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Growth of ranks in cyclic extensions

Fix an elliptic curve E over a number field K.

Question
As L runs through abelian extensions of K, how often is

rank(E(L)) > rank(E(K))?

By considering the action of Gal(L/K) on E(L)⌦Q, it is enough to
consider the case where L/K is cyclic.
General philosophy: it’s hard to find L with E(L) 6= E(K).
For example, suppose L/K is cyclic of degree p, with a large prime
p. The representation theory of Q[Gal(L/K)] shows that

rank(E(L)) > rank(E(K)) =) rank(E(L)) � rank(E(K)) + (p � 1).
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Growth of ranks in cyclic extensions
Let fL/K denote the (finite part of the) conductor of L/K, and define

Md(X) := #{L/K cyclic of degree d : NfL/K < X},
Nd(X) := #{L/K cyclic of degree d : NfL/K < X and E(L) 6= E(K)}.

Conjecture (David-Fearnley-Kisilevsky)
If K = Q then:

1
log N

2

(X) ⇠ log(X) (follows from standard conjectures),

2
log N

3

(X) ⇠ 1

2

log(X),
3

log N
5

(X) = o(log(X) but N
5

(X) is unbounded,

4 Np(X) is bounded if p is a prime, p � 7.

If K = Q and p is prime, then log Mp(X) ⇠ log(X).

Motivation for the conjecture is BSD combined with random matrix
theory predictions for the vanishing of twisted L-functions.
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Growth of ranks: algebraic approach

Theorem (M-R)
Fix an elliptic curve E/K. For every prime p and every n > 0, there are

infinitely many cyclic extensions L/K of degree pn
such that

E(L) = E(K).

(We expect E(L) = E(K) for almost all L/K, when p > 2.)

Idea of proof: If [L : K] = p, then the Weil restriction ResL/KE
decomposes as

ResL/KE ⇠ AL ⇥ E

with an abelian variety AL of dimension p � 1. Then

rank(E(L)) = rank(ResL/K(K)) = rank(AL(K)) + rank(E(K)).

Choosing L carefully to have prescribed ramification, we can ensure
that Selp(AL/K) = 0, so rank(AL(K)) = 0, so rank(E(L)) = rank(E(K)).
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Growth of ranks: analytic approach

Question
As L runs through cyclic extensions of K, how often is

rank(E(L)) > rank(E(K))?

Using the Birch & Swinnerton-Dyer conjecture, this is equivalent to the
following:

Question
As � runs through characters of Gal(K̄/K), how often is L(E,�, 1) = 0?

When K = Q (which we assume until further notice), this leads to a
study of modular symbols.
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Modular symbols
Definition
For r 2 Q, define the modular symbol [r]E by

[r]E :=
1

2

✓
2⇡i
⌦E

Z r

i1
fE(z)dz +

2⇡i
⌦E

Z �r

i1
fE(z)dz

◆

where fE is the modular form attached to E, and ⌦E is the real period.

Then [r]E 2 Q, with denominators bounded depending only on E(Q)
tors

.

Theorem
For every primitive even Dirichlet character � of conductor m,

X

a2(Z/mZ)⇥
�(a)[a/m]E =

⌧(�)L(E, �̄, 1)

⌦E
.

Here ⌧(�) is the Gauss sum.
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Modular symbols

L(E,�, 1) = 0 ()
X

a2(Z/mZ)⇥
�(a)[a/m]E = 0. (⇤)

We want to know how often this happens.

We will try to understand the distribution of the modular symbols
[a/m]E, and use that to predict how often the right-hand side of (⇤)
vanishes.

Our philosophy is that the modular symbols should be randomly
distributed . . . except when they’re not (i.e., except for certain relations
that we understand).
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Modular symbols

Let N be the conductor of E. For every r 2 Q, modular symbols satisfy
the relations:

[r]E = [r + 1]E since fE(z) = fE(z + 1)

[r]E = [�r]E by definition

Atkin-Lehner relation: if wE is the global root number of E, and
aa0N ⌘ 1 (mod m), then [a0/m]E = wE[a/m]E

Hecke relation: if a prime ` - N and a` is the `-th Fourier coefficient
of fE, then a`[r]E = [`r]E +

P`�1

i=0

[(r + i)/`]E
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Modular symbols

We begin by gathering data on modular symbols.
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 10007, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 100003, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 100003, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 1000003, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 1000003, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 10000019, a 2 (Z/mZ)⇥}
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Distribution of modular symbols
Histogram of {[a/m]E : E = 11A1,m = 10000019, a 2 (Z/mZ)⇥}

Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 10 / 37



Distribution of modular symbols

This looks like a normal distribution.

