob}[L(E,\chi,1)=0] \ll \sum_{m=2}^{X} \frac{1}{\log(m)\varphi(m)} \ll \log X.$$

These are consistent with the prediction of David-Fearnley-Kisilevsky.

- N/	OZUR	9. Di	ubun
1.0	azui	α i i	uuii

Heuristic

$$\operatorname{Prob}[L(E,\chi,1)=0] \le \left(\frac{C_{Ed}}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

Example (d = 7)

 χ

$$\sum_{\text{of order 7}} \operatorname{Prob}[L(E,\chi,1)=0] \ll \sum_{m=2}^{\infty} \frac{1}{(\log(m)\varphi(m))^{3/2}} < \infty.$$

This is consistent with the prediction of David-Fearnley-Kisilevsky.

Heuristic

$$\operatorname{Prob}[L(E,\chi,1)=0] \le \left(\frac{C_{Ed}}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

Proposition

Suppose $t : \mathbb{Z}_{>0} \to \mathbb{R}$ is a function, and $t(d) \gg \log(d)$. Then

$$\sum_{d : t(d) > 1} \sum_{\chi \text{ order } d} \left(\frac{C_E d}{\log(m)\varphi(m)} \right)^{t(d)} \quad \text{converges}$$

< 🗗 >

Heuristic

$$\operatorname{Prob}[L(E,\chi,1)=0] \le \left(\frac{C_{Ed}}{\log(m)\varphi(m)}\right)^{\varphi(d)/4}$$

Proposition

Mazur & Rubin

Suppose $t : \mathbb{Z}_{>0} \to \mathbb{R}$ is a function, and $t(d) \gg \log(d)$. Then

$$\sum_{d : t(d) > 1} \sum_{\chi \text{ order } d} \left(\frac{C_E d}{\log(m)\varphi(m)} \right)^{t(d)} \quad \textit{converges}.$$

Applying this with $t(d) = \varphi(d)/4$ shows

Heuristic

$$\sum_{d : \varphi(d) > 4} \sum_{\chi \text{ order } d} \operatorname{Prob}[L(E, \chi, 1) = 0] \quad \textit{converges.}$$

Heuristics for arowth of Mordell-Weil

Banff, June 2016

33/37

This leads to:

Conjecture

Suppose L/\mathbb{Q} is an abelian extension with only finitely many subfields of degree 2, 3, or 5 over \mathbb{Q} .

Then for every elliptic curve E/\mathbb{Q} , we expect that E(L) is finitely generated.

This leads to:

Conjecture

Suppose L/\mathbb{Q} is an abelian extension with only finitely many subfields of degree 2, 3, or 5 over \mathbb{Q} .

Then for every elliptic curve E/\mathbb{Q} , we expect that E(L) is finitely generated.

For example, these conditions hold when *L* is:

- the $\hat{\mathbb{Z}}$ -extension of \mathbb{Q} ,
- the maximal abelian ℓ -extension of \mathbb{Q} , for $\ell \geq 7$.

Extension to other base fields: Suppose now that *K* is a number field and *E* is an elliptic curve over *K*. In this case there can be characters χ of $\text{Gal}(\bar{K}/K)$ such that $L(E, \chi, 1)$ vanishes because its root number is -1.

If for all *other* χ we have

$$\operatorname{Prob}[L(E,\chi,1)=0] \ll \left(\frac{C_E d_{\chi}}{\log(m_{\chi})\varphi(m_{\chi})}\right)^{\varphi(d_{\chi})/4}$$

where d_{χ} is the order of χ and m_{χ} is the norm of its conductor, then we get a similar conclusion:

Conjecture

Suppose L/K is an abelian extension with only finitely many subfields of degree 2, 3, or 5.

Then for every elliptic curve E/K, if we exclude those characters with root number -1, then we expect $L(E, \chi, 1) = 0$ for only finitely many other characters χ of Gal(L/K).

< A >

Conjecture

Suppose L/K is an abelian extension with only finitely many subfields of degree 2, 3, or 5.

Then for every elliptic curve E/K, if we exclude those characters with root number -1, then we expect $L(E, \chi, 1) = 0$ for only finitely many other characters χ of Gal(L/K).

Conjecture

Suppose L/\mathbb{Q} is an abelian extension with only finitely many subfields of degree 2, 3, or 5.

Then for every elliptic curve E/L, we expect that E(L) is finitely generated.

Extensions and generalizations

Studying p-Selmer: Instead of asking how often $L(E, \chi, 1) = 0$, we can ask how often $L(E, \chi, 1)/\Omega_E$ is divisible by (some prime above) *p*. By the Birch & Swinnerton-Dyer conjecture, this will tell us about the *p*-Selmer group Sel_p(*E*/*L*).

It seems reasonable to expect that if the θ -coefficients $c_{L,\chi,g}$ are not all the same (mod p), then they are equidistributed (mod p).

Extensions and generalizations

Studying p-Selmer: Instead of asking how often $L(E, \chi, 1) = 0$, we can ask how often $L(E, \chi, 1)/\Omega_E$ is divisible by (some prime above) *p*. By the Birch & Swinnerton-Dyer conjecture, this will tell us about the *p*-Selmer group Sel_p(*E/L*).

It seems reasonable to expect that if the θ -coefficients $c_{L,\chi,g}$ are not all the same (mod p), then they are equidistributed (mod p).

For example, this leads to the following:

Conjecture

Let *S* be a finite set of rational primes, not containing *p*. Let *L* be the compositum of the cyclotomic \mathbb{Z}_{ℓ} -extensions of \mathbb{Q} for $\ell \in S$. If *E* is an elliptic curve over \mathbb{Q} whose mod *p* representation is irreducible, then $\dim_{\mathbb{F}_p} \operatorname{Sel}_p(E/L)$ is finite.

The heuristic does *not* predict finite *p*-Selmer rank when *S* is infinite.