\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 7 questions for a total of 8 points.

1. (Lorentz contraction) In relativity theory, the length of an object, say a rocket, appears to an observer to depend on the speed at which the object is traveling with respect to the observer. If the observer measures the rocket's length as L_{0} at rest, then at speed v, the length will appear to be

$$
L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

This equation is the Lorentz contraction formula. Here, c is the speed of light in a vacuum, which is about $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.
(a) (4 points) What happens to L as v increases?
\qquad
\qquad
\qquad
\qquad
(b) (4 points) Find $\lim _{v \rightarrow c^{-}} L$.
(b)
(c) Why was the left-hand limit needed in the limit?
\qquad
\qquad
\qquad
\qquad
2. Let $f(x)=\sqrt{x+1}$. Find the largest $\delta>0$ such that $f(x) \in(2-\varepsilon, 2+\varepsilon)$, when $\varepsilon=0.1$.
3. Use epsilon-delta proofs of a limit to prove that $\lim _{x \rightarrow-11} \frac{x^{2}+6 x+5}{x+5}=-10$.
\square
4. Consider the function $g(x)=\left\{\begin{array}{ll}0, & x \leq 0 \\ \sin \left(\frac{1}{x}\right), & x>0\end{array}\right.$.
(a) Does $\lim _{x \rightarrow 0^{+}} g(x)$ exist? If so, what is it? If not, why not?
\square
(b) Does $\lim _{x \rightarrow 0^{-}} g(x)$ exist? If so, what is it? If not, why not?
\square
(c) Does $\lim _{x \rightarrow 0} g(x)$ exist? If so, what is it? If not, why not?
\square
5. Graph a function that meets the following criteria:

- $\lim _{x \rightarrow-\infty} h(x)=-\infty$,
- $\lim _{x \rightarrow-1^{+}} h(x)=2$,
- $h(3)=0$,
- $\lim _{x \rightarrow-1^{-}} h(x)=-3$,
- $\lim _{x \rightarrow 3} h(x)=4$,
- $\lim _{x \rightarrow \infty} h(x)=-1$.

6. Each of the following statements are false. Find a counterexample to each of the statements. Your counterexample may take many different forms, i.e. you may come up with an equation, provide a graph, or give a detailed explanation.
(a) For any function $f(x), \lim _{x \rightarrow c} f(x)=f(c)$.
\square
(b) $\lim _{x \rightarrow \infty} \sin (x)=0$ because $\frac{-1+1}{2}=0$.
(c) All limits of the form $\infty-\infty$ must go to zero.
\square
(d) If $\lim _{x \rightarrow c} f(x)=L_{1}$ and $\lim _{x \rightarrow L_{1}} g(x)=L_{2}$, then $\lim _{x \rightarrow c}(g \circ f)(x)=L_{2}$.
7. Calculate the following limits using algebra.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{3}+5 x^{2}-14 x}$
\square
(b) $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$
\square
(c) $\lim _{x \rightarrow \infty} \frac{x^{7}-11 x^{3}-5 x-2}{3 x-2 x^{2}-17 x^{11}+12}$
(d) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{2 x}$
\square
(e) $\lim _{x \rightarrow 0} \frac{3 e^{x}-3}{3 e^{2 x}+9 e^{x}-12}$