How does the variance depend on m?
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Distribution of modular symbols
Plot of variance vs. m, for E = 11A1:
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Distribution of modular symbols
Plot of variance vs. m, for E = 11A1:

the upper line is the m’s prime to 11

the lower line is the m’s divisible by 11
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Distribution of modular symbols
Plot of variance vs. m, for E = 45A1:

the 6 colors correspond to
the 6 possible gcd’s (m, 45)
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Distribution of modular symbols

It looks like the variance in the distribution of the [a/m]E converges to

↵E log(m) + �E,(m,N)

where the slope ↵E depends only on E, and �E,(m,N) depends on both E
and the gcd (m,N).

What is this constant ↵E?
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Distribution of modular symbols
Table of ↵E, where the variance ⇠ ↵E log(m) + �E,(m,N):

E ↵E E ↵E

11A1 0.366 1058A1 1.07

14A1 0.108 1058B1 3.38

15A1 0.180 1058C1 0.060

17A1 0.189 1058D1 95.4
19A1 0.290 1058E1 0.235

20A1 0.043 1059A1 0.790

21A1 0.123 1060A1 0.156

24A1 0.062 1062A1 0.593

26A1 0.206 1062B1 0.842

26B1 0.038 1062C1 0.173

27A1 0.092 1062D1 1.05

30A1 0.038 1062E1 0.037

32A1 0.040 1062F1 11.3
33A1 0.220 1062G1 0.250
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Distribution of modular symbols

Among all isogeny classes with conductor between 1000 and 1100:

largest ↵E largest modular degrees
E ↵E E mod. degree

1015B1 26.0 1012A1 13776
1017G1 15.2 1014E1 6720
1026N1 18.4 1015B1 18720
1045B1 64.8 1020F1 6720
1050N1 35.2 1023A1 6840
1058D1 95.4 1026D1 8568
1062F1 11.3 1050N1 11400
1078B1 33.2 1058D1 19320
1085F1 38.3 1062F1 12672
1089I1 14.4 1085F1 13056
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Distribution of modular symbols
Back to E = 11A1, histogram of [a/m]E/

p
.366 log(m) + .333 for 10

6

random values of a/m with m prime to 11 and 0 < m < 10

16:

The red curve corresponds
to a normal distribution
with variance 1.
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Distribution of modular symbols

OK, it seems pretty convincing that, properly normalized, the [a/m]E
satisfy a normal distribution with variance 1.

What does this tell us about the vanishing of L(E,�, 1), for a Dirichlet
character �?
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Distribution of ✓-coefficients

Suppose L/Q has conductor m, so there is a canonical surjection

⇢L : (Z/mZ)⇥ ⇠= Gal(Q(µm)/Q) ⇣ Gal(L/Q).

Define

cg :=
X

a2⇢�1

L (g)

[a/m]E for g 2 Gal(L/Q),

✓L :=
X

g2Gal(L/Q)

cgg 2 Q[Gal(L/Q)].

Then for all � : Gal(L/Q) ,! C⇥,

�(✓L) =
⌧(�)L(E, �̄, 1)

⌦E
.

We want to know how often this vanishes.
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Distribution of ✓-coefficients

If [L : Q] = d, then each ✓-coefficient cg is a sum of '(m)/d modular
symbols. We (think we) know how the modular symbols are
distributed, but are they independent? If so, then the

cgq
(↵E log(m) + �E,(m,N))('(m)/d)

should satisfy a normal distribution with variance 1.

There are two ways to get data to test this:

choose d large (so there are many data points) and try one or
more m,
choose any d, and try many different m.
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Distribution of ✓-coefficients, large d

E = 11A1, m = 25035013, L is the field of degree 5003 in Q(µm):

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, large d

E = 11A1, m = 49063009, L is the field of degree 7001 in Q(µm):

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

10000 < m < 20000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

20000 < m < 40000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

40000 < m < 80000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

80000 < m < 160000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

160000 < m < 320000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

320000 < m < 640000:

The red curve is the
expected normal
distribution.

Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 21 / 37



Distribution of ✓-coefficients, d = 3

E = 11A1, m ⌘ 1 (mod 3), L ⇢ Q(µm), [L : Q] = 3,

10000 < m < 640000:

The red curve is the
expected normal
distribution.
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Distribution of ✓-coefficients, d = 3

Doesn’t look normal when d = 3.

Fix

m prime, m ⌘ 1 (mod 3),
cubic L ⇢ Q(µm),
H ⇢ (Z/mZ)⇥ the subgroup of cubes,

Then the coefficients of ✓L are the three sums

cb :=
X

a2bH

[a/m]E, b 2 (Z/mZ)⇥/H.

The pictures seem to say that the [a/m]E are not independently
distributed among these three sums.
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Distribution of ✓-coefficients, d = 3

cb :=
X

a2bH

[a/m]E, b 2 (Z/mZ)⇥/H.

Recall that if aa0N ⌘ 1 (mod m), then [a/m]E = wE[a0/m]E. Therefore

cbN = wEcb�1N .

So there are really only 2 coefficients, and one of them is zero if
wE = �1.
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 3
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 5
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 7

Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 24 / 37



Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 11
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 13
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 17
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 23

Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 24 / 37



Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 31
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 41
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 53
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 97
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Distribution of ✓-coefficients, small d

E = 11A1, m ⌘ 1 (mod d), L ⇢ Q(µm), [L : Q] = d,

d = 293

Mazur & Rubin Heuristics for growth of Mordell-Weil Banff, June 2016 24 / 37



Oversimplified picture

Suppose L/Q is a cyclic extension of degree d and conductor m.

Very roughly, ✓L lies in a cube of side
p

↵E log(m)'(m)/d in the
d-dimensional lattice Z[Gal(L/Q)].

Suppose � : Gal(L/Q) ⇣ µd is a faithful character. Then

L(E,�, 1) = 0 () ✓L 2 ker(� : Z[Gal(L/Q)] ! C).

That kernel is a sublattice of codimension '(d), so we might expect the
“probability” that L(E,�, 1) = 0 should be about

✓
CEp

log(m)'(m)/d

◆'(d)

for some constant CE.

This goes to zero very fast as d and m grow.
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Oversimplified picture
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Oversimplified picture

This isn’t quite right:

The previous argument ignores the Atkin-Lehner relation, which
“pairs up” the coefficients and forces ✓L into a sublattice of
Z[Gal(L/Q)] with rank approximately d/2. Taking this into account
changes the expectation to

✓
CE d

log(m)'(m)

◆'(d)/4

.

The distribution of the (normalized) ✓L is not uniform in a box, and
we don’t fully understand what the correct distribution is.
Fortunately, for applications, it doesn’t seem to matter very much
what the distribution is, only that there is one.
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Distribution of ✓-coefficients
Fix d and let G := µd. Suppose L/Q is a cyclic extension of degree d.
Suppose (only to avoid dealing with lots of cases)

d is odd,
the conductor m of L/Q is prime to the conductor N of E,
the root number wE = +1.

For every faithful character � : Gal(L/Q)
⇠�! G, define

✓⇤L,� :=
�(⇢L(N)(d+1)/2✓L)p

(↵E log(m) + �E,1)('(m)/d)
=

X

g2G

cL,�,g · g 2 R[G]

which has been normalized for size and so that the Atkin-Lehner
relation gives cL,�,g = cL,�,g�1

. Then

✓⇤L,� 2 R[G]+

where the superscript “+” denotes the space fixed under g 7! g�1.
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Distribution of ✓-coefficients

Define

S(X) := {(L,�) : conductor(L/Q) < X, � : Gal(L/Q)
⇠�! G}.

Questions
As X ! 1,

1
for each g 2 G, does the distribution of the cL,�,g 2 R for

(L,�) 2 S(X) converge to a bounded function fg?

2
is the bound on fg independent of d?

3
does the distribution of the ✓⇤L,� 2 R[G]+ for (L,�) 2 S(X) converge

to

Q
{g,g�1} fg?
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Distribution of ✓’s

Questions and Remarks
As X ! 1,

1
for each g 2 G, does the distribution of the cL,�,g 2 R for

(L,�) 2 S(X) converge to a bounded function fg?

The data make this look plausible.

