
Investigating the linear structure of Boolean functions

based on Simon’s period-finding quantum algorithm

Li Yang1∗, Hong-Wei Li1,2

1.State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2.Mathematics Department, Henan Institute of Education, Zhengzhou, 450046, China

Abstract

It is believed that there is no efficient classical algorithm to determine the
linear structure of Boolean function. We investigate an extension of Simon’s
period-finding quantum algorithm, and propose an efficient quantum algo-
rithm to determine the linear structure of Boolean function.

Keywords: quantum computation, Simon’s algorithm, linear structure of
Boolean function

D.R.Simon’s paper [1] work on the comparison between two algorithms
based on the access to a classical or quantum oracle of the Boolean func-
tion considered, respectively. He suggest a quantum algorithm to distinguish
between two classes of functions, one is one-to-one, another has a period.
Simon’s result means that in the circumstance with a quantum oracle exe-
cuting a 2 → 1 periodic multiple Boolean function, one can find the period
efficiently. Here we generalize this algorithm to determine the linear struc-
ture of Boolean function. Understanding the linear structure of a Boolean
function is important while designing a cryptographic algorithm or execut-
ing some cryptanalysis. The cryptologists have presented various relevant
results, such as that in [2–5], though there is still no polynomial algorithm
suggested. Here we provide a polynomial size quantum algorithm to deter-
mine the linear structure of Boolean functions via extending Simon’s period-
finding algorithm.

∗Corresponding author. E-mail: yangli@iie.ac.cn

ar
X

iv
:1

30
6.

20
08

v2
 [

qu
an

t-
ph

]
 1

8
O

ct
 2

01
3

1. Using Simon’s algorithm to find multiple periods

Given a multi-output Boolean function F : {0, 1}n → {0, 1}n−1, if there
is a nontrivial string s of length n such that ∀x, F (x) = F (x⊕ s) (⊕ always
denote bitwise exclusive-or in this note), s will be called the period of F (x).
Simon’s quantum algorithm gave a solution for finding s.

The Simon’s algorithm is composed of O(n) repetitions of the following
routine.

1. Perform the Hadamard transformation H(n) on a qubit-string in state
|0 · · · 0〉, change it into state 2−n/2

∑
x |x〉I .

2. Compute F (x), to get 2−n/2
∑

x |x〉I |F (x)〉II .
3. PerformH(n) on the register I, Producing 2−n

∑
y

∑
x(−1)x·y|y〉I |F (x)〉II .

Suppose there is some s 6= 0, such that ∀x, F (x) = F (x ⊕ s). Then for
each y, |y, F (x)〉 = |y, F (x⊕ s)〉, and the amplitude of this configuration will
be

α(x, y) = 2−n((−1)x·y + (−1)(x⊕s)·y) = 2−n(−1)x·y[1 + (−1)s·y] (1)

Measure the first register, getting a value of y, which must satisfies s · y = 0.
After O(n) repetitions of the routine, n linearly independent values of y

can be obtained. Then s can be obtained by solving the linear system of
equations 

y1 · s = 0
y2 · s = 0
· · ·
yn · s = 0.

(2)

If the set of Equs. (2) has only one nontrivial solution, that is Simon’s
original quantum algorithm, but if it has more than one solutions, the solu-
tions are all the periods of F . In other word, Simon’s quantum algorithm
can also be applied to the situation that Boolean function F of output n has
two or more periods.

Suppose {b1, b2, · · · · · · bk} are the linear independent periods of F .
Perform the quantum oracle to compute F (m), get

2−n/2
2n−1∑
m=0

|m〉I |F (m)〉II .

Measure the second register, which leads the first register collapse into the

2

state:

1√
2k

2k−1∑
(α1,··· ,αk)=0

|m⊕ α1b1 ⊕ · · · ⊕ αkbk〉I .

Then, perform Hadamard transform on the first register:

H(n)

 1√
2k

2k−1∑
(α1,··· ,αk)=0

|m⊕ α1b1 ⊕ · · · ⊕ αkbk〉I


=

1√
2k

1√
2n

∑
y

(−1)m·y[1 + (−1)b1·y] · · · [1 + (−1)bk·y]|y〉I , (3)

and measure the register, we obtain the vectors y(1), · · · , y(m) ∈ F n
2 . It is

necessary that 
b1 · y(1) = 0,
...
bk · y(1) = 0,

, · · · ,


b1 · y(m) = 0,
...
bk · y(m) = 0.

(4)

There are m blocks (totally m×k equations) above. We can divide them
into k groups to obtain b1, · · · , bk:

y(1) · b1 = 0,
...
y(m) · b1 = 0,

, · · · ,


y(1) · bk = 0,
...
y(m) · bk = 0.

(5)

Equs.(5) is actually the same as Simon’s original Equs. (2).

2. The quantum algorithm for finding the linear structure of Boolean
function

Definition 1 Let f(x) : F n
2 → F2 is an Boolean function. Suppose α ∈ F n

2 .
If ∀x ∈ F n

2 , f(x⊕α) + f(x) = c = f(α) + f(0), we call α is a linear structure
of f(x).

Let Uf denote the collection of the linear structure of f(x).

U
(0)
f = {α ∈ F n

2 |f(x⊕ α) + f(x) = 0,∀x ∈ F n
2 }.

3

U
(1)
f = {α ∈ F n

2 |f(x⊕ α) + f(x) = 1,∀x ∈ F n
2 }.

Obviously Uf = U
(0)
f

⋃
U

(1)
f . Inspired by the Simon’s period-finding method,

we can use the following quantum algorithm to find out a basis of U
(0)
f :

Algorithm
Initially i = 1, r = n.
(1) Randomly choose an integer li (we choose li ≥ n and li+1 > li), and

generate a set of random vectors a
(i)
1 , · · · , a

(i)
li
∈ F n

2 , and then compute

1√
2n

2n−1∑
m=0

|m〉I |0〉II →
1√
2n

2n−1∑
m=0

|m〉I |f(m), f(m⊕ a(i)1), · · · f(m⊕ a(i)li)〉II .

(2) Measure the register II, suppose the output is (F0, · · · , Fli), then the

quantum register I collapse to (let b
(i)
0 = 0)

|ψf〉I =
1√

Ni + 1

Ni∑
j=0

|m⊕ b(i)j 〉I , (6)

where m,m⊕ b(i)1 , · · · ,m⊕ b
(i)
Ni

satisfy the following equations:
f(x) = F0,
...

f(x⊕ a(i)li) = Fli .

(7)

Begin with (6), by the method of Section 1, perform the Hadamard trans-
formation on the register I, and measure the register, repeat the experiment
An(where A is a constant) times, we will get a group of linearly independent
y, solve a linear system of equations like Equs.(5), we will get a solution

basis b
′(i)
1 , · · · , b

′(i)
Ni

. Let L(b
′(i)
1 , · · · , b

′(i)
Ni

) denote the space generated by the

vector b
′(i)
1 , · · · , b

′(i)
Ni

. By the definition of U
(0)
f we know that there must be

U
(0)
f ⊆ L(b

(i)
1 , · · · , b

(i)
Ni

), but it is not necessary that L(b
(i)
1 , · · · , b

(i)
Ni

) ⊆ U
(0)
f .

So after we solve the answers b
′(i)
1 , · · · , b

′(i)
Ni

, they may not be the basis of U
(0)
f .

For deal with that situation, we do the following steps:
(3) If i < r, take i = i+ 1, repeat the steps (1) and (2), and output a set

4

of solutions b
′(i+1)
1 , · · · , b

′(i+1)
Ni+1

. Now we have obtained r sets of solutions

b
′(1)
1 , · · · , b

′(1)
N1

;
...

b
′(r)
1 , · · · , b

′(r)
Nr
.

(8)

If ∃i0 < r satisfies: for any i, i′ ≥ i0, i 6= i′, L(b
′(i)
1 , · · · , b

′(i)
Ni

) = L(b
′(i′)
1 , · · · , b

′(i′)
N
i
′),

output b
′(r)
1 , · · · , b

′(r)
Nr

, and go to (4); otherwise let r = r + 1, and go to (3).

(4) Test and verify: after we get the output b
′(r)
1 , · · · , b

′(r)
lr

, take lr vectors
into the representation of f(x) separately. That is choose p(n) values of x,

and compute whether it is f(x) = f(x ⊕ b
′(r)
i)|i=1,··· ,lr . If we don’t find any

value of x violates the equation, then we will confirm b
′(r)
1 , · · · , b

′(r)
lr

is a basis

of U
(0)
f .

3. The Simplified quantum algorithm

Algorithm
(1) Generate a set of linear independent vectors a1, · · · , an ∈ F n

2 , and
then compute

1√
2n

2n−1∑
m=0

|m〉I |0〉II →
1√
2n

2n−1∑
m=0

|m〉I |f(m), f(m⊕ a1), · · · f(m⊕ an)〉II .

Measure the register II, suppose the output is (F0, · · · , Fn), then the
quantum register I collapse to (let b′0 = 0)

|ψf〉I =
1√
N + 1

N∑
j=0

|m⊕ b′j〉I , (9)

where m,m⊕ b′1, · · · ,m⊕ b′N satisfy the following equations:
f(x) = F0,
...
f(x⊕ an) = Fn.

(10)

5

By the definition of U
(0)
f we know that there must be U

(0)
f ⊆ {b′0, · · · , b′N},

but it is not necessary that {b′1, · · · , b′N} ⊆ U
(0)
f . Perform the Hadamard

transformation on the register I, and by the Equ. (9) we get

H(n)

[
1√
N + 1

N∑
j=0

|m⊕ b′j〉I

]
=

1√
N + 1

1√
2n

∑
y

N∑
j=0

(−1)(m⊕b
′
j)·y|y〉I . (11)

Measure the register to get y.
(2) After α(n) (polynomial function of n, refer to the analysis of the

algorithm) times repeat of (1), we have obtained

y1, · · · , yj. (12)

(3) Solve the linear system of equations generalized by y1, · · · , yj the same
as Equs. (2) to get the solution b1, · · · , bn−j.

(4) Test and verify: after we get the output b1, · · · , bn−j, take l vectors
into the representation of f(x) separately. That is choose p(n) values of x,
and compute whether it is f(x) = f(x ⊕ bi)|i=1,··· ,n−j. If we don’t find any
value of x violates the equation, then we will confirm b1, · · · , bn−j is a basis

of U
(0)
f .

The analysis of the algorithm
Let F n

2 be a space which is composed of {0, 1} strings of length n. Suppose
the probability distribution over F n

2 is uniform, we randomly choose the
elements of F n

2 . Denote the event of getting n linearly independent elements
through k(k ≥ n) times picking by Ak. P (Ak) is the probability of the event
Ak happens. If Ak happens, we will say that it is successful. Otherwise, we
say that it is failed. Then

P (An) = (1− 1

2n
)(1− 1

2n−1
) · · · (1− 1

2
) = Pn. (13)

If k > n,

P (Ak) = Pn
∑

x0+x1···+xn−1+xn=k−n

1

2nx0+(n−1)x1+···+xn−1
. (14)

Let i = k − n,

q(n, i) =
∑

x0+x1···+xn−1+xn=i

1

2nx0+(n−1)x1+···+xn−1
, (15)

6

fig 1: The successful probability of picking
k times from an n dimensional space

fig 2: The logarithm of the failed probability of
picking k times from an n dimensional space

then

q(n, i) =
i∑

x0+x1···+xn−1=0

1

2nx0+(n−1)x1+···+xn−1

= q(n− 1, 0) +
1

2
q(n− 1, 1) + · · ·+ 1

2i
q(n− 1, i)

=
i∑

m=0

(1/2m) · q(n− 1,m). (16)

q(1, i) =
∑

x0+x1=i

1

2x0
=

i∑
x0=0

1

2x0
= 2− 1

2i
. (17)

Let s(n, k) = P (Ak) = Pn · q(n, k − n), h(n, k) = log(1− s(n, k)). By means
of Mathematica and with the application of (16), (17), we draw the function
image of s(n, k) and h(n, k).

In conclusion, if f(x) has a linear structure, we can find it in the time of
linear function of n. If f(x) has no linear structure, see below.
Definition 2 Let f(x) : F n

2 → F2 be a Boolean function. Suppose α ∈ F n
2 .

Given an integer r, 0 ≤ r ≤ 2n, If ∃ a set V (α) : |V (α)| ≤ r, such that
∀x ∈ F n

2 \ V (α), f(x ⊕ α) + f(x) = c = f(α) + f(0), we call α is a r-type
linear structure of f(x). Specially, if V (α) is independent with the choice

7

of α, without of generality, |V (α)| = r, we say α is a uniform r-type linear
structure of f(x). Obviously, If r = 0, the uniform 0-type linear structure of
f(x) is the linear structure of f(x) which is defined in Definition 1.