2
is the bound on fg independent of d?

Since the fg seem to get closer and closer to a fixed normal

distribution as d grows, this seems plausible too.

3
does the distribution of the ✓⇤L,� 2 R[G]+ for (L,�) 2 S(X) converge

to

Q
{g,g�1} fg?

The third question is equivalent to asking that the coefficients be

independent.
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The heuristic

If the answer to these questions is “Yes”, we get a heuristic estimate:

Heuristic
There is a constant CE, depending only on E, such that

Prob[L(E,�, 1) = 0] 
✓

CEd
log(m)'(m)

◆'(d)/4

where d is the order of � and m its conductor.

This should hold for all � of order greater than 2.
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Consequences of the heuristic
Heuristic

Prob[L(E,�, 1) = 0] 
� CEd

log(m)'(m)

�'(d)/4

.

Example (d = 3)

X

� order 3, conductor < X

Prob[L(E,�, 1) = 0] ⌧
XX

m=2

1

(log(m)'(m))1/2

⌧
p

X.

Example (d = 5)

X

� order 5, conductor < X

Prob[L(E,�, 1) = 0] ⌧
XX

m=2

1

log(m)'(m)
⌧ log X.

These are consistent with the prediction of David-Fearnley-Kisilevsky.
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Consequences of the heuristic
Heuristic

Prob[L(E,�, 1) = 0] 
� CEd

log(m)'(m)

�'(d)/4

.

Example (d = 7)
X

� of order 7

Prob[L(E,�, 1) = 0] ⌧
1X

m=2

1

(log(m)'(m))3/2

< 1.

This is consistent with the prediction of David-Fearnley-Kisilevsky.
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Consequences of the heuristic
Heuristic

Prob[L(E,�, 1) = 0] 
� CEd

log(m)'(m)

�'(d)/4

.

Proposition
Suppose t : Z>0

! R is a function, and t(d) � log(d). Then

X

d : t(d)>1

X

� order d

✓
CEd

log(m)'(m)

◆t(d)

converges.

Applying this with t(d) = '(d)/4 shows

Heuristic
X

d : '(d)>4

X

� order d

Prob[L(E,�, 1) = 0] converges.
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Consequences of the heuristic

This leads to:

Conjecture
Suppose L/Q is an abelian extension with only finitely many subfields

of degree 2, 3, or 5 over Q.

Then for every elliptic curve E/Q, we expect that E(L) is finitely

generated.

For example, these conditions hold when L is:

the Ẑ-extension of Q,
the maximal abelian `-extension of Q, for ` � 7.
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Extensions and generalizations

Extension to other base fields: Suppose now that K is a number field
and E is an elliptic curve over K. In this case there can be characters �
of Gal(K̄/K) such that L(E,�, 1) vanishes because its root number is
�1.

If for all other � we have

Prob[L(E,�, 1) = 0] ⌧
✓

CEd�
log(m�)'(m�)

◆'(d�)/4

where d� is the order of � and m� is the norm of its conductor, then we
get a similar conclusion:
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Extensions and generalizations

Conjecture
Suppose L/K is an abelian extension with only finitely many subfields

of degree 2, 3, or 5.

Then for every elliptic curve E/K, if we exclude those characters with

root number �1, then we expect L(E,�, 1) = 0 for only finitely many

other characters � of Gal(L/K).

Conjecture
Suppose L/Q is an abelian extension with only finitely many subfields

of degree 2, 3, or 5.

Then for every elliptic curve E/L, we expect that E(L) is finitely

generated.
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Extensions and generalizations

Studying p-Selmer: Instead of asking how often L(E,�, 1) = 0, we can
ask how often L(E,�, 1)/⌦E is divisible by (some prime above) p. By
the Birch & Swinnerton-Dyer conjecture, this will tell us about the
p-Selmer group Selp(E/L).

It seems reasonable to expect that if the ✓-coefficents cL,�,g are not all
the same (mod p), then they are equidistributed (mod p).

For example, this leads to the following:

Conjecture
Let S be a finite set of rational primes, not containing p. Let L be the

compositum of the cyclotomic Z`-extensions of Q for ` 2 S. If E is an

elliptic curve over Q whose mod p representation is irreducible, then

dimFp Selp(E/L) is finite.

The heuristic does not predict finite p-Selmer rank when S is infinite.
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