If 0 < r � 2n, 1− r
2n
≈ 1. If f(x) has a uniform r-type linear structure,

we choose l numbers of different an in the experiment and fix it, and we do
p(n) times of experiments, we will obtain the erroneous conclusion that f(x)
has a linear structure with a probability (1 − r

2n
)(l+1)p(n). If we want this

probability no more than 1
2βn

, we should let p(n) > − βn
l+1

log2
1− r

2n
. Because

when r < 2n−1, ln 2
2· r

2n
< − log2

1− r
2n

= ln 2
− ln(1− r

2n
)
< ln 2

r
2n

. So if we want obtain

the fact that f(x) has no linear structure, we should do the experiment
βn ln 2
l+1

2n

r
times, in other words, exponential times. If we do polynomial times

of experiment, we will find a linear structure α, which is not the true linear
structure, but just a r-type one, we call it pseudo linear structure, but this
pseudo linear structure is also helpful in the cryptanalysis.
Remark In fact, solving whatever equations in the set of Equs. (5) can be
accomplished by quantum algorithm, and quantum algorithm contains only
the generation of the states, n multiple Hadamard transform, and the mea-
surement of the quantum states. Specific processes are as follows.
(1) The generation of the states: we can obtain the following n qubit
through Hadamard transform of some particular qubit and the CNOT oper-
ation of some qubit pair.

|0〉I →
1√
2

(
|0〉I + |y(1)〉I

)
→ 1

2

(
|0〉I + |y(1)〉I + |y(2)〉I + |y(1) ⊕ y(2)〉I

)
→ · · ·

→ 1√
2m

2m−1∑
(α1,··· ,αm)=0

|α1y
(1) ⊕ · · · ⊕ αmy(m)〉I . (18)

(2) n multiple Hadamard transform: perform n multiple Hadamard trans-
form on the above quantum state, producing

1√
2m+n

∑
z

[1 + (−1)y
(1)·z] · · · [1 + (−1)y

(m)·z]|z〉I . (19)

(3) Measure the register I, and we can obtain some linear independent
vectors z(1), · · · , z(k). They are the solutions of Equs. (5): b1 = z(1), · · · , bk =
z(k).

8

4. Discussion and conclusion

Simon’s algorithm is an important achievement in the history of quantum
algorithm research, which inspired Shor’s landmark work[6]. Simon’s paper
investigates a fundamental theoretical problem of computational complexity:
whether a quantum computer can get an exponential acceleration compared
to a classical computer, or, whether the strong Church-Turing thesis still
holds under the environment of quantum computing. Since that IFP, DLP,
et al. have not been proved without polynomial classical algorithms, the goal
of Simon is still a challenging task.

Following Simon’s idea, we propose an efficient quantum algorithm to
determine the linear structure of a quantum oracle that executing a Boolean
function, which probably be helpful in cryptographic designing and crypt-
analysis.

Acknowledgement

This work was supported by the National Natural Science Foundation of
China under Grant No.61173157.

References

[1] D. R. Simon, On the Power of Quantum Computation, SIAM J. Comp.,
26 (1997), pp.1474-1483.

[2] S. Dubuc, Characterization of Linear Structures, Designs, Codes and
Cryptography, 22 (2001), pp.33-45.

[3] E. Dawson and C. K. Wu, On The Linear Structure of Symmetric
Boolean Functions, Australasian Journal of Combinatorics, 16 (1997),
pp.239-243.

[4] D. G. Feng and G. Z. Xiao , Character of Linear Structure of Boolean
Functions, Journal of Electronics (in chinese), 17(3), 1995, pp.324-329.

[5] D. Z. Cheng, Y. Zhao, and X. R. Xu, From Boolean Algebra to Boolean
Calculus, Control Theory Applications (in chinese), 28(10),2011,
pp.1513-1523.

9

[6] P. W. Shor, polynomial-time Algorithm for Prime Factorization and
Discrete logarithms on Quantum Computer, SIAM J. Comp., 26 (1997),
pp.1484-1509.

[7] J. Y. Shao, Combinatorics(in chinese), Tongji University Press, 1991,
pp:86-98.

Appendix A. Some properties of the linear structure of Boolean
function

Suppose f(x) : F n
2 → F2 is a Boolean function of n variables. If we know

the algebraic normal form of f(x), then we can ask whether there is a s ∈ F n
2 ,

such that f(x ⊕ s) = f(x)? Obviously, if s ∈ U
(0)
f , f(x ⊕ s) = f(x). The

following are some conclusions about how to find U
(0)
f in classical algorithms.

Let

f(x) = a0 + a1x1 + a2x2 + · · ·+ anxn + a12x1x2

+ · · ·+ an−1,nxn−1xn + · · ·+ a12···nx1x2 · · ·xn (20)

where x = (x1, x2, · · ·xn) ∈ F n
2 , ai1i2···ir ∈ F2, and + is the sum mod 2.

Suppose s = (s1, s2, · · · sn) ∈ U (0)
f ,

g(x) ≡ f(x⊕ s) + f(x)

= a1s1 + a2s2 + · · ·+ ansn + a12(s1x2 + s2x1 + s1s2)

+ · · ·+ an−1,n(sn−1xn + snxn−1 + sn−1sn) + · · ·+ a12···ns1x2 · · ·xn
+ · · ·+ a12···nx1x2 · · · sn + · · ·+ a12···ns1s2x3 · · · xn
+ · · ·+ a12···ns1s2 · · · sn. (21)

We have

∀x, f(x) = f(x⊕ s)⇔ g(x) = 0. (22)

Using the following lemma, we find some relations between U
(0)
f and the

coefficients of f(x) by exploiting the representation of g(x).
Lemma 1[7]. Let Z[x1, · · · , xk] be a class of the polynomial with integer co-
efficient relative to uncertainty element x1, · · · , xk. ∀T ⊆ Ik = {1, 2, · · · , k},
xT =

∏
i∈T xi(Let xφ = 1). Let Z0[x1, · · · , xk] denote the set of all the

10

elements in Z[x1, · · · , xk] which can be represent as the polynomials as fol-
lowing:

f(x1, · · · , xk) =
∑
T⊆Ik

b(T)xT (23)

In other words, every item of f(x1, · · · , xk) is a product of some different
variables with a integer coefficient. If f(x1, · · · , xk) ∈ Z0[x1, · · · , xk], and
∀ai ∈ {0, 1}(i = 1, 2, · · · , k), we have f(a1, · · · , ak) = 0, then f(x1, · · · , xk) ≡
0.

Combine the above lemma and (22) , we obtain the following result:
Theorem 2. If ∃ai1i2···ir = 1, ∀k ≥ r + 1, ai1i2···ik = 0, Let Ct =
{1, 2, · · · , n} − {i1, i2, · · · , it}. A sufficient and necessary condition for a

s ∈ U (0)
f is g(x) ≡ 0. Specifically, every coefficient of g(x) is 0, i.e.∑
l∈Ct

ai1,i2,··· ,it,lsl + · · ·+
∑

l1,···lr−t∈Ct

ai1,i2,··· ,it,l1,···lr−tsl1 · · · slr−t = 0 (24)

for ∀t, 0 ≤ t ≤ r − 1.
Property 1. If a12···n = 1, then it must be s = 0, i.e. U

(0)
f = {0}.

Proof In Equs. (24), if t = r − 1, then∑
l∈Cr−1

ai1,i2,··· ,ir−1,lsl = 0. (25)

specially, if a12···n = 1, i.e. r = n, then (25) becomes

a12···nsi = 0 (i = 1, 2, · · ·n).

If a12···n = 1, then s1 = s2 = · · · = sn = 0, that is s = 0.
Property 2. If a12···n = 0, there exist ai1i2···in−1 6= 0, there exist s ∈ U

(0)
f ,

s 6= 0, then it must be s = (s1, s2, · · · sn) = (a′1, a
′
2, · · · a′n), where a′i represents

ai1i2···in−1 whose subscript doesn’t have i. Particularly, if (a′1, a
′
2, · · · a′n) =

(1, 1, · · · , 1), then s = (1, 1, · · · , 1).
Proof Similar to Property 1, if a12···n = 0, there exist ai1i2···in−1 6= 0,
then r = n− 1, from (25) we get

a23···ns2 + a13···ns1 = 0.

For more generally,
a′isj + a′jsi = 0.

11

If a′i = 1, a′j = 0, then sj = 0 = a′j. Since s 6= 0, we must have si = 1 = a′i.
If again we have a′k = 1, then sk + si = 0, so sk = si = 1 = a′i = a′k.
We then get s = (s1, s2, · · · sn) = (a′1, a

′
2, · · · a′n).

Property 3. If a12···n = 0, ∀ai1i2···in−1 = 0, ∀ai1i2···in−2 = 1, n ≥ 4, then it

must be s = 0, i.e. U
(0)
f = {0}.

Proof Similar to Property 1 and Property 2, and in this circumstance,
r = n− 2, by (25), we have

a′ijsk + a′jksi + a′iksj = 0.

If ∀a′ij = 1, then sk + si + sj = 0, so there is at least a 0 in sk, si, sj, suppose
si = 0. And also

sk + sl + sj = 0,

we have si + sl = 0, so sl = si = 0. And that we have

si + sl + sj = 0,

so sj = 0. And then sk = 0. So s = 0.
Property 4. If ∀ai1i2···in−2m = 1, ∀ai1i2···ik = 0, k ≥ n− 2m+ 1, n ≥ 2m+ 2,

then it must be s = 0, i.e. U
(0)
f = {0}.

Proof Similar to Property 3, and in this circumstance, r = n− 2m, by
(25), we first obtain

2m+1∑
k=1

sik = 0.

There is at least one sik satisfies sik = 0. And also another si2m+2 = 0. And
then the sum of the sik of 2m − 1 numbers is 0. Subsequently the sum of
2m− 3, · · · , 3 numbers is 0. So every si = 0, that is s = 0.
Property 5. If ∀ai1i2···in−2m+1 = 1, ∀ai1i2···ik = 0, k ≥ n−2m+2, n ≥ 2m+1,

there exist s ∈ U (0)
f , s 6= 0, then it must be s = (1, 1, · · · , 1).

Proof Similar to Property 4, and in this circumstance, r = n− 2m+ 1,
by (25), we first obtain

2m∑
k=1

sik = 0.

2m+1∑
k=2

sik = 0.

12

As a result si1 + si2m+1 = 0. So

2m−2∑
k=1

sik = 0.

Subsequently the sum of 2m − 4, · · · , 2 numbers is 0. So by Property 2,
s = (1, 1, · · · , 1).
Appendix B. Application for solving the 3SAT problem

Lemma 3. The 3SAT satisfiable problem can be transformed to determine
whether there exists a solution of the equations

(si1 + ri1)(si2 + ri2)(si3 + ri3) = 0 (26)

where rij ∈ {0, 1} are constants.
Theorem 4. (1)If ∃ai1···ik = 1(k ≥ 4). ∀ai1···ikik+1···ik+l = 0(1 ≤ l ≤ r −
k). ai1···ik−4ik−3ijil = 1(k − 2 ≤ j ≤ l ≤ k). ai1···ik−4ik−3ij = 1(j = k − 2, k −
1, k). ai1···ik−4ik−3

= 1. The other coefficients like ai1···ik−4l1···lt(1 ≤ t ≤ 4) are
all 0. Then

sik−3
+ sik−3

sik−2
+ sik−3

sik−1
+ sik−3

sik
+ sik−3

sik−2
sik−1

+ sik−3
sik−2

sik + sik−3
sik−1

sik
+ sik−3

sik−2
sik−1

sik
= sik−3

(sik−2
+ 1)(sik−1

+ 1)(sik + 1) = 0 (27)

(2) If ∃ai1···ik = 1(k ≥ 3). ∀ai1···ikik+1···ik+l = 0(1 ≤ l ≤ r − k).
(a) If ai1···ik−3ik−2ik−1

= 1, ai1···ik−3ik−2ik = 1, ai1···ik−3ik−2
= 1, the other coeffi-

cients like ai1···ik−3l1···lt(1 ≤ t ≤ 3) are all 0. Then

sik−2
sik−1

sik + sik−2
sik−1

+ sik−2
sik + sik−2

= sik−2
(sik−1

+ 1)(sik + 1) = 0 (28)

(b) If ai1···ik−3ik−2ik−1
= 1, the other coefficients like ai1···ik−3l1···lt(1 ≤ t ≤ 3)

are all 0. Then

sik−2
sik−1

sik + sik−2
sik−1

= sik−2
sik−1

(sik + 1) = 0 (29)

(c) If the other coefficients like ai1···ik−3l1···lt(1 ≤ t ≤ 3) are all 0. Then

sik−2
sik−1

sik = 0 (30)

13

	1 Using Simon's algorithm to find multiple periods
	2 The quantum algorithm for finding the linear structure of Boolean function
	3 The Simplified quantum algorithm
	4 Discussion and conclusion